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ABSTRACT
Scaling laws of dust, Hi gas and metal mass with stellar mass, specific star formation
rate and metallicity are crucial to our understanding of the buildup of galaxies
through their enrichment with metals and dust. In this work, we analyse how the dust
and metal content varies with specific gas mass (MHI/M?) across a diverse sample
of 423 nearby galaxies. The observed trends are interpreted with a set of Dust and
Element evolUtion modelS (DEUS) – including stellar dust production, grain growth,
and dust destruction – within a Bayesian framework to enable a rigorous search of
the multi-dimensional parameter space. We find that these scaling laws for galaxies
with −1.0 . logMHI/M? . 0 can be reproduced using closed-box models with high
fractions (37-89%) of supernova dust surviving a reverse shock, relatively low grain
growth efficiencies (ε=30-40), and long dust lifetimes (1-2 Gyr). The models have
present-day dust masses with similar contributions from stellar sources (50-80%) and
grain growth (20-50%). Over the entire lifetime of these galaxies, the contribution
from stardust (>90 %) outweighs the fraction of dust grown in the interstellar medium
(<10 %). Our results provide an alternative for the chemical evolution models that
require extremely low supernova dust production efficiencies and short grain growth
timescales to reproduce local scaling laws, and could help solving the conundrum on
whether or not grains can grow efficiently in the interstellar medium.

Key words: galaxies: evolution – galaxies: star formation – ISM: dust, extinction –
ISM: abundances

1 SETTING THE SCENE

Dust grains make up only a small fraction (∼1% on average)
of the interstellar mass in galaxies. Nonetheless, these dust
particles play a crucial role in balancing local gas heating
and cooling processes. Chemical reactions on the surfaces
of dust grains result in the formation of a large variety of
molecules, especially in regions of the interstellar medium
(ISM) where gas phase chemistry is inefficient. The process-
ing of about 30 to 50% of all stellar light in the Universe
by dust grains (e.g., Driver et al. 2007; Bianchi et al. 2018)
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makes observations of the infrared (IR) dust emission fur-
thermore essential for all studies of star formation to re-
cover the bright ultraviolet (UV) and optical light emitted
by young stellar populations.

Although the ubiquitous presence of interstellar gas
(Hartmann 1904) and dust (Trumpler 1930) has been recog-
nised for nearly a century, the origin and main formation
channels for interstellar dust grains remain an open ques-
tion. It is commonly accepted that dust grains can form
through the condensation of metals in the cool envelopes of
asymptotic giant branch (AGB) stars (e.g., Ferrarotti & Gail
2006; Nanni et al. 2013) and in the expanding ejecta of core-
collapse supernovae (e.g., Barlow et al. 2010; Gomez et al.
2012; Matsuura et al. 2015; De Looze et al. 2017a; Temim
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et al. 2017; De Looze et al. 2019; Cigan et al. 2019), but
these two stellar dust production sources appear not able to
account for the bulk of the dust mass observed in galaxies at
high redshift (Micha lowski et al. 2010; Valiante et al. 2011;
Rowlands et al. 2014; Micha lowski 2015; Mancini et al. 2015;
Graziani et al. 2019) and in the nearby Universe (Matsuura
et al. 2013; De Looze et al. 2016; Schneider et al. 2016; Gi-
nolfi et al. 2018; Triani et al. 2020). The reformation of dust
grains through the accretion of metals in dense ISM clouds is
thought to provide the key to explaining the large amounts
of interstellar dust observed in galaxies (e.g., Rowlands et al.
2014; Zhukovska 2014; Schneider et al. 2016; Zhukovska et al.
2016; De Vis et al. 2017b; Popping et al. 2017), but the exact
physical processes that enable this type of “grain growth” in
the interstellar medium remain poorly understood (Barlow
1978; Ferrara et al. 2016; Ceccarelli et al. 2018).

To better understand the main dust formation mecha-
nisms in galaxies, and whether or not grain growth can dom-
inate the dust production, we require substantial progress
on two independent fronts. First of all, we need reliable es-
timates of the dust content in galaxies. In this work, we
rely on a set of carefully determined dust masses (see Ap-
pendix A) inferred from fitting the mid-infrared to sub-
millimetre dust spectral energy distribution (SED) with a
Bayesian method that builds upon the grain mix and dust
properties from the THEMIS dust model (Jones et al. 2017)
and a multi-component interstellar radiation field heating
these dust grains (Dale et al. 2001). Secondly, we require
measurements of how the dust, metal and gas content in
galaxies scales with respect to other global galaxy proper-
ties (i.e., stellar mass, specific star formation rate, metallic-
ity) through scaling relations to infer how a galaxy’s dust
content evolves with time and to shed light on the main
sources of dust production in the ISM. Understanding how
the amount of dust, metals and gas evolves for a large en-
semble of galaxies, at different stages of their evolution, will
allow us to pin down the importance of various dust produc-
tion and destruction mechanisms. Tracking how metals and
dust are built up throughout a galaxy’s lifetime necessitates
simultaneously quantifying dust and gas reservoirs. The JIN-
GLE (JCMT dust and gas In Nearby Galaxies Legacy Ex-
ploration) galaxy sample (Saintonge et al. 2018, hereafter
JINGLE Paper I) was designed to acquire dust mass mea-
surements from Herschel and SCUBA-2 data, in addition to
ancillary Hi observations, and molecular gas mass measure-
ments currently available for 63 JINGLE galaxies.

In this paper, we present dust, gas and metal scaling
relations for a sample of 423 nearby galaxies, including JIN-
GLE, HRS, HAPLESS, HiGH and KINGFISH samples1. We
split up this local galaxy sample into six subsamples accord-
ing to their stage of evolution. We assume in this paper that
the evolutionary stage of a galaxy is relatively well approxi-
mated by their MHI/M? ratios and infer representative star
formation histories according to the evolutionary stage of
these galaxies. We compare the average dust, gas and metal
mass fractions along these evolutionary sequences with a
set of Dust and Element evolUtion modelS (DEUS) in a

1 The combined galaxy sample consists of 568 galaxies. We con-
sider the subsample of those galaxies: (1.) with available Hi gas

measurements, and (2.) classified as non-Hi-deficient galaxies.

Bayesian framework in order to cover a large range of input
parameters and to elucidate what processes drive these scal-
ing laws. This is the first study (to our knowledge) where
such a rigorous search of the full parameter space has been
pursued.

Section 2 discusses the main characteristics of our five
nearby galaxy samples (JINGLE, HRS, KINGFISH, HAP-
LESS, HIGH). In Section 3, we analyse the observed scaling
laws for the dust, gas and metal content of these five galaxy
samples. In Section 4, we subdivide our local galaxy sample
into six bins according to their specific Hi gas masses, and
compare their average scaling laws with DEUS to infer how
their dust and metal content has been built up across cos-
mic time. In Section 5, we summarise our conclusions. In the
Appendices, we outline the method used to model the dust
masses (Appendix A), detail the datasets and methods used
to infer galaxy specific properties (Appendix B), describe
how we infer customised star formation histories (SFH) for
galaxies at different evolutionary stages (Appendix C), dis-
cuss the specifics of DEUS (Appendix D), while a list of
acronyms and symbols is presented in Appendix F, and ad-
ditional Tables and Figures are presented in Appendices E
and G.

2 SAMPLE DESCRIPTION

2.1 An introduction to JINGLE

JINGLE is a large program on the James Clerk Maxwell
Telescope (JCMT) aiming to assemble dust mass measure-
ments for a sample of 193 local galaxies and molecular gas
masses for part of this sample. The JINGLE sample pop-
ulates the redshift range between z=0.01 and z=0.05, and
was drawn from the MaNGA (Mapping Nearby Galaxies
at Apache Point Observatory, Bundy et al. 2015) sample
with optical integral-field spectroscopy data. In brief, JIN-
GLE galaxies were selected to homogeneously sample the
SFR–M? plane between 109 and 1011 M�. As part of the
sample selection procedure, JINGLE galaxies were required
to have detections in the Herschel SPIRE 250 and 350µm
bands. New JCMT SCUBA-2 850µm (and 450µm) observa-
tions probe the dust emission spectrum along the Rayleigh-
Jeans tail (Smith et al. 2019, hereafter JINGLE Paper II),
while RxA CO J=2-1 observations provide measurements of
the molecular gas content (currently) for 63 JINGLE galax-
ies (Xiao et al. in prep., hereafter JINGLE Paper III). As a
consequence of the sample selection, most JINGLE galaxies
are classified as late-type spirals or irregular galaxies with a
subset of only 7 early-type galaxies.

The sample selection and main science goals of the JIN-
GLE survey are described in JINGLE Paper I, with specific
details about the observational setup and data reduction of
the RxA CO J=2-1 line spectroscopy and SCUBA-2 450 and
850µm dust continuum observations presented in JINGLE
Papers III and II, respectively. In Lamperti et al. (2019)
(hereafter JINGLE Paper V), a hierarchical Bayesian fit-
ting algorithm has been used to infer dust temperatures,
dust emissivity indices, and dust masses for the ensemble
of JINGLE (and HRS) galaxies. In this paper, we rely on
the dust masses for JINGLE and the other nearby galax-
ies inferred from an alternative modelling method using a
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Figure 1. From left to right, and top to bottom: histograms of the metallicities (as traced by the oxygen abundance), stellar masses, star
formation rates (SFRs), specific star formation rates (sSFRs), Hi masses (MHI) and distances for the JINGLE (red filled histograms),

HRS (green vertical lines), KINGFISH (blue diagonal lines), HAPLESS (yellow lines) and HiGH (orange diagonal lines) galaxies. Median

sample values are indicated with vertical dashed lines using the same colour-coding.

non-hierarchical Bayesian implementation of the THEMIS
dust model, that enables us to constrain the small grain size
distribution, dust masses and starlight intensity distribution
responsible for the dust heating (see Appendix A). We note
that the dust masses inferred here and in JINGLE Papers V
are in excellent agreement after considering the differences in
the assumed dust mass absorption coefficients: JINGLE Pa-
per V assumes κ500=0.051 m2 kg−1 (Clark et al. 2016), while
here we adopt κ500=0.185 m2 kg−1 from the THEMIS dust
model (Jones et al. 2013, 2017). Due to growing evidence
(both from observations and laboratory experiments) indi-
cating that interstellar dust is more emissive than considered
in the previous generation of dust models (e.g., Planck Col-
laboration et al. 2016; Demyk et al. 2017a,b; Clark et al.
2019), we base our analysis upon the dust masses inferred
with the THEMIS dust model to account for this increased
dust emissivity and to avoid overestimating the dust masses
for a set of observed flux densities (compared to the previous
generation of dust models).

2.2 Nearby galaxy comparison samples

In addition to JINGLE, we have selected four nearby galaxy
samples with well-studied dust characteristics and general
galaxy properties. The combination of samples, whilst not
statistical, allows the scaling relations in this paper to be
explored over the widest possible extent of the parameter
spaces in question.

The first sample consists of the galaxies from the Her-
schel Reference Survey (HRS, Boselli et al. 2010) which is a
volume-limited, K-band selected sample of 322 nearby galax-
ies with distances between 15 and 25 Mpc. More than half of
the HRS sample consists of cluster galaxies (residing in the

Virgo and Ursa Major cluster), with the remaining galax-
ies located in massive groups surrounding these clusters.
The second sample is composed of galaxies from the Her-
schel program KINGFISH (Key Insights on Nearby Galax-
ies: A Far-Infrared Survey with Herschel, Kennicutt et al.
2011) which consists of 61 nearby galaxies with distances
D ≤ 30 Mpc, covering a variety of different morphological
classifications, star formation activity and galaxy environ-
ments. The third and fourth sample, HAPLESS and HiGH,
were selected from the Herschel Astrophysical Terahertz
Large Area Survey (H-ATLAS, Eales et al. 2010) based on
their SPIRE 250µm (HAPLESS, Clark et al. 2015) and Hi
(HiGH, De Vis et al. 2017a) detections, respectively. Since
dusty galaxies often contain a considerable amount of gas,
and vice versa, it is not surprising that the HAPLESS (42
galaxies) and HiGH (40 galaxies) samples have 22 sources in
common. Average sample properties are summarised in Ta-
ble 1, and are briefly discussed in Section 2.3. To compare
properties of different galaxy samples, we have performed
Mann–Whitney U–tests using the RS TEST procedure in IDL
(see Table E1 for the test results). This procedure tests the
hypothesis that two samples have the same median of distri-
bution at a significance level of 5%, with probabilities higher
than this value indicative of both samples not being signifi-
cantly different.

2.3 Sample characteristics

JINGLE and KINGFISH galaxies are more metal-rich as
compared to other nearby galaxy samples (see Fig. 1a),
whereas the oxygen abundance distributions for HRS, HAP-
LESS and HiGH samples are not considered to be signifi-
cantly different. The JINGLE sample has a relatively flat
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Table 1. Overview of the median values for a set of galaxy properties, with the error bars reflecting the dispersion observed for galaxies
within a specific galaxy sample. For the HRS sample, we report the sample characteristics for the entire set of HRS galaxies, and the

subsamples of Hi-deficient and non-deficient (Hidef ≤0.5) HRS galaxies.

Quantity JINGLE HRS (all) HRS (Hi def<0.5) HRS (Hi def≥0.5) KINGFISH HAPLESS HIGH

12+log(O/H) 8.74±0.10 8.58±0.15 8.57±0.15 8.64±0.13 8.69±0.22 8.44±0.17 8.50±0.20

logM? [M�] 10.13±0.55 9.67±0.63 9.53±0.59 9.95±0.64 9.95±0.98 9.06±0.64 9.39±0.86
log SFR [M� yr−1] 0.052±0.48 -0.70±0.67 -0.47±0.56 -1.18±0.65 -0.48±0.85 -0.83±0.31 -0.24±0.54

log sSFR [yr−1] -10.03±0.49 -10.30±0.80 -10.08±0.51 -10.98±0.82 -10.0±0.63 -9.92±0.68 -9.72±0.50

logMHI [M�] 9.66±0.39 8.92±0.60 9.20±0.44 8.37±0.45 9.08±0.71 8.90±0.52 9.74±0.48
D [Mpc] 123.4±41.6 17.0±1.2 17.3±2.8 17.0±2.4 9.8±6.8 31.1±5.3 32.4±5.0

logMdust/M? -2.71±0.36 -2.90±0.43 -2.76±0.29 -3.19±0.55 -2.86±0.48 -2.82±0.46 -2.78±0.44

logMHI/M? -0.43±0.48 -0.76±0.75 -0.50±0.50 -1.49±0.66 -0.60±0.91 -0.35±0.69 0.02±0.61
logMdust/Mmetals -0.67±0.23 -0.60±0.21 -0.62±0.21 -0.44±0.08 -0.63±0.38 -0.65±0.15 -0.78±0.30

logMdust/MHI -2.25±0.31 -2.17±0.47 -2.28±0.35 -1.80±0.44 -2.30±0.69 -2.59±0.23 -2.61±0.45

stellar mass distribution (which was by selection, see Sain-
tonge et al. 2018) with values ranging from 109 to 1011

M� (see Fig. 1b), significantly different from the other four
nearby galaxy samples. The HRS, KINGFISH and HiGH
samples extend towards low stellar masses with several
galaxies in the 106-109 M� stellar mass range. HAPLESS
does not contain galaxies with stellar masses below 108 M�,
nor does it contain many M? > 1010 M� galaxies like JIN-
GLE. Based on the mass-metallicity relation (e.g., Tremonti
et al. 2004; Hughes et al. 2013; Sánchez et al. 2017), it is
thus not surprising that JINGLE galaxies are characterised
by the highest metal abundances among our local galaxy
sample.

The median star formation rate (SFR) of JINGLE
galaxies (1 M� yr−1, see Fig. 1c) is similar to the average
present-day star formation activity in our own Galaxy (Ro-
bitaille & Whitney 2010). SFRs are a factor of three lower
in KINGFISH and HiGH galaxies, and lower by a factor of
six in HRS and HAPLESS galaxies, than for JINGLE galax-
ies. The low SFRs and specific star formation rates (sSFRs)
imply that the majority of HRS galaxies are undergoing a
period of low star formation activity, and have built up the
majority of their stellar mass content during earlier epochs.
The subsample of more evolved HRS galaxies is also evident
from the long tail in the sSFR diagram at the low sSFR end
(see Fig. 1d). Although HiGH, KINGFISH and HAPLESS
galaxies have a median SFR two, three and eight times lower
than JINGLE, respectively, the similarity in their median
sSFRs suggests that these samples contain several galaxies
with elevated levels of recent star formation activity.

The Hi mass content of JINGLE galaxies is simi-
lar to the median Hi reservoirs present in the Hi-selected
HiGH sample, but the specific Hi gas mass of HiGH galax-
ies (logMHI/M?=0.02±0.61) is higher than for JINGLE
(logMHI/M?=-0.43±0.48). HiGH galaxies are therefore con-
sidered to be in a very early stage of galaxy evolution (De
Vis et al. 2017a). Nonetheless, JINGLE Hi masses are clearly
higher than those of KINGFISH, HAPLESS and HRS galax-
ies, suggesting that JINGLE galaxies have retained a non-
negligible part of their Hi reservoir for future star formation,
and are also at an earlier stage of galaxy evolution. It is
worth noting that the spatial extent of the Hi reservoir has
not been taken into consideration in the comparison of these
Hi masses (due to the availability of single-dish measure-
ments only), and that, in particular, low-mass metal-poor
galaxies can have a large Hi reservoir that extends well be-

yond the stellar body (e.g., Hunter et al. 2011). HRS galaxies
have a median Hi mass almost an order of magnitude below
the median for JINGLE, which supports the interpretation
of the HRS sample consisting of more evolved galaxies. A
subset of the HRS galaxies have been characterised to be
Hi-deficient2, and their reduced star formation activity has
been attributed to the removal of part of their Hi gas reser-
voir due to environmental processes that inhibit new stars
from forming (e.g., Cortese et al. 2011).

The median distance of JINGLE galaxies
(D=123.4 Mpc) is higher than the median distances
(D=10-30 Mpc) for the other samples, which will likely bias
the JINGLE sample selection to only include the dustiest
galaxies at those distances.

Similar to the low fraction of early-type galaxies in the
JINGLE sample (i.e., 3.6%), the HAPLESS and HiGH sam-
ples consist of late-type star-forming galaxies with a range
of different morphologies (ranging from early-type spirals
to bulgeless highly flocculent galaxies), with the exception
of 2 early-type HAPLESS galaxies. The KINGFISH sample
contains 10 early-type galaxies (E/S0/S0a), 22 early-type
spirals (Sa/Sb/Sbc), 16 late-type spirals (Sc/Sd/Scd) and
13 irregular galaxies (I/Sm). The HRS sample contains a
significant subpopulation of 23 elliptical and 39 spheroidal
galaxies (Smith et al. 2012), with the remaining 261 galaxies
classified as late-type galaxies.

3 DUST, GAS AND METAL SCALING LAWS

The main goal of this part of the paper is to analyse local
dust, Hi gas and metal scaling laws, to understand how the
dust content and metallicity evolves over time, and what
processes drive this evolution.

3.1 Dust scaling relations

With dust being formed through the condensation of metals
synthesised in recent generations of stars, the dust content is
closely linked to the stellar mass and star formation activity
in galaxies. Since the stellar mass typically scales with the

2 The Hi-deficiency is calculated as the logarithmic difference

between the expected and observed Hi mass, i.e. Hi def =
log MHI,ref - log MHI,obs, following the definition in Haynes &
Giovanelli (1984).
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Figure 2. The scaling of the dust-to-stellar mass ratio (i.e., Mdust/M?) with stellar mass (M?, left panel) and specific star formation

rate (sSFR with sSFR=SFR/M?, right panel) is shown for JINGLE (red cross), HRS (green square/cross), KINGFISH (blue diamond),
HAPLESS (yellow cross) and HiGH (orange triangle) galaxies. A distinction is made between Hi-deficient and non-deficient HRS galaxies

(H idef ≤0.5, green square). Best-fit relations (as inferred for the entire nearby galaxy sample, with the exception of Hi-deficient HRS

galaxies) have been overlaid as a purple solid line, and are compared (where possible) to local galaxy scaling laws from De Vis et al.
(2017a) (black dashed curve) and from Casasola et al. (2019) (black dotted curve). The scaling relation from De Vis et al. (2017a) was

adjusted to account for the difference in the assumed dust opacities.

metal richness of the interstellar medium (through the stel-
lar mass-metallicity relation, e.g., Tremonti et al. 2004), the
dust-to-stellar mass ratio can be interpreted as the ratio of
metals locked into dust grains versus the metals in the gas
phase. It is known that specific dust masses (Mdust/M?) de-
crease towards high stellar masses (see Fig. 2, left panel) due
to dust destruction dominating over dust production pro-
cesses in more massive systems. The latter trend can also
be understood in view of the downsizing of galaxies (e.g.,
Cowie et al. 1996), where most of the massive galaxies al-
ready converted most of their gas into stars, and the bulk
of dust mass was formed during these main star formation
episodes. The wide spread in log Mdust/M? ratio from -2.5
to -5 that we find for galaxies with stellar masses M?=1010-
1011 M� is a reflection of galaxies with similar stellar masses
but at different stages of evolution.

JINGLE galaxies populate the high end of the
Mdust/M? range at a given stellar mass. Their high
log Mdust/M? ratios (-2.71±0.36) are not surprising consid-
ering that JINGLE galaxies were selected from their detec-
tions in the Herschel SPIRE bands (Saintonge et al. 2018).
The JINGLE galaxies have Mdust/M? ratios similar to (or
even slightly higher than) the majority of dust- and Hi-
selected HAPLESS/HiGH galaxies in the stellar mass range
that those samples have in common. Several KINGFISH and
HAPLESS/HiGH galaxies with stellar masses M? ≤109 M�
are characterised by low Mdust/M? ratios, and deviate from
the general trend for more massive galaxies. The HAP-
LESS/HiGH galaxies with low specific dust masses were
identified by De Vis et al. (2017a) as a unique population
of galaxies, at an extremely early phase of evolution where
most of the dust still needs to be formed. H i-deficient HRS
galaxies populate the bottom part of the diagram with sys-
tematically lower Mdust/M? ratios in comparison to other
nearby galaxies. The lower Mdust/M? for H i-deficient galax-
ies suggests that these galaxies have had part of their dust

content stripped along with their H i gas content (see also
Cortese et al. 2014), or that star formation has ceased in
these objects a long time ago, resulting in a lack of recent
dust replenishment, with dust destruction processes further
diminishing their dust content. Our best-fit relation is very
similar compared to the best-fit relation from De Vis et al.
(2017a) (inferred for HRS, HAPLESS and HiGH late-type
galaxies). The relation inferred by Casasola et al. (2019) for
a sample of 436 late-type local DustPedia galaxies is lower
by up to 0.2 dex, which can likely be attributed to a selection
effect. Our sample includes dust-selected galaxies at larger
distances (see Fig. 1f), which are likely to be more dusty on
average compared to a local galaxy sample.

The importance of recent star formation activity to de-
termine a galaxy’s dust content is evidently shown from the
scaling of Mdust/M? with sSFR (see Fig. 2, right panel).
Independent of their morphological classification, all galax-
ies follow a similar trend of decreasing Mdust/M? towards
low sSFR over three orders of magnitude in both quanti-
ties. The tight correlation (ρ=0.63) between Mdust/M? and
sSFR was first shown by da Cunha et al. (2010) for a sam-
ple of nearby galaxies. The fact that dust-selected samples
such as JINGLE and HAPLESS follow the same trend as
the stellar-mass selected HRS sample indicates that sSFR is
a more fundamental parameter than M? to determine the
specific dust mass of a galaxy (either directly or through a
secondary correlation).

The present-day dust mass of a galaxy is set by the
balance between the sources producing dust (i.e., evolved
stars, supernovae, grain growth) and the sinks destroying
dust grains (i.e., astration, supernova shocks). The observed
correlation between Mdust/M? and sSFR could be a reflec-
tion of an equilibrium process where the amount of dust
grains formed/destroyed scales with the recent star forma-
tion activity in a galaxy. Alternatively, the relation of the
Mdust/M? with sSFR can be interpreted as an indirect mea-
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sure of the total gas mass in a galaxy which is known to scale
with the star formation rate through the Kennicutt-Schmidt
relation (Schmidt 1959; Kennicutt 1998). Given that the
MHI/M? ratio dominates the scatter in local scaling rela-
tions with M? and sSFR (see also Section 3.2), and corre-
lates strongly with the observed Mdust/M?, Mdust/Mmetals

and Mdust/MHI ratios in our local galaxy samples, we favour
the latter interpretation (see below).

3.2 Hi gas scaling relations

With dust grains making up about 1% of the ISM in mass,
the gas reservoir dominates the ISM budget of a galaxy. In
this paper, we will make the assumption that galaxies with
massive Hi reservoirs (compared to their M?) are considered
to be at an early stage of evolution, while a low gas content
is indicative of an evolved galaxy which had most of its gas
reservoir turned into stars already. The MHI/M? ratio in
Fig. 3 (left panel) shows a similar anti-correlation (ρ=−0.64)
with stellar mass as the Mdust/M? ratio in Fig. 2 (left panel)
which is consistent with the least massive galaxies having
the largest atomic gas reservoir proportional to their stellar
mass.

Our best-fit relation for the specific Hi gas mass as a
function of stellar mass is shifted upwards by 0.3 to 0.4 dex
compared to the trend from De Vis et al. (2017a) due to the
high specific Hi gas masses of JINGLE galaxies, and due
to our omission of Hi-deficient HRS galaxies to determine
the best-fit relation. The scatter observed in the relations of
MHI/M? with M? (σ=0.57) and sSFR (σ=0.40) dominates
over the dispersion in the respective trends of Mdust/M?

with M? (σ=0.39) and sSFR (σ=0.29), which suggests that
the scatter in the trends of Mdust/M? with M? and sSFR
are likely dominated by variations in the galaxy’s specific
Hi gas masses, and not necessarily directly influenced by
the various dust production and destruction mechanisms
at work in these galaxies. This scenario is also supported
by the scatter observed in the scaling laws (see Fig. 4) for
Mdust/MHI with M? (σ=0.33) and sSFR (σ=0.37), which is
lower than similar relations for MHI/M? and suggests that
the specific Hi gas mass dominates the scatter in these scal-
ing relations. The trends between MHI/M?, and Mdust/M?

(ρ = 0.67), Mdust/Mmetals (ρ = −0.61) and Mdust/MHI

(ρ = −0.72) furthermore show strong correlations (see Fig.
8 and Table 2) compared to the relations of the latter ratios
with M? or sSFR, reinforcing the above reasoning. To study
what processes drive the observed trends and scatter in lo-
cal scaling laws, we therefore verify how the dust and metal
content of these galaxies varies as a function of MHI/M? in
Section 4.

3.3 Dust-to-Hi ratios

The Mdust/MHI ratio (or dust-to-gas ratio, if the contribu-
tion from molecular gas can be marginalised3) of a galaxy

3 We note that for 44 KINGFISH and 81 HRS galaxies with CO

data the median H2/Hi ratio is equal to 0.62 and 0.31, respec-

tively, assuming a Galactic XCO factor. For a metallicity- and
luminosity-dependent XCO factor, the median H2/Hi ratio for

KINGFISH and HRS galaxies changes to 1.90 and 0.30, respec-

measures how many metals have been locked up in dust
grains compared to the metals in the gas phase. To verify
the reliability of this proxy, we plot the Mdust/Mmetals ra-
tio (see Section 3.4) as a function of the Mdust/MHI ratio
in Figure 7 (right panel), which shows a strong correlation
(ρ = 0.88) with little scatter (σ = 0.11) around the best-fit
trend.

The Mdust/MHI ratios of our nearby galaxy samples
range between 10−1.1 and 10−4.3 with a median 10−2.3±0.4

(see Figure 4) which is roughly consistent with the Milky
Way dust-to-Hi gas column density ratio assumed in the
THEMIS dust model (1/135, Jones et al. 2017). The
Mdust/MHI ratio decreases with decreasing stellar mass
(ρ=0.51), and with increasing sSFR (ρ=−0.41), which is
consistent with the consensus that less massive galaxies
are currently in the process of vigorously forming stars,
and that most of their metals have not been locked up in
dust grains in comparison to the large reservoir of gas. In
particular, HAPLESS (logMdust/MHI=−2.59 ± 0.23) and
HiGH (logMdust/MHI=−2.61± 0.45) galaxies have median
ratios at the low end of the entire nearby galaxy popula-
tion, which might at first seem surprising given their “nor-
mal” Mdust/M? ratios. Similar trends were found by da
Cunha et al. (2010) and consecutive works (Cortese et al.
2012; Clark et al. 2015; De Vis et al. 2017a), and attributed
to galaxies with low stellar masses and high sSFRs, cur-
rently forming dust (high Mdust/M?), and still retaining
large Hi gas reservoirs (low Mdust/MHI) for future star for-
mation. JINGLE (logMdust/MHI=−2.25±0.31) and KING-
FISH (logMdust/MHI=−2.30 ± 0.69) galaxies have ratios
that agree well with the general trend observed for the en-
semble of nearby galaxies, while the overall HRS sample me-
dian (logMdust/MHI=−2.17± 0.47) is increased due to the
high ratios (logMdust/MHI=−1.80 ± 0.44) observed for Hi-
deficient HRS galaxies. The latter high ratios agree with the
findings of Cortese et al. (2016), and were attributed to the
outside-in stripping of the interstellar medium in these Hi-
deficient HRS galaxies (where the extended Hi component
is affected more than the dust and molecular gas). The low-
est ratios (−4.3 ≤Mdust/MHI≤ −3.9) have been observed
for four irregular KINGFISH galaxies (NGC 2915, HoII,
DDO053, NGC 5408) characterised by low stellar masses,
low metal abundances, high sSFRs, high specific Hi gas
masses and low specific dust masses, which makes them
stand out from the average KINGFISH galaxy population
and characterises these galaxies as being at an early stage
of evolution.

Trends of dust-to-gas ratios with metallicity reported
in the literature show that the Mdust/MHI ratio is strongly
linked to the evolutionary stage of galaxies with gradually
more metals being locked up in dust grains (e.g., Rémy-
Ruyer et al. 2014). The relation between Mdust/MHI as a
function of oxygen abundance is shown in Figure 5, and is
best-fitted with a super-linear trend (slope: 2.26±0.07). For
reference, the linear relation (with a fixed slope of 1) and
super-linear trend (with a slope of 2.02± 0.28) from Rémy-
Ruyer et al. (2014) are overlaid as yellow solid and dashed

tively. For HRS galaxies, these values are in line with the average
MH2/MHI ratio of 0.3 for xGASS galaxies with stellar masses

above 1010 M� (Catinella et al. 2018).
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JINGLE – IV. Dust, HI gas and metal scaling laws 7

Figure 3. The scaling of the Hi-to-stellar mass ratio (i.e., MHI/M?) with stellar mass (M?, left panel) and specific star formation rate

(sSFR with sSFR=SFR/M?, right panel). See caption of Fig. 2 for more details on the symbols and plotted curves.

Table 2. The best-fit relations (of the form y = a × x + b) have been inferred based on linear regression fits using the IDL procedure

MPFITEXY, which is based on the non-linear least-squares fitting package MPFIT (Markwardt 2009). In addition to JINGLE, KINGFISH,

HAPLESS and HiGH galaxies, only HRS galaxies with an Hi-deficiency lower than 0.5 (i.e., classified as non-deficient galaxies) have been
considered. The observed scatter (σ) around each of the best-fit relations has been inferred. The Spearman rank correlation coefficient,

ρ, and corresponding p value have been inferred from the IDL procedure r_correlate to quantify the degree of (non-)linear correlation

between the various quantities.

x y a b σ ρ p value

logM? logMdust/M? -0.22±0.01 -0.62±0.11 0.39 -0.39 < 10−6

logM? logMHI/M? -0.80±0.01 7.42±0.12 0.57 -0.64 < 10−6

logM? logMdust/MHI 0.47±0.01 -6.90±0.11 0.33 0.51 < 10−6

logM? logMdust/Mmetals 0.19±0.01 -2.54±0.09 0.24 0.26 < 10−6

log sSFR logMdust/M? 0.56±0.01 2.85±0.15 0.29 0.63 < 10−6

log sSFR logMHI/M? 0.89±0.02 8.47±0.15 0.40 0.72 < 10−6

log sSFR logMdust/MHI -0.28±0.01 -5.08±0.10 0.37 -0.41 < 10−6

log sSFR logMdust/Mmetals -0.29±0.01 -3.54±0.11 0.24 -0.32 < 10−6

Metallicity logMdust/MHI 2.27±0.06 -21.89±0.55 0.34 0.53 < 10−6

Metallicity logMdust/Mmetals 0.40±0.14 -4.10±1.18 0.26 0.11 4× 10−2

logMHI/M? logM? -1.25±0.01 9.27±0.01 0.51 -0.65 < 10−6

logMHI/M? logMdust/M? 0.49±0.02 -2.55±0.01 0.28 0.67 < 10−6

logMHI/M? logMdust/Mmetals -0.37±0.01 -0.84±0.01 0.20 -0.61 < 10−6

logMHI/M? Metallicity -0.25±0.01 8.54±0.01 0.15 -0.55 < 10−6

logMHI/M? logMdust/MHI -0.63±0.01 -2.63±0.01 0.28 -0.72 < 10−6

logMdust/MHI logMdust/Mmetals 0.61±0.02 0.75±0.04 0.11 0.88 0.0

lines4. Our trend is consistent with the super-linear relation
from Rémy-Ruyer et al. (2014), which might seem surprising
at first as the linear relation from Rémy-Ruyer et al. (2014)
was found adequate to explain the trends at metallicities
12+log(O/H)& 8 and the super-linear trend was invoked to
explain the behaviour at metallicities lower than this thresh-
old. A χ2 goodness-of-fit test confirms that the linear fit
from Rémy-Ruyer et al. (2014) does not provide a good fit
to the data (p-value of 1), even when excluding galaxies
below a metallicity threshold of 12+log(O/H)=8.4. The p-
value (0.25) inferred from our best-fit suggests that the data

4 Note, that we are only interested in a comparison of their slopes,
as the normalisation of these curves can not be directly compared

to our values due to the differences in the assumed metallicity cali-
bration, scaling factor for the gas mass to include heavier elements

and dust opacities.

are neither well described by a non-linear relation, which
likely results from the limited metallicity range covered by
our sample, and the large degree of scatter in the relation
(σ=0.34). We furthermore compare our best-fit relation to
the super-linear trend (slope of 2.15±0.11) inferred by De
Vis et al. (2019) for a sample of ∼500 DustPedia galaxies
for the same metallicity “PP04” calibration5, but they in-
cluded an estimation of the molecular gas content. The slope
of our relation agrees well with their super-linear trend, but
is offset by 0.2-0.3 dex to higher dust-to-Hi ratios, which can
likely be attributed to the omission of the molecular gas con-
tent in our galaxy samples and/or to the different samples
under study in both works. In another DustPedia paper, a

5 Note that the use of a different metallicity calibration would
still yield a super-linear trend, but with a slightly different slope
and/or normalisation (see Table 4 from De Vis et al. 2019).
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8 Ilse De Looze et al.

Figure 4. The scaling of the dust-to-Hi mass ratio (i.e., Mdust/MHI) with stellar mass (M?, left panel) and specific star formation rate
(sSFR with sSFR = SFR/M?, right panel). See caption of Fig. 2 for more details on the symbols and plotted curves.

Figure 5. The scaling of the dust-to-Hi mass ratio (i.e., Mdust/MHI) with metallicity (as traced by the oxygen abundance 12+log(O/H))
and the specific Hi gas mass (i.e., MHI/M?). See caption of Fig. 2 for more details on the symbols and plotted curves.

metallicity-dependent XCO factor is invoked to reproduce a
linear relation between the dust-to-gas ratio and metallic-
ity Casasola et al. (2019), as frequently observed both on
resolved and integrated galaxy scales in the local Universe
(e.g., Lisenfeld & Ferrara 1998; Galametz et al. 2011; Ma-
grini et al. 2011; Sandstrom et al. 2013). In future work, we
will study the total gas scaling relations for JINGLE galax-
ies, and investigate the effect of different assumptions on the
XCO conversion factor. In the next paragraphs, we discuss
the applicability of dust as a gas tracer based on the Hi gas
scaling relations of this work.

Dust mass measurements are often advocated as an al-
ternative probe of the total ISM mass budget (e.g., Eales
et al. 2012; Magdis et al. 2012; Scoville et al. 2014; Groves
et al. 2015; Scoville et al. 2016; Janowiecki et al. 2018), due
to the relative ease of obtaining infrared data and infer-
ring dust masses, as opposed to a combination of Hi data
(for which the sensitivity quickly drops at high redshifts)

and CO observations (hampered by the notorious CO-to-H2

conversion factor, Bolatto et al. 2013).

Figure 5 shows that there is a considerable spread
(0.34 dex) in the Mdust/MHI ratio as a function of oxygen
abundance. The use of dust as an ISM mass tracer relies on
the assumption of an approximately constant dust-to-gas ra-
tio to convert dust masses into total gas masses. Variations
of the dust-to-gas ratio with metallicity have been demon-
strated before (e.g., Rémy-Ruyer et al. 2014), but the scatter
around the best-fit in Figure 5 implies that the dust-to-Hi
ratio already varies by more than a factor of two at fixed
metallicity. In most cases, the metal abundances of galaxies
are not known a priori, and the uncertainty on the estimated
ISM mass reservoir will be higher than this factor of two.
Also the use of oxygen as a tracer of the total metal mass in
galaxies might introduce an increased level of scatter. Some
of the scatter in our relation might be caused by the missing
molecular gas mass measurements; although Casasola et al.
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JINGLE – IV. Dust, HI gas and metal scaling laws 9

(2019) find that the Hi gas mass correlates more closely to
the dust mass than the molecular gas. Part of the spread
might furthermore be attributed to the inhomogeneous ex-
tent of dust and gas reservoirs tracing different parts of a
galaxy. In particular, JINGLE galaxies may be affected by
the unresolved extent of Hi gas observations obtained from
single-dish observations. In due course, all JINGLE galax-
ies will be covered by future interferometric radio facilities
(e.g., SKA, Apertif), which will give us a handle on the spa-
tial extent of their Hi gas reservoir. JINGLE, HAPLESS and
HiGH metallicities have furthermore been derived from the
central 3′′ covered by SDSS fibre optical spectroscopy data
(Thomas et al. 2013), which could potentially increase the
uncertainty on their oxygen abundances due to the lack of
a set of spatially resolved metallicity measurements, as op-
posed to the resolved metallicity measurements for the other
nearby galaxy samples. Due to the wide spread in metallicity
gradients observed in local galaxy samples (e.g., Kennicutt
et al. 2003; Moustakas et al. 2010; Sánchez-Blázquez et al.
2014; Belfiore et al. 2017; Poetrodjojo et al. 2018; An 2019),
these central metallicity measurements will not necessarily
be representative of a galaxy’s average metal abundance.
Metallicity measurements (in particular at low metallicity)
furthermore come with large uncertainties due to the specific
metallicity calibration that was applied, and its dependence
on a fixed electron temperature in case of strong line calibra-
tions. In addition, variations in the dust emissivity driven by
an altered dust mineralogy or variations in carbon-to-silicate
grain fractions (e.g., Clark et al. 2019) may be the cause of
part of the scatter.

Janowiecki et al. (2018) argued that most of the scatter
in the Mdust/MHI relation is driven by the unknown par-
tition between atomic and molecular gas, and variations in
the H2-to-Hi ratio with galaxy properties. Their study of the
HRS galaxy sample suggests a dispersion of 0.22-0.25 dex in
the relation between Mdust/MHI and metallicity, which is
somewhat lower than the 0.34 dex scatter inferred for the
sample of nearby galaxies in this paper.

3.4 Dust-to-metal ratios

We have calculated the dust-to-metal ratios (DTM) as the
ratio of the dust mass and the total amount of metals (and
thus accounting for metals in the gas phase and locked up
in dust grains) similar to other literature works (e.g., De Vis
et al. 2019):

DTM = Mdust/Mmetals(gas+ dust), (1)

with Mmetals(gas+dust)=fZ ×Mgas+Mdust. This prescrip-
tion allows for a direct comparison with the measurements
of dust depletion in damped Lymanα absorbers out to large
redshifts (e.g., De Cia et al. 2016). The metal mass frac-
tion fZ is calculated based on a galaxy’s oxygen abundance,
and the values of the metal mass fraction (fZ�=0.0134)
and oxygen abundance (12+log(O/H)�=8.69) inferred for
the Sun from Asplund et al. (2009), which results in
fZ=27.36×1012+log(O/H)−12. Due to the lack of molecular
gas mass estimates, we have used the Hi gas mass (corrected
for the contribution from elements heavier than hydrogen,
see Eq. D5) to calculate the metal mass fractions. We in-
ferred that the dust-to-metal ratios are lower by -0.11 dex

and -0.19 dex for 81 HRS and 44 KINGFISH galaxies, re-
spectively, if we account for molecular gas masses assuming
a Galactic XCO conversion factor. A metallicity-dependent
XCO conversion factor would lower the dust-to-metal ratios
by -0.46 dex for the KINGFISH sample (which contain the
lowest metallicity galaxies in our local galaxy sample). It
is worth noting that the metal mass furthermore relies on
measurements of the oxygen abundance, which does not nec-
essarily scale linearly to the total mass of metals in galaxies
at different stages of evolution.

The DTM ratio provides a measure of the relative frac-
tion of metals in the interstellar medium that have been
locked up in dust grains, and therefore sensitively depends
on the efficiency of various dust production and destruc-
tion mechanisms. It is assumed that the dust-to-metal ratio
remains more or less constant if dust is predominantly pro-
duced via stellar sources6. If grain growth dominates the
dust production, the DTM ratio is thought to increase as
galaxies evolve and their interstellar medium is enriched
with metals7, with grain growth believed to be more efficient
than stellar dust production sources once a critical metal-
licity threshold has been reached (Asano et al. 2013). Dust
destruction through supernova shocks (where metals locked
up in dust grains are returned to the interstellar medium)
have the opposite effect and will lower the DTM ratio.

The majority of nearby galaxies fall within the same
range of DTM ratios (−0.90 ≤ logDTM ≤ −0.40), with
little variation among the different galaxy populations (see
Table 1 and Fig. 6). The Milky Way is situated on the
high end of this range with log DTM=-0.45, if we have as-
sume a total gas mass Mgas=12.5×109 M� (Kalberla & Kerp
2009), solar metallicity and dust-to-Hi ratio of 1/135 as in-
ferred from the Milky Way THEMIS model (Jones et al.
2017). The median ratio for HiGH galaxies (log DTM=-
0.78±0.30) is slightly lower than the other galaxy popu-
lations (but not significantly different, see Table E1) and
confirms their early stage of evolution. The second lowest
ratio (log DTM=-0.67±0.23) is observed for JINGLE galax-
ies, but similarly does not differ significantly from HAP-
LESS (log DTM=-0.65±0.15) and KINGFISH (log DTM=-
0.63±0.38) galaxies. The median ratio for HRS galaxies
(log DTM=-0.60±0.21) is significantly higher than for the
other four samples due to the contribution from Hi-deficient
HRS galaxies, with the latter being characterised by sig-
nificantly higher ratios (log DTM=-0.44±0.08). This DTM
is more than 60% higher than the median DTM observed
in our sample of nearby galaxies (log DTM=-0.66±0.24, ex-
cluding the Hi-deficient HRS galaxies). This high DTM ra-
tio appears consistent with the high MH2/Mdust ratios ob-
served in Hi-deficient HRS galaxies (Cortese et al. 2016),
and a picture of outside-in stripping of interstellar mate-
rial where metals and Hi are more easily stripped compared
to the more centrally concentrated dust and molecular gas
content. The median ratio for our nearby galaxy sample is
higher than the average log DTM=-0.82±0.23 from De Vis

6 This statement relies on the assumption that stellar dust yields,

dust condensation efficiencies and reverse shock destruction rates
do not have a strong metallicity dependence.
7 This inference is somewhat model dependent, and is also influ-

enced by grain destruction efficiencies.
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Figure 6. The scaling of the dust-to-metal mass ratio (i.e., Mdust/Mmetals) with stellar mass (M?, left panel) and specific star formation
rate (sSFR with sSFR = SFR/M?, right panel). See caption of Fig. 2 for more details on the symbols and plotted curves.

Figure 7. The scaling of the dust-to-metal mass ratio (i.e., Mdust/Mmetals) with oxygen abundance (12+log(O/H), left panel) and
dust-to-Hi mass ratio (i.e., Mdust/MHI, right panel). See caption of Fig. 2 for more details on the symbols and plotted curves.

et al. (2019), which we attribute to the fact that we did not
consider molecular hydrogen measurements. Indeed, we dis-
cussed earlier that neglecting the molecular gas content will
overestimate the DTM ratios by 0.11 dex up to 0.46 dex.

We observe weak (but significant) correlations between
the DTM and M? (ρ=0.26), sSFR (ρ=−0.32) and MHI/M?

(ρ=−0.61) (see Fig. 6 and 8), while the relation with metal-
licity does not reveal a clear trend (ρ=0.11, see Fig. 7, left
panel). These weak correlations suggest that the DTM in-
creases as a galaxy evolves, although there is quite some
scatter in these relations. In particular, galaxies with M? ≥
109M� appear characterised by a nearly constant DTM,
while the DTM drops significantly for several low mass
galaxies (M? < 109M�). This sudden change in DTM be-
comes particularly evident for less evolved galaxies with
log MHI/M? > 0.3 (see Fig. 8, bottom right panel), and has
been attributed in the past to a critical metallicity threshold
above which grain growth becomes efficient and contributes

significantly to the dust production in galaxies (e.g., Asano
et al. 2013). The absence of a clear trend with metallic-
ity due to the large scatter in DTM ratios at low metal-
licities might suggest that this critical metallicity threshold
can vary from one galaxy to another (Asano et al. 2013)
or, alternatively, that such a critical metallicity threshold
is not relevant8. In Section 4, we show that efficient grain
growth is not required as a dominant dust production source
to explain the current dust budgets of nearby galaxies with
−1.0 . logMHI/M? . 0. With supernova shock destruction
releasing elements back into the gas phase, a wide range of
DTM ratios (at fixed metallicity) can also result from varia-
tions in dust destruction efficiencies and/or recent supernova

8 We should note that the metallicity range in our local galaxy
sample is limited (with only one galaxy below 12+log(O/H)<8.0)
and might not reach down to the metallicity regime where a
threshold would occur.
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rates. Also the structure of the interstellar medium, and the
filling factor of different ISM phases can play an important
role in determining how efficiently grains can grow in the
interstellar medium, and how effectively supernova shocks
can act as dust destroyers (Jones & Nuth 2011), and will
add to the scatter.

To summarise our observational findings from these
scaling relations, we infer that MHI/M? varies considerably
at a fixed stellar mass and fixed sSFR, more so than the
Mdust/M? and Mdust/MHI ratios. This large spread can be
interpreted as the specific Hi gas mass being the main driver
of the trends and scatter observed in other scaling laws
(rather than variations in the relative contributions from
several dust formation and destruction processes at fixed
stellar mass or sSFR). This picture is reinforced by the
significant correlations between MHI/M?, and Mdust/M?,
Mdust/Mmetals(gas+dust) and Mdust/MHI (see Figure 8)
and establishes that MHI/M? is closely linked to the enrich-
ment of the interstellar medium with dust and metals, and
the evolution of a galaxy, in general. In Section 4, we will
interpret the evolutionary trends for Mdust/M?, Mdust/MHI

and Mdust/Mmetals(gas+dust) using a set of chemical evo-
lution models to infer what dust production and destruc-
tion mechanisms have contributed to the build up a galaxy’s
present-day dust and metal budget.

4 INTERPRETING LOCAL SCALING LAWS
WITH DUST AND ELEMENT EVOLUTION
MODELS (DEUS)

4.1 Binning the sample in an evolutionary
sequence

For the purpose of understanding how the dust, Hi gas and
metal content evolves in galaxies, we have divided our local
galaxy sample9 into six separate bins according to equally
sized ranges covered by galaxies in log MHI/M?. This sub-
division results in unequal galaxy sample sizes in each bin.
We decided to take this approach as the spread in var-
ious quantities (and thus the uncertainty on our median
bin values) does not depend on the number of galaxies in
each bin, but rather on the intrinsic scatter for galaxies
at different stages of evolution. Table 3 lists the sample
size, average stellar mass (log M?), specific Hi gas mass
(log(MHI/M?)), specific dust mass (log(Mdust/M?)), dust
depletion (log(Mdust/Mmetals(gas+dust)) and metallicity for
these six galaxy bins. The bins range from galaxies with
high MHI/M? ratios and thus at an early stage of evolution
(Bin 1), down to galaxies with low MHI/M? ratios, which
have converted most of their gas into stars during the course
of their lifetime (Bin 6).

9 We omitted Hi-deficient HRS galaxies, since they have experi-
enced recent removal of large fractions of their gas content, which

makes it tenuous to reproduce their current Hi gas, dust and
metal content without detailed constraints on the timescale and
the extent of their gas removal.

4.2 DEUS modelling framework

To interpret what drives the evolution of the stellar mass,
metal mass, Hi gas, and dust content as galaxies evolve, we
have used a Bayesian modelling framework to find the set
of parameters capable of reproducing the observed scaling
relations in the local Universe. To compare dust, Hi gas and
metal scaling relations in the local Universe to model predic-
tions, and infer what physical processes drive the observed
trends and differences between galaxy populations, we have
used a chemical evolution model that tracks the buildup and
evolution of dust, gas and metals throughout the lifetime of a
galaxy. More specifically, we employ Dust and Element evo-
lUtion modelS (DEUS), which account for dust production
by asymptotic giant branch (AGB) stars, supernova rem-
nants (SNRs), grain growth in the interstellar medium, and
dust destruction through astration and processing by super-
nova shocks. Our model implementation is largely founded
upon chemical evolution models presented in the literature
(e.g., Dwek 1998; Morgan & Edmunds 2003; Calura et al.
2008; Rowlands et al. 2014). An earlier version of DEUS was
introduced by De Looze et al. (2017b). We extended DEUS
to include dust destruction by supernova shocks and dust
growth in the interstellar medium. We furthermore coupled
DEUS to a Bayesian Markov Chain Monte Carlo (MCMC)
algorithm to study the effects of varying dust production
and destruction efficiencies and to infer the set of parameters
that best describes the observed scaling relations in the local
Universe. In contrast to previous models (e.g., Pagel 1997;
Dwek 1998), we have accounted for the lifetime of stars, and
the replenishment of the interstellar medium with metals,
dust and any remaining gas after stellar death, rather than
resorting to the instantaneous recycling approximation for
which the enrichment is assumed to occur at stellar birth.
Appendix D gives a detailed overview of the DEUS code, our
assumed metal and dust yields, and prescriptions for grain
growth and dust destruction by supernova shocks. For this
current paper, we explore three different models:

• Model I assumes a closed-box and predicts the amount
of dust and metals produced following the customised SFHs
(see next paragraph) inferred for the six galaxy bins.
• Model II assumes a closed-box and adopts a fixed SFH

shape for all six galaxy bins. More specifically, we have
adopted a scaled version of the delayed SFH from De Vis
et al. (2017b).
• Model III deviates from the closed-box assumption, and

includes gas infall and outflows (see Appendix D3), and fur-
thermore relies on the customised SFHs inferred for each of
the six galaxy bins.

The amount of metals and dust produced in galaxies sensi-
tively depends on its (recent) star formation activity. Given
that the six local galaxy samples correspond to different
galaxy evolutionary stages, we expect them to have gone
through different levels of recent star formation activity.
To account for variations in their past and recent star for-
mation activity, we have determined a customized SFH for
each of the six galaxy bins by relying on their average stel-
lar mass, specific star formation rate, and SFR(10 Myr)-to-
SFR(100 Myr) ratio. The latter SFRs were inferred from
hybrid SFR calibrators: Hα+WISE 22µm for SFR(10 Myr)
and far-ultraviolet (FUV)+total-infrared (TIR) emission for
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Figure 8. The scaling of the stellar mass (M?, top left), Mdust/M? (top right), oxygen abundance (bottom left) and

Mdust/Mmetals(gas+dust) (bottom right) with specific Hi gas mass (MHI/M?) shown for our entire sample of nearby galaxies (grey
symbols), with the best-fit trends overlaid as black dashed-triple dotted lines. The median values for each of the six galaxy bins are

overlaid with coloured triangles and errors that correspond to the spread in each bin. The MHI/M? ratio is highest for galaxies in Bin 1

(which are thought to correspond to the least evolved galaxies), while the more evolved galaxies with the lowest MHI/M? ratios populate
Bin 6. The evolutionary trends (over a period of 12 Gyr) that were inferred from the median parameters for Models I, II and III are over-

laid as solid, dashed and dotted lines, respectively, and the final present-day model values are indicated with coloured asterisks, diamonds
and squares, respectively. The colour coding of model trends and observed median properties range from black to red corresponding to

Bins 1 through to 6 (see legend in the top left panel).

SFR(100 Myr). The customised SFHs are presented in Ap-
pendix C, where it is demonstrated that galaxies at an early
stage of evolution have formed most stars during recent
epochs, as opposed to more evolved galaxies which show a
clear drop in their recent star formation activity.

Due to possible degeneracies between various dust pro-
duction and destruction sources, we have coupled DEUS to
a Bayesian MCMC method to effectively search a large pa-
rameter space and to constrain the relative importance of
stellar dust production, grain growth and dust destruction
by supernova shocks. Our Bayesian model has four free pa-
rameters: (1.) the initial gas mass, Mgas,ini; (2.) the frac-
tion of supernova dust that is able to survive the reverse
shock, fsurvival; (3.) the grain growth parameter, ε (see Eq.
D11); and (4.) the interstellar mass cleared by each sin-
gle supernova event, Mcl (see Eq. D10), which is indica-

tive of the dust destruction efficiency through supernova
shocks. We leave the initial gas mass (Mgas,ini) of the halo
as a free parameter in DEUS to infer what gas mass is
needed to reproduce the observed present-day specific Hi
gas masses (MHI/M?) and oxygen abundances. The initial
gas mass is degenerate with the mass loading factors of in-
falling and outflowing gas; we therefore constrain the ini-
tial gas mass in our models at fixed in- and outflow rates
(or no gaseous flows in the case of Models I and II). In
a similar way, variations in the initial gas mass are hard
to differentiate from merger events occurring throughout a
galaxy’s lifetime. To constrain the free parameters in DEUS,
we have compared the present-day model output to five ob-
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servational quantities: logM?, logMdust/M?, logMHI/M?,
logMdust/Mmetals(gas+dust) and 12+log(O/H)10.

As nothing much is known about the preferred val-
ues and their expected distribution, we have assumed flat
priors to avoid biasing the model output results with
log(Mgas,ini/M�) varying between 8.5 and 11, fsurvival

between 0.1 and 1.0, log(ε) between 0.1 and 4.0, and
log(Mcl/M�) between 0.1 and 5.0. This four-dimensional pa-
rameter space was sampled with an affine invariant ensem-
ble sampler (Goodman & Weare 2010) as implemented in
the emcee package for MCMC in Python (Foreman-Mackey
et al. 2013). We have used a collection of 100 walkers to
sample the entire parameter space, where the position of
a walker is changed at each step to explore the parameter
space and to look for a region with high likelihood. We as-
sumed a likelihood function based on the commonly used

χ2 statistic: χ2 = ΣNi=1

(
fi(obs)−fi(model)

σi(obs)

)2

with fi(obs) and

fi(model) the observed and modelled values, respectively,
and σi(obs) the observational uncertainty, for constraint i,
which is equivalent to a Gaussian likelihood. The positions
of the 100 walkers are recorded at each time step after a
warm-up phase of Nburn=500 steps, and the simulations are
run for a total of Nsteps=1,500 steps. The final 1,000 time
steps are used to construct the posterior probability density
functions (PDFs). We furthermore verified that these steps
are sufficient for each of the model parameters to converge,
which requires the effective sample size Neff (=Nchain/τint

with Nchain the length of the chain and τint the integrated
autocorrelation time of the chain) to be higher than 10 for
all parameters. As an additional check, we verified that the
acceptance fraction of walkers ranges between 0.2 and 0.5.

4.3 Modelling results

The median parameter values inferred from the 1D poste-
rior PDFs were tabulated in Table 4 for the three different
models. Figures G1 through to G18 present the 1D and 2D
posterior PDFs for the six galaxy bins and Models I, II, and
III, respectively. The evolutionary tracks – as determined
from those median parameter values and spanning a time
period of 12 Gyr – have furthermore been overlaid on the
individual panels of Figure 8.

The stellar mass and metal abundance gradually in-
creases for all models as galaxies evolve. For Model III (with
gaseous in/outflows), the metallicity increase is less steep
compared to Models I and II due to metal-enriched outflows.
Due to this slow metal enrichment, Model III is able to repro-
duce the low specific gas masses observed for more evolved
galaxies in Bins 5 and 6. The dust-to-metal ratio (i.e., the
amount of metals depleted onto dust grains) starts off at a
plateau around 40% in all models, indicative of dust being
produced mainly by stars, and only a minor contribution
from grain growth, in the early stages of galaxy evolution.
After a few 100 Myr, the metal abundance and dust mass has
increased sufficiently for grain growth to kick in. However,
the dust-to-metal ratio in our models first drops due to grain

10 We have compared the median observed values to the model
predictions at the end of our simulations at a galaxy age of 12 Gyr
(assuming that these galaxies started forming stars 12 Gyr ago).

destruction (i.e., supernova shocks and astration) dominat-
ing over grain growth processes. For more evolved galaxies
(Bins 5 and 6), the dust-to-metal ratio continues to increase
due to grain growth becoming more dominant than these
dust destruction mechanisms. Similar results have been in-
ferred from galaxy simulations (e.g., Aoyama et al. 2017).
The dust-to-stellar mass ratio shows a similar trend with a
nearly flat ratio at the start due to dust forming as stars
evolve, progressing to a gradual increase (if grain growth
starts to become important) or decrease (if dust destruction
processes dominate).

In most cases, the present-day model values (indicated
with asterisks, diamonds and squares for Models I, II and
III, respectively, in Fig. 8) are capable of reproducing the
observed ratios in each bin within the error bars (reflect-
ing the dispersion observed within each MHI/M? bin) which
makes us confident that the models are adequate to repro-
duce the dust, metal and Hi gas scaling relations observed
for the local Universe. There are however two notable ex-
ceptions. For evolved galaxy populations (Bins 5 and 6),
Models I and II are not capable of reproducing their low
observed specific Hi gas masses (logMHI/M? . −1.0). We
believe this model discrepancy is driven by the closed-box
assumption in Models I and II, as Model III is capable of
reproducing the MHI/M? ratios and metal abundances for
these more evolved galaxies better. Due to their decrease
in recent (.100 Myr) star formation activity, these galaxies
are likely to have experienced some type of quenching dur-
ing the last stages of their evolution. The assumption of a
constant star formation rate on timescales >100 Myr, with
a sudden drop in their recent star formation activity might
therefore not be fully representative if quenching timescales
are longer. However, the rapid star formation quenching in-
ferred for several HRS galaxies (Ciesla et al. 2016) suggests
that at least some galaxies experience a sudden drop in their
SF activity on 100 Myr timescales. A discrepancy is also ob-
served for galaxies at an early stage of evolution (Bins 1
and 2), for which both closed-box models and models with
gaseous flows underestimate the observed metal abundances
(see bottom panels in Figure 8). We speculate that these
modelled low metal abundances might be compensated for
by locking fewer metals into dust grains – either through
less efficient grain growth processes or more efficient grain
destruction – which will also bring the modelled dust-to-
metal ratios closer to the observed values. Other than pos-
sible model discrepancies, we should note that the oxygen
abundances are missing for several galaxies at the low end of
the metallicity range, which will inevitably bias our average
bin measurements upwards for these less evolved galaxies as
the full dynamic range of metallicity values has not been
covered.

4.4 Dust production and destruction efficiencies

In the rest of the paper, we focus our discussion on the
dominant dust production and destruction mechanisms for
the subsample of galaxies in Bins 3 and 4 with −1.0 .
logMHI/M? . 0, which constitute the majority (266/423
or 63%) of the local galaxy population. Stochastic effects
will not hamper the median values inferred for the galaxies
in Bins 3 and 4 as is the case for poorly sampled galaxy
bins at the low and high MHI/M? end. The stellar mass
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range (109-1011 M�) covered by Bins 3 and 4 furthermore
corresponds to galaxies in which an equilibrium is reached
between gaseous infall, outflow and star formation (Both-
well et al. 2013). Such an equilibrium implies that the choice
of specific gas infall/outflow rates and mass loading factors
for these galaxies will have less of an impact on the output
model parameters. The galaxies outside this stellar mass
range instead show a large degree of scatter, and will be
more sensitive to the effect of gas infall or outflows during
recent times. We prefer to focus on these galaxies, for which
the effect of gas infall or outflows during recent times has
been less important, having sustained star formation over
several Gyr (see Figure C1). The closed-box Models I and
II result in adequate fits (as quantified by the χ2

red statistic,
see Table 4) for these galaxies at an intermediate stage of
evolution. We note that the conclusions for Models III (in-
cluding gaseous in/outflows) generally remain unmodified,
but these models typically give rise to larger model parame-
ter uncertainties and less well constrained fits (see Table 4)
due to the increased level of model complexity. Specifically,
the oxygen abundance is severely underestimated due to the
recent infall of pristine gas for galaxy Bins 1 through to 4,
which results in higher χ2

red values for Model III than for
Models I and II. The specific prescription adopted here to
model gaseous flows might not be appropriate for the entire
range of galaxies in our sample, and there result in worse
model fits to the data. The assumed infall and outflow rates
in Model III fit the data well for galaxies in Bins 5 and 6,
resulting in better fits than for Models I and II.

4.4.1 Initial gas mass

The initial gas masses are well determined showing peaked
1D posterior PDFs with values that gradually increase with
the evolutionary stage of galaxies (see Table 4) in line with
the expectation that galaxies at an advanced stage of evo-
lution are more massive, and thus require a larger initial
mass to convert gas into stars than less evolved galaxies.
It should be noted that part of this trend might be driven
by merger events leading to increased gas masses at specific
times throughout a galaxy lifetime rather than increased
initial gas masses. Since these merger events have not been
considered here, the models may have converged to large
initial gas masses to reproduce present-day scaling laws for
more evolved galaxies. The initial gas masses might be one
of the most important parameters in DEUS as they directly
influence the present-day model stellar masses and metal
abundances, and play an important role in setting the pos-
terior PDFs obtained for the other parameters. In future
work, we intend to explore the importance of the initial gas
mass parameter (and possible degeneracies with gaseous in-
and outflows and merger events) in more detail.

4.4.2 Net supernova dust production rates

Models I and II suggest that a significant fraction (37 to
89%) of freshly condensed supernova dust is able to sur-
vive the reverse shock. Dust evolution models that include
the effects of sputtering and/or shattering on supernova
dust grains due to the passage of a reverse shock estimate
dust survival rates ranging from 1 to 100% (e.g., Bianchi &

Schneider 2007; Nozawa et al. 2007; Nath et al. 2008; Silvia
et al. 2010; Sarangi & Cherchneff 2015; Biscaro & Cherch-
neff 2016; Bocchio et al. 2016; Micelotta et al. 2016; Kirch-
schlager et al. 2019). An easy comparison between these
various models is hampered by the different assumptions
made to describe the ambient densities, the density con-
trast between dust clumps and the surrounding medium,
the grain size distribution and the composition of supernova
dust species. In addition, our inferred dust survival rate will
account for the fact that some supernova remnants will not
experience a reverse shock (e.g., the Crab Nebula) due to the
low density of the surrounding medium, and should thus be
considered as an “effective” dust survival rate as it is con-
voluted with the probability that a reverse shock will be
generated through the interaction with a dense circum- or
interstellar medium, and that dust might be able to reform
after the shock passage (e.g., Matsuura et al. 2019). Current
observational studies tend to be biased towards interacting
supernova remnants or pulsar wind nebulae which provide
a heating mechanism through shock interaction or through
the presence of a pulsar, respectively. It is therefore hard to
estimate the fraction of SNRs that will experience a reverse
shock, and at what average velocity the reverse shock will
interact with the ejecta. Moreover, a non-negligible fraction
of core-collapse supernovae occur“late” (i.e., 50-200 Myrs af-
ter birth) due to binary interactions (Zapartas et al. 2017).
On such long timescales, the birth clouds of these massive
stars will have dissolved, and it will become less likely that
a reverse shock is generated.

Our high dust survival fractions are in excellent agree-
ment with recent observational constraints. Elevated dust-
to-gas ratios in the shocked ejecta clumps of the Galactic
supernova remnant Cassiopeia A suggest that a significant
fraction of supernova dust is capable of surviving a reverse
shock (Priestley et al. 2019). Several studies (e.g., Temim
& Dwek 2013; Gall et al. 2014; Wesson et al. 2015; Bevan
& Barlow 2016; Priestley et al. 2020) have also argued for
rather large supernova grain sizes (&0.1µm), which lends
support to the idea that significant fractions of supernova
dust are able to survive a reverse shock (with large grains
being more resilient to sputtering, e.g., Silvia et al. 2010).

4.4.3 Grain growth timescales

The grain growth parameter has been parameterised
through ε following Mattsson et al. (2012) (see Eq. D11 and
Appendix D2 for an outline of its derivation). At a fixed gas
mass, dust-to-gas ratio, metal fraction and star formation
rate, the grain growth parameter ε is inversely proportional
to the grain growth timescale, and can be considered to ap-
proximate the efficiency of grain growth processes. More
specifically, large values of ε correspond to efficient grain
growth and thus short grain growth timescales τgrow, while
small ε values are indicative of long τgrow

11.
The 1D posterior PDFs for Models I and II, and Bins

3 and 4, have log ε peaking around 2.0, with a wide tail of
high-likelihood models extending to lower log ε values and

11 Values of ε of 10-100 typically correspond to τgrow > 100 Myr,

while ε & 1000 is needed to reach down to τgrow of 10 Myr and

lower (depending on the assumed SFR, gas, dust and metal mass).
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a sudden drop in likelihood beyond values of log ε &2.0.
The 1D posterior PDFs for Model III peaks at higher val-
ues (see Figures G9 and G12) than for closed-box models,
which is not surprising given that dust and metals will be
expelled from the galaxy, and thus an additional source of
dust production is required in Model III. A narrow range of
models with ε values higher than this peak seems also capa-
ble of explaining our observed scaling relations, but only if
such high grain growth efficiencies are exactly compensated
for by high dust destruction efficiencies (e.g., the rightmost
2D contour plot on the bottom row of Figures G10, G11
and G12). With grain growth locking refractory elements
into grains, and dust destruction releasing these same ele-
ments back into the gas phase, our observational constraints
are not capable of distinguishing between both mechanisms.
The model prescriptions to describe grain growth and dust
destruction efficiencies furthermore depend directly (or in-
directly in case of the supernova rate) on the current SFR,
which causes this degeneracy between grain growth and dust
destruction efficiencies, as long as both processes cancel each
other out. To adapt those recipes, we require improved un-
derstanding of the grain growth and destruction processes
in the interstellar medium. The 2D contour plots suggest
that the models are also hampered by degeneracies between
the supernova dust survival rate (fsurvival), the grain growth
parameter (ε) and the dust destruction efficiency (Mcl) in
some parts of the 4D parameter space, which results in wide
1D posterior PDFs.

Our median values of log ε=1.5+1.1
−0.9 – equivalent to

present-day growth timescales τgrowth of & 100 Myr, with a
median of 400 Myr – are consistent with the range of val-
ues (ε ∈[10,457]) inferred by Mattsson & Andersen (2012)
based on the resolved dust-to-metal gradients observed in a
sample of 15 SINGS galaxies, and the accretion timescales
(τgrow=20-200 Myr, or ε=500) that were found adequate to
reproduce the dust masses in a sample of high-redshift (z>1)
submillimetre galaxies (Rowlands et al. 2014). In general,
however, our grain growth efficiencies are significantly lower
than many other studies. In Asano et al. (2013), Zhukovska
(2014), Mancini et al. (2015) and Schneider et al. (2016),
fast grain growth timescales of 0.2-2 Myr have been as-
sumed which causes grain growth to dominate dust pro-
duction as soon as a critical metallicity threshold has been
reached. Feldmann (2015) required similarly short accretion
timescales (5 Myr) to reproduce the dust and metal masses
in low-metallicity dwarf galaxies. Also the dust, metal and
gas scaling relations for a sample of nearby galaxies were
found to be best reproduced by chemical evolution models
with ε values of 2500-4000 (De Vis et al. 2017b)12. All of
these studies suggest that grain growth dominates dust pro-
duction for different galaxy populations across a wide range
of different redshifts (see also Section 4.5).

Even though recent laboratory studies suggest that
SiOx and more complex silicate-type grains can form with-
out an activation energy barrier under typical molecular
cloud (Tdust=10-12 K) conditions (Krasnokutski et al. 2014;
Rouillé et al. 2015; Henning et al. 2018), it might be hard for

12 The ε values (5000-8000) from De Vis et al. (2017b) have been
corrected to account for their assumed cold gas fraction (fc=0.5)

to allow for a direct comparison with our values.

the majority of dust grains in the low-redshift Universe to
have formed through accretion of elements onto pre-existing
grain seeds given the low accretion rates and the Coulomb
barrier that needs to be overcome in diffuse gas clouds, and
the efficient formation of ice mantles which prevents effi-
cient grain growth in dense molecular clouds (Barlow 1978;
Ferrara et al. 2016; Ceccarelli et al. 2018). Zhukovska et al.
(2016) modelled the formation of silicate grains through the
accretion of elements in diffuse gas clouds (with gas densi-
ties nH between 5 and 50 cm−3) on average timescales of
350 Myr, while Zhukovska et al. (2018) suggest that iron
grains can grow efficiently in the cold neutral medium on
timescales .10 Myr. Due to the absence of laboratory mea-
surements of diffusion and desorption energies, the latter
works assumed that elements sticking to grain surfaces, will
have sufficient time to reach a strong active bonding site
where these refractory elements can be chemisorbed. Given
that the exposure to strong UV radiation in diffuse gas
clouds will make these elements prone to photo-desorption
processes, and various elements on the grain surface (with
differing diffusion energies) might be competing for the same
dangling bonds, we argue that a detailed set of labora-
tory studies, combined with detailed chemical modelling, is
needed to verify what kind of grain species can form and
what timescales are involved in their formation. We specu-
late that our longer grain growth timescales (and longer dust
lifetimes, see Section 4.4.4) might reduce the tension with
grain surface chemical models which have so far been inca-
pable of proposing a viable chemical route for grain growth.

4.4.4 Dust destruction efficiencies

The dust destruction efficiency has been parameterised
through the interstellar mass that is cleared per single super-
nova event (Mcl). In reality, it is unlikely that a single value
will apply to all supernova events as Mcl will depend on the
ambient density, on the 3D structure of the ambient medium
and on the supernova explosion energy. With several models
assuming a single value for Mcl, we pursue to infer what av-
erage values are adequate to reproduce the observed scaling
laws in the local Universe. Similar to the grain growth pa-
rameter, the 1D posterior PDF for Mcl shows a sharp drop
in likelihood beyond Mcl &102.4 M�. Higher values are only
allowed in case the dust destruction efficiency is perfectly
balanced by the same level of dust production through grain
growth. The models are incapable of distinguishing between
values of Mcl below this threshold due to degeneracies with
the level of supernova dust production and the grain growth
parameter.

The peaks in the 1D posterior PDFs occur at low Mcl

values, resulting in median values ofMcl=101.4−1.6 for galax-
ies in Bins 3 and 4, and correspond to long dust lifetimes of
1 to 2 Gyr. The upper limits in our models for the mass
cleared per supernova event (.400 M�) are consistent with
current dust destruction timescales &200 Myr. Our preferred
model dust lifetimes of a few Gyr are consistent with the
longer dust destruction timescales (2-3 Gyr) inferred for sil-
icate grains by Slavin et al. (2015) by means of supernova
remnant models with evolving shock waves. Long dust life-
times (on the order of a few Gyr) for silicate grains were also
suggested by Jones & Nuth (2011) after accounting for the
3D distribution of interstellar material, while carbonaceous
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grains are assumed to be processed on short timescales. Our
conclusion applies to the ensemble of interstellar grains, and
is in agreement with these longer silicate lifetimes. In future
work, we hope to make the distinction in our models between
the formation and destruction of various grain species such
as carbonaceous and silicate dust grains. It is worth not-
ing that our inferred dust destruction timescales are factors
of a few longer than the average values reported by other
works (e.g., 400-600 Myr, Jones et al. 1994, 1996; <90 Myr,
Rowlands et al. 2014; 20-70 Myr for dust in the Magellanic
clouds Temim et al. 2015; Lakićević et al. 2015; 350 Myr,
Zhukovska et al. 2016, 2018; Hu et al. 2019).

4.5 Dominant dust production sources

Our thorough search of the four-dimensional parameter
space, adapted to cover a wide range of different Dust and
Element evolUtion modelS, has revealed that local galaxy
scaling relations (with the exception of galaxies with low
and high specific gas masses) can be reproduced adequately
by models with long dust survival rates (on the order of
1-2 Gyr), low grain growth efficiencies (ε ∼30-40) and a pre-
dominant contribution of stellar dust production sources
to account for the present-day galaxy dust budgets. More
specifically, we estimate that most of the dust (>90 %) is
produced through stellar sources over a galaxy’s lifetime,
with a minor contribution from grain growth (<10 %, see
Fig. 9). The contribution of grain growth increases with time
for all models, with 50 to 80% of present-day dust masses
resulting from stellar dust, while 20 to 50% of the dust is sug-
gested to grow through the accretion in interstellar clouds.
Models with in- and outflows (Model III) have an increased
contribution from grain growth, resulting in more or less
equal contributions from grain growth and stellar sources to
the dust production over a galaxy lifetime. Given that a frac-
tion of the dust is lost in galactic outflows (i.e., scaled with
the dust-to-gas ratio of the galaxy at that point in time), we
require more dust production through grain growth to re-
produce the observed dust-to-stellar and dust-to-metal mass
ratios with Models III. We furthermore note a trend of high
relative fractions of stardust for less evolved galaxies (Bins
1 and 2), which is not surprising given the low metal abun-
dances (and hence low grain growth efficiencies) for these
galaxies.

We speculate that through performing a rigorous search
of the four-dimensional parameter space, our results provide
an alternative for the chemical evolution models with ex-
tremely low supernova dust production efficiencies and short
grain growth timescales (.a few Myr), which have been in-
voked to explain the dust, metal and gas scaling laws of local
galaxies (e.g. Zhukovska 2014; Feldmann 2015; De Vis et al.
2017b). Regardless of our model assumptions on the SFH
and gaseous flows, the local dust, Hi gas and metal scaling
relations are reproduced well with models that assume long
dust lifetimes (1-2 Gyr), favourable supernova dust injection
rates (fsurvival of 37-89%) and low grain growth efficiencies
(ε of 30-40). These long grain growth timescales could re-
duce the tension between the high grain growth efficiencies
(required to reproduce the large dust masses observed in low-
to high-redshift galaxies) and grain surface chemical models,
which currently fail to account for efficient grain growth pro-

Figure 9. The amount of dust produced through stellar sources
(AGB+SNe, dashed curves) and through interstellar grain growth

(solid curves) as a function of galaxy age, as inferred from the
median model parameter values for Bin 4. The stardust tracks

for Model I and Model III overlap due to the same assumed SFH

shape for both models.

cesses in the interstellar medium (e.g., Barlow 1978; Ferrara
et al. 2016; Ceccarelli et al. 2018; Jones & Ysard 2019).

4.6 Modelling caveats

We resorted to making some assumptions in DEUS to avoid
introducing various model degeneracies. We briefly discuss
the implications of these assumptions.

• Star formation history: we have assumed a cus-
tomised SFH for each galaxy bin (i.e., Models I). To test
the importance of this model assumption, we also ran mod-
els with a delayed star formation history (i.e., Models II).
A quick comparison between the inferred model parame-
ters shows that the dependence on the specific shape of the
SFH is minimal based on the close resemblance between the
Model I and II output parameters (see Table 4). We argue
that the minor importance of the specific SFH shape results
from the long dust lifetimes, which imply that the current
dust reservoir has been built up during the last 1-2 Gyr, and
that variations in the SFH shape on these timescales are less
relevant as long as the final produced dust mass remains the
same. We should also note that the simplicity of the SFH
shapes, and other model assumptions may affect the depen-
dence of the results on the SFH.
• Closed-box vs gaseous flows: even though the im-

portance of gaseous flows is now well established in the field,
the precise nature of these gas-regulated “bathtub” galaxies
still requires further characterisation. In Model III, we have
assumed that the infalling gas is pristine (i.e., the gas is not
enriched with metals or dust), while the outflowing gas has
the same gas-phase metallicity and dust-to-gas ratio as the
galaxy at the time of the outflow. This assumption will vary
depending on the outflow mechanism and the location of the
onset of these gaseous outflows. The outflow rate is often as-
sumed to scale with the SFR, but a time-dependent outflow
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model with strong outflows at early times has been shown
adequate to reproduce the observed gas and stellar metal-
licities in galaxies (Lian et al. 2018a). Similar time- or stel-
lar mass-dependent outflows are also consistent with galaxy
simulations (e.g., Muratov et al. 2015; Hayward & Hopkins
2017). We suggest that these strong outflows at early times
(as implemented in our Model III), result in a slow build-
up of a galaxy’s metal content, which reduces the efficiency
of grain growth processes at early times. Low outflow rates
at the present epoch also reduce the need for short grain
growth timescales to account for the observed dust masses
in galaxies. But, as remarked upon before, different assump-
tions on the time-dependence of these outflows will affect
dust production and destruction efficiencies. To limit these
biases, we have assumed closed-boxes for Models I and II to
model galaxies which have reached an equilibrium between
gaseous infall, outflow and star formation.

• One-zone models: outflow rates are thought to vary
with radial distance from the galaxy centre (e.g., Lian et al.
2018b; Belfiore et al. 2019; Vı́lchez et al. 2019), which would
require resolved galaxy models to take this into consider-
ation. Other than these spatial variations in mass load-
ing factors, the 3D structure and filling factors of various
ISM phases that together constitute an entire galaxy, will
vary depending on the evolutionary stage and the specific
type of galaxies under consideration. Dwarf galaxies in the
nearby Universe provide an excellent example of how their
low metal and dust content, high degree of porosity and radi-
ation field hardness severely affects their ISM build-up with
a highly-ionised, diffuse medium that dominates the ISM
volume, and only minor contributions from compact phases
(e.g. Lebouteiller et al. 2012; Cormier et al. 2015; Madden &
Cormier 2019; Cormier et al. 2019). The detection of highly
ionised nebular lines (e.g., Smit et al. 2014; Inoue et al. 2016;
Carniani et al. 2017; Laporte et al. 2017; Hashimoto et al.
2018) suggests that high-redshift galaxies might have an ISM
build-up similar to low-metallicity dwarfs in the nearby Uni-
verse, and supports the need for spatially resolved chemical
evolution modelling to account for radially-dependent gas
in/outflows and filling factors of different ISM phases (e.g.
Peters et al. 2017). In the future, we plan to expand DEUS
to include a realistic 3D ISM structure to model how the
density and temperature distributions of the total ensemble
of gas clouds in a galaxy varies with time.

• Metal and dust yields: we had to assume a set of
AGB and supernova metal and dust yields, and apply spe-
cific prescriptions to describe the efficiency of grain growth
and dust destruction processes. We endeavoured to select
yields and recipes that correspond to the current state-of-
the-art, but these prescriptions remain limited by our cur-
rent knowledge on how grains are destroyed and whether or
not grains can grow either in diffuse or dense clouds of the
interstellar medium. If the true yields were to differ signifi-
cantly from our model assumptions and/or show variations
with metallicity (e.g., Valiante et al. 2009; Boyer et al. 2019;
Dell’Agli et al. 2019), this could impact our inferred model
parameters. In De Vis in prep., the choice of metal yields
is shown to mostly impact the metallicities of galaxies with
high specific gas masses.

• Time dependence: we have not accounted for vari-
ations in the dust destruction efficiency and grain growth
parameter in time, which could be induced if strong vari-

ations in the grain size distribution occur throughout a
galaxy’s lifetime, as the efficiency of grain destruction and
grain growth is strongly grain size-dependent (e.g. Hirashita
2015).
• Initial mass function (IMF): We have furthermore

assumed a fixed Chabrier (2003) IMF. The shape of the IMF
has been suggested to vary in different environments (e.g.
Oldham & Auger 2018), and deviations from this standard
IMF will affect the dust and metal yields, and supernova
rates in DEUS.

In future work, we aim to explore the effects of varying the
IMF and applying different sets of metal and dust stellar
yields, to accommodate physically-motivated recipes to de-
scribe grain growth and dust destruction processes, and to
allow for spatial variations in the efficiencies of these pro-
cesses with local ISM conditions.

5 CONCLUSIONS

We analysed local dust, Hi gas and metal scaling relations
for a diverse sample of 423 nearby galaxies to infer that:

• the specific dust and Hi gas masses are tightly linked
to a galaxy’s specific star formation rate (sSFR), which sug-
gests that the interstellar mass (either traced through Hi gas
or dust) plays an important role in setting a galaxy’s SFR
(through the Kennicutt-Schmidt law).
• the Hi gas scaling laws show the largest degree of

dispersion, which suggests that variations in Mdust/M?,
Mdust/Mmetals(gas+dust) and Mdust/MHI ratios are not
necessarily influenced by dust production and destruction
mechanisms but rather driven by the current Hi gas reser-
voirs of galaxies.
• the strong correlations between MHI/M?, and

Mdust/M?, Mdust/Mmetals(gas+dust) and Mdust/MHI

reinforce the idea that the specific Hi gas mass (MHI/M?)
plays an important role in setting the dust and metal
content of galaxies.
• the Mdust/Mmetals(gas+dust) ratio in galaxies is nearly

constant (10−0.66±0.24) across our sample of galaxies for
M? ≥ 109 M�. Weak (but significant) trends with M?,
sSFR and MHI/M? support a scenario of increasing
Mdust/Mmetals(gas+dust) ratios as a galaxy evolves.
• the large spread (0.34 dex) in the Mdust/MHI ratio at a

given metallicity should urge caution: total gas masses in-
ferred from dust mass measurements will be uncertain by a
factor of & 2 due to variance – driven by intrinsic galaxy
variations, the unknown extent of Hi reservoirs and/or un-
certain oxygen abundances – at a fixed metallicity.

To model the evolution of the dust and metal budgets in
nearby galaxies, we have split up the local sample of galaxies
in six “galaxy evolutionary” bins according to their specific
Hi gas masses. The observed M?, metallicity, Mdust/M?,
MHI/M? and Mdust/Mmetals(gas+dust) ratios at these six
galaxy evolutionary stages were interpreted with a set of
Dust and Element evolUtion modelS (DEUS) – including
dust production by asymptotic giant branch stars, super-
nova remnants, grain growth in the interstellar medium,
and dust destruction through astration and processing by
supernova shocks. DEUS was coupled to an MCMC method
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Table 3. The bin number (1st column), log(MHI/M?) range (2nd column), sample size (3rd column) and median properties (columns

4-9) inferred for each of the six galaxy bins. These galaxy bins were selected to include less evolved galaxies (Bin 1) while gradually

moving to galaxies with the most advanced stages of evolution (Bin 6).

Bin Range Ngal log(M?/M�) log(sSFR/yr−1) log(MHI/M?) log(Mdust/M?) log(Mdust/Mmetals) Metallicity

1 [0.5,-] 17 8.65±0.79 -9.36±0.28 0.75±0.19 -2.60±0.65 -1.12±0.46 8.41±0.22
2 [0,0.5[ 81 9.33±0.44 -9.62±0.29 0.19±0.15 -2.47±0.29 -0.86±0.23 8.53±0.19

3 [-0.5,0[ 134 9.73±0.53 -9.98±0.35 -0.26±0.15 -2.66±0.23 -0.70±0.19 8.67±0.15

4 [-1.0,-0.5[ 132 10.19±0.59 -10.21±0.34 -0.72±0.14 -2.86±0.21 -0.59±0.15 8.72±0.11
5 [-1.5,-1.0[ 46 10.40±0.38 -10.57±0.63 -1.18±0.14 -3.07±0.30 -0.41±0.12 8.77±0.10

6 [-,-1.5[ 13 10.36±0.39 -11.30±0.91 -1.72±0.35 -3.62±0.52 -0.21±0.15 8.79±0.09

Table 4. The median values for the four DEUS parameters as inferred from three different models for each of the six galaxy bins. Models
I and II correspond to closed-box models with optimised non-parametric SFHs and with a delayed SFH (with fixed shape), respectively

(see Appendix C). Model III includes gaseous in- and outflows (see Appendix D3) and the specific set of non-parametric SFHs. The upper

and lower limits on the model parameters have been inferred from the posterior PDFs as the 16th and 84th percentiles. In addition to
these output model parameters, we calculated the reduced χ2

red statistic by comparing the observed values with the model predictions for

the median parameters. We also inferred the fraction of dust produced through stellar sources (fstardust) and through accretion processes

in the ISM (fgrain growth) throughout the galaxy lifetime, and at the current age of the galaxy (values between square brackets).

Bin Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6

Model parameters Model I. “Closed-box” model with specific non-parametric SFHs

log(Mgas,ini/M�) 9.33+0.11
−0.11 9.77+0.08

−0.07 9.99+0.05
−0.04 10.36+0.03

−0.03 10.51+0.02
−0.02 10.48+0.03

−0.03

fsurvival [%] 51+33
−21 60+26

−27 63+24
−25 65+22

−27 69+23
−35 61+27

−34

log ε 2.0+1.2
−1.3 1.8+1.2

−1.1 1.6+1.0
−1.0 1.5+0.8

−0.9 2.2+1.0
−0.7 3.0+0.7

−0.8

log(Mcl/M�) 2.2+1.2
−1.4 1.6+1.1

−1.0 1.6+1.0
−1.0 1.4+1.0

−0.9 1.5+1.7
−1.0 1.8+1.3

−1.0

χ2
red 9.6 5.0 1.2 1.6 11.0 15.5

fstardust [%] 99 [91] 98 [84] 96 [69] 93 [52] 55 [8] 30 [16]

fgrain growth [%] 1 [9] 2 [16] 4 [31] 7 [48] 45 [92] 70 [84]

Model parameters Model II. “Closed-box” model with delayed SFHs

log(Mgas,ini/M�) 9.33+0.11
−0.10 9.77+0.08

−0.07 9.99+0.05
−0.05 10.35+0.03

−0.03 10.50+0.02
−0.02 10.48+0.03

−0.03

fsurvival [%] 50+32
−27 59+27

−26 63+24
−26 68+21

−27 66+24
−35 60+28

−33

log ε 2.0+1.3
−1.3 1.7+1.0

−1.1 1.5+1.0
−0.9 1.5+0.8

−0.9 2.1+1.0
−0.7 3.0+0.7

−0.7

log(Mcl/M�) 2.0+1.3
−1.3 1.7+1.0

−1.1 1.5+1.0
−0.9 1.4+0.9

−0.9 1.5+1.6
−1.0 1.8+1.4

−1.1

χ2
red 9.4 4.9 1.2 1.6 10.9 15.3

fstardust [%] 99 [96] 98 [91] 96 [81] 93 [66] 57 [13] 30 [11]

fgrain growth [%] 1 [4] 2 [9] 4 [19] 7 [34] 43 [87] 70 [89]

Model parameters Model III. Model with gas in/outflows and specific non-parametric SFHs

log(Mgas,ini/M�) 9.43+0.13
−0.12 9.79+0.10

−0.10 9.84+0.04
−0.02 10.27+0.01

−0.01 10.45+0.01
−0.01 10.41+0.01

−0.01

fsurvival [%] 51+32
−31 66+24

−37 57+31
−38 66+24

−38 56+31
−36 34+32

−36

log ε 2.8+1.8
−1.9 4.0+1.3

−2.5 3.7+0.7
−0.8 2.7+1.0

−1.0 2.9+0.8
−0.6 3.2+0.6

−0.6

log(Mcl/M�) 2.1+1.5
−1.4 1.9+1.3

−1.2 1.8+1.4
−1.2 1.6+1.5

−1.0 1.7+1.4
−1.1 1.7+1.2

−1.1

χ2
red 26.4 30.3 23.9 7.0 0.8 5.8

fstardust [%] 99 [95] 71 [33] 54 [12] 73 [10] 57 [8] 49 [17]

fgrain growth [%] 1 [5] 29 [67] 46 [88] 27 [90] 43 [92] 51 [83]

to effectively search a large parameter space and to con-
strain the relative importance of stellar dust production,
grain growth and dust destruction by supernova shocks. We
obtained an extensive set of models by varying the initial
gas mass (Mgas,ini), the survival rate of supernova dust after
passage of the reverse shock (fsurvival), the grain growth pa-
rameter (ε) and the interstellar mass cleared per supernova
event (Mcl, which determines the efficiency of dust destruc-
tion through supernova shocks). Based on a rigorous search
of this four-dimensional parameter space, we conclude that:

• the average scaling laws for galaxies with −1.0 .
logMHI/M? . 0 (which are considered to have reached an
equilibrium between gas infall, outflow and star formation)
can be reproduced using closed-box models with a high frac-
tion (37-89%) of supernova dust that is able to survive a

reverse shock, low grain growth efficiencies (ε=30-40), and
long dust lifetimes (1-2 Gyr).
• the contribution from stardust (>90 %) outweighs the

fraction of dust grown through accretion in the ISM (<10 %)
over the entire lifetime of these galaxies, while present-day
dust budgets have similar contributions from stellar sources
(50-80%) and ISM dust growth (20-50%).
• the specific shape of the SFH does not strongly influence

the model outcome due to these long dust lifetimes.

We demonstrate in this paper that local galaxy scaling rela-
tions can be accounted for by efficient supernova dust pro-
duction, low grain growth efficiencies, and long dust life-
times. We speculate that these models provide an alterna-
tive to earlier work that required vigorous dust destruction
and efficient grain growth on timescales . a few Myr (e.g.,
Draine 2009; Zhukovska 2014; Feldmann 2015; De Vis et al.
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2017b) to explain local galaxy scaling relations. These long
dust lifetimes and reduced grain growth efficiencies could
reduce the tension with grain-surface chemical models (e.g.,
Barlow 1978; Ferrara et al. 2016; Ceccarelli et al. 2018; Jones
& Ysard 2019) that have not been able to come up with ef-
ficient grain growth mechanisms in interstellar clouds. Our
model results might furthermore help solving the dust bud-
get problem at high redshifts (e.g., Bertoldi et al. 2003; Prid-
dey et al. 2003; Watson et al. 2015), in case similar dust
production and destruction efficiencies would apply to those
primordial galaxies.

We caution that model parameter degeneracies between
supernova dust production, grain growth and dust destruc-
tion efficiencies can not fully be resolved based on the current
set of global galaxy scaling laws presented in this work. In fu-
ture work, we plan to expand DEUS with radially dependent
gaseous flows, to explore alternative recipes to describe grain
growth and dust destruction processes, and to include addi-
tional observational constraints (e.g., resolved galaxy prop-
erties, and depletion factors for various elements).
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APPENDIX A: DUST MASS DETERMINATION

Galaxy dust masses have been inferred from Bayesian dust
spectral energy distribution (SED) models fit to the mid-
infrared to sub-millimetre emission observed in five sam-
ples of nearby galaxies (JINGLE, HRS, KINGFISH, HAP-
LESS, HiGH). In brief, the Bayesian dust SED models use
the THEMIS (The Heterogeneous dust Evolution Model
for Interstellar Solids, Jones et al. 2013, 2017) dust model
composition, in addition to two different prescriptions for
the radiation field intensity: 1. single interstellar radiation
field (ISRF) and 2. multi-component ISRF. In this work,
we rely on the dust mass measurements inferred from the
second model which relies on the multi-component radia-
tion field prescription from Dale et al. (2001). More specif-
ically, the starlight intensity is assumed to be distributed
between Umin and Umax and the fractional dust mass heated
by each ISRF intensity is assumed to be dM/dU ∝ U−αISRF .
We fix Umax=107 (e.g., Nersesian et al. 2019), and vary
the minimum starlight intensity, Umin, as well as the slope
of the ISRF power-law distribution, αISRF, in our models.
The THEMIS dust mix includes a set of small (sCM20) and
large (lCM20) amorphous hydrocarbon grains (a-C(:H)) and
large silicates with iron nano-particle inclusions (a-SilFe),
for which the optical properties were derived from labora-
tory studies, and the size distribution and abundances of
grain species were calibrated to reproduce the extinction
and emission observed in the diffuse ISM of the Milky Way
(Jones et al. 2013; Köhler et al. 2014). To model the diver-
sity of dust SEDs observed in the local Universe, we allow
for variations in the THEMIS dust mix by varying the slope
αsCM20 of the grain size distribution of small hydrocarbons,
and the relative dust masses of small hydrocarbons, MsCM20,
and large (hydrocarbon and amorphous silicate) dust grains,
MlCM20+sil. An example dust SED model fit for the galaxy
JINGLE 26 has been shown in Figure A1 (left panel). The
lower and upper limit uncertainties on galaxy dust masses
have been inferred from the 16th and 84th percentiles in
the posterior PDFs (see Fig. A1, right panel) and have been
tabulated in Table A1 for all galaxies.

Table A1: Overview of the dust masses inferred for the JIN-
GLE, HRS, HAPLESS, HiGH and KINGFISH galaxies con-
sidered in the scaling relations presented in this work. The
median dust masses have been inferred from the posterior
PDFs while the 16th and 84th percentiles are used to ap-
proximate the lower and upper limits on these modelled dust
masses. The full galaxy names for JINGLE and HRS galax-
ies can be retrieved from Saintonge et al. (2018) and Boselli
et al. (2010).

Galaxy log(Mdust/M�) -dex +dex

JINGLE:

JINGLE 0 6.68 -0.06 +0.06
JINGLE 1 7.12 -0.08 +0.10
JINGLE 2 6.82 -0.23 +0.25
JINGLE 3 6.53 -0.05 +0.05
JINGLE 4 7.08 -0.06 +0.06
JINGLE 5 7.34 -0.06 +0.06
JINGLE 6 7.18 -0.08 +0.08
JINGLE 7 6.96 -0.07 +0.07
JINGLE 8 6.79 -0.09 +0.09
JINGLE 9 7.05 -0.08 +0.08
JINGLE 10 7.35 -0.06 +0.06
JINGLE 11 7.44 -0.09 +0.08
JINGLE 12 6.98 -0.09 +0.09
JINGLE 13 6.62 -0.10 +0.10
JINGLE 15 7.09 -0.06 +0.06
JINGLE 16 7.11 -0.07 +0.07
JINGLE 17 6.69 -0.09 +0.09
JINGLE 18 6.91 -0.12 +0.13
JINGLE 19 7.46 -0.08 +0.09
JINGLE 20 7.08 -0.09 + 0.09
JINGLE 21 7.23 -0.13 +0.15
JINGLE 22 7.73 -0.06 +0.05
JINGLE 23 7.34 -0.05 +0.05
JINGLE 24 6.93 -0.14 +0.16
JINGLE 25 7.24 -0.05 +0.05
JINGLE 26 6.97 -0.05 +0.05
JINGLE 27 7.33 -0.08 +0.09
JINGLE 28 7.43 -0.07 +0.08
JINGLE 30 7.06 -0.11 +0.11
JINGLE 31 6.86 -0.08 +0.09
JINGLE 32 6.92 -0.08 +0.08
JINGLE 33 6.66 -0.05 +0.04
JINGLE 34 7.29 -0.07 +0.07
JINGLE 35 7.22 -0.05 +0.05
JINGLE 36 6.87 -0.07 +0.07
JINGLE 38 6.87 -0.06 +0.05
JINGLE 39 7.17 -0.08 +0.08
JINGLE 40 7.81 -0.05 +0.05
JINGLE 41 7.83 -0.04 +0.04
JINGLE 43 8.02 -0.04 +0.03
JINGLE 44 7.81 -0.06 +0.07
JINGLE 45 7.95 -0.05 +0.05
JINGLE 46 6.91 -0.13 +0.14

Continued on next column
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Continued from previous column

Galaxy name log(Mdust/M�) -dex +dex

JINGLE 47 7.49 -0.05 +0.04
JINGLE 48 7.39 -0.04 +0.04
JINGLE 49 7.55 -0.05 +0.04
JINGLE 50 7.36 -0.13 +0.12
JINGLE 51 7.37 -0.04 +0.04
JINGLE 52 7.22 -0.09 +0.09
JINGLE 53 6.84 -0.09 +0.08
JINGLE 54 7.76 -0.05 +0.04
JINGLE 55 7.59 -0.04 +0.04
JINGLE 56 7.59 -0.05 +0.05
JINGLE 57 7.37 -0.09 +0.09
JINGLE 58 7.10 -0.11 +0.11
JINGLE 60 7.18 -0.10 +0.09
JINGLE 61 7.09 -0.07 +0.08
JINGLE 63 6.28 -0.13 +0.12
JINGLE 64 6.98 -0.09 +0.08
JINGLE 66 7.93 -0.09 +0.05
JINGLE 69 6.98 -0.06 +0.07
JINGLE 70 7.50 -0.05 +0.06
JINGLE 71 7.12 -0.06 +0.06
JINGLE 72 7.51 -0.04 +0.04
JINGLE 73 7.24 -0.09 +0.09
JINGLE 74 7.24 -0.06 +0.06
JINGLE 75 7.48 -0.07 +0.07
JINGLE 76 7.24 -0.04 +0.04
JINGLE 77 7.56 -0.04 +0.04
JINGLE 78 7.02 -0.10 +0.12
JINGLE 79 6.97 -0.09 +0.09
JINGLE 80 7.08 -0.09 +0.09
JINGLE 81 7.24 -0.05 +0.06
JINGLE 82 7.10 -0.09 +0.09
JINGLE 83 7.71 -0.06 +0.06
JINGLE 84 7.53 -0.06 +0.06
JINGLE 85 6.82 -0.07 +0.07
JINGLE 86 7.64 -0.05 +0.05
JINGLE 87 7.72 -0.07 +0.06
JINGLE 88 7.30 -0.09 +0.10
JINGLE 89 7.50 -0.05 +0.05
JINGLE 90 7.69 -0.07 +0.07
JINGLE 92 7.92 -0.06 +0.06
JINGLE 93 7.24 -0.08 +0.08
JINGLE 96 7.09 -0.13 +0.16
JINGLE 97 7.33 -0.09 +0.11
JINGLE 98 7.46 -0.09 +0.08
JINGLE 99 8.11 -0.05 +0.05
JINGLE 100 7.35 -0.05 +0.04
JINGLE 101 7.74 -0.04 +0.04
JINGLE 102 7.68 -0.06 +0.05
JINGLE 103 7.38 -0.05 +0.05
JINGLE 105 7.32 -0.07 +0.05
JINGLE 106 7.66 -0.05 +0.06
JINGLE 107 7.92 -0.10 +0.09
JINGLE 108 7.75 -0.05 +0.05
JINGLE 109 7.47 -0.08 +0.08

Continued on next column

Continued from previous column

Galaxy name log(Mdust/M�) -dex +dex

JINGLE 110 7.46 -0.29 +0.27
JINGLE 111 7.48 -0.06 +0.06
JINGLE 112 7.72 -0.09 +0.09
JINGLE 113 7.40 -0.08 +0.09
JINGLE 114 7.68 -0.06 +0.05
JINGLE 115 7.29 -0.05 +0.05
JINGLE 117 7.58 -0.33 +0.30
JINGLE 118 8.18 -0.04 +0.04
JINGLE 120 8.04 -0.15 +0.15
JINGLE 121 7.92 -0.06 +0.07
JINGLE 122 8.00 -0.05 +0.05
JINGLE 123 7.57 -0.05 +0.05
JINGLE 125 7.78 -0.06 +0.06
JINGLE 127 7.85 -0.06 +0.06
JINGLE 128 7.87 -0.07 +0.06
JINGLE 129 7.50 -0.10 +0.10
JINGLE 131 7.52 -0.05 +0.05
JINGLE 132 8.02 -0.12 +0.07
JINGLE 133 7.55 -0.04 +0.04
JINGLE 134 7.71 -0.07 +0.07
JINGLE 135 7.44 -0.06 +0.06
JINGLE 136 7.75 -0.05 +0.04
JINGLE 137 6.90 -0.29 +0.51
JINGLE 138 7.22 -0.11 +0.10
JINGLE 139 7.66 -0.10 +0.09
JINGLE 140 7.53 -0.08 +0.07
JINGLE 141 7.56 -0.07 +0.06
JINGLE 143 7.47 -0.06 +0.06
JINGLE 144 7.56 -0.05 +0.04
JINGLE 145 6.56 -0.09 +0.10
JINGLE 146 7.49 -0.04 +0.04
JINGLE 147 7.64 -0.05 +0.04
JINGLE 148 7.42 -0.05 +0.05
JINGLE 149 7.31 -0.04 +0.04
JINGLE 151 8.16 -0.08 +0.06
JINGLE 152 7.72 -0.05 +0.05
JINGLE 154 8.21 -0.04 +0.03
JINGLE 155 7.82 -0.08 +0.07
JINGLE 156 7.77 -0.06 +0.05
JINGLE 160 7.03 -0.05 +0.05
JINGLE 161 7.78 -0.12 +0.12
JINGLE 162 7.83 -0.05 +0.06
JINGLE 163 7.59 -0.07 +0.07
JINGLE 164 7.33 -0.09 +0.09
JINGLE 165 7.60 -0.04 +0.04
JINGLE 166 7.67 -0.07 +0.07
JINGLE 167 8.16 -0.05 +0.05
JINGLE 168 8.07 -0.08 +0.08
JINGLE 169 7.43 -0.07 +0.07
JINGLE 170 7.74 -0.08 +0.08
JINGLE 171 7.86 -0.11 +0.08
JINGLE 172 7.54 -0.09 +0.09
JINGLE 173 7.35 -0.06 +0.06
JINGLE 174 7.97 -0.13 +0.13

Continued on next column
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Continued from previous column

Galaxy name log(Mdust/M�) -dex +dex

JINGLE 175 7.86 -0.08 +0.07
JINGLE 176 7.77 -0.06 +0.05
JINGLE 178 7.64 -0.07 +0.07
JINGLE 181 7.71 -0.06 +0.07
JINGLE 183 7.20 -0.05 +0.05
JINGLE 184 7.92 -0.06 +0.06
JINGLE 185 7.36 -0.09 +0.08
JINGLE 187 8.05 -0.08 +0.09
JINGLE 189 7.90 -0.05 +0.05
JINGLE 191 7.55 -0.06 +0.05

HRS:

HRS 2 6.12 -0.04 +0.04
HRS 3 5.78 -0.10 +0.12
HRS 8 7.33 -0.05 +0.05
HRS 9 6.40 -0.05 +0.06
HRS 10 6.13 -0.10 +0.12
HRS 11 6.79 -0.04 +0.04
HRS 12 5.51 -0.06 +0.06
HRS 13 7.41 -0.03 +0.03
HRS 15 7.52 -0.05 +0.05
HRS 16 7.10 -0.03 +0.03
HRS 17 7.03 -0.04 +0.04
HRS 19 6.83 -0.05 +0.05
HRS 20 6.96 -0.03 +0.03
HRS 23 7.09 -0.03 +0.03
HRS 24 7.37 -0.04 +0.04
HRS 25 6.91 -0.04 +0.04
HRS 26 6.09 -0.08 +0.08
HRS 27 6.35 -0.04 +0.05
HRS 28 6.61 -0.04 +0.04
HRS 29 6.52 -0.05 +0.05
HRS 30 6.51 -0.06 +0.07
HRS 31 6.87 -0.05 +0.05
HRS 33 6.87 -0.04 +0.04
HRS 34 7.04 -0.05 +0.04
HRS 37 6.59 -0.04 +0.04
HRS 38 6.62 -0.05 +0.06
HRS 39 6.60 -0.07 +0.09
HRS 40 6.51 -0.04 +0.04
HRS 41 6.57 -0.06 +0.05
HRS 42 7.21 -0.05 +0.05
HRS 44 5.98 -0.06 +0.06
HRS 45 6.77 -0.05 +0.05
HRS 46 6.44 -0.04 +0.04
HRS 47 6.72 -0.09 +0.09
HRS 48 7.44 -0.04 +0.04
HRS 50 7.04 -0.03 +0.03
HRS 51 6.69 -0.05 +0.05
HRS 52 5.94 -0.07 +0.08
HRS 53 6.90 -0.04 +0.04
HRS 54 6.60 -0.05 +0.05
HRS 55 6.94 -0.04 +0.04
HRS 56 7.25 -0.03 +0.03

Continued on next column

Continued from previous column

Galaxy name log(Mdust/M�) -dex +dex

HRS 59 7.12 -0.05 +0.06
HRS 60 6.84 -0.06 +0.04
HRS 61 5.97 -0.08 +0.08
HRS 62 6.90 -0.10 +0.11
HRS 63 7.30 -0.04 +0.04
HRS 64 6.53 -0.08 +0.10
HRS 65 6.43 -0.07 +0.07
HRS 66 7.13 -0.04 +0.03
HRS 67 6.41 -0.10 +0.10
HRS 68 5.77 -0.05 +0.05
HRS 69 6.99 -0.06 +0.06
HRS 70 6.40 -0.06 +0.06
HRS 72 6.07 -0.07 +0.07
HRS 73 7.75 -0.03 +0.03
HRS 74 6.83 -0.05 +0.05
HRS 75 6.19 -0.15 +0.15
HRS 76 5.99 -0.10 +0.11
HRS 77 7.77 -0.04 +0.03
HRS 78 6.50 -0.07 +0.07
HRS 79 6.16 -0.10 +0.10
HRS 81 6.91 -0.04 +0.04
HRS 82 5.97 -0.05 +0.05
HRS 84 6.26 -0.04 +0.04
HRS 85 7.22 -0.04 +0.04
HRS 86 7.04 -0.07 +0.07
HRS 88 7.16 -0.07 +0.06
HRS 89 7.47 -0.06 +0.06
HRS 91 7.72 -0.03 +0.03
HRS 92 6.53 -0.05 +0.05
HRS 93 6.31 -0.06 +0.06
HRS 94 7.13 -0.06 +0.08
HRS 95 6.48 -0.03 +0.03
HRS 96 7.16 -0.03 +0.03
HRS 98 6.90 -0.04 +0.05
HRS 102 7.87 -0.03 +0.03
HRS 106 6.66 -0.06 +0.07
HRS 107 6.30 -0.06 +0.07
HRS 109 6.67 -0.06 +0.06
HRS 110 6.74 -0.06 +0.05
HRS 111 7.16 -0.03 +0.03
HRS 114 7.82 -0.03 +0.03
HRS 118 6.07 -0.17 +0.18
HRS 121 7.11 -0.04 +0.03
HRS 122 8.06 -0.03 +0.03
HRS 123 6.59 -0.05 +0.05
HRS 132 6.20 -0.07 +0.08
HRS 133 7.06 -0.10 +0.10
HRS 139 6.38 -0.06 +0.07
HRS 140 6.96 -0.06 +0.06
HRS 142 6.54 -0.04 +0.04
HRS 143 7.21 -0.04 +0.05
HRS 145 6.77 -0.06 +0.07
HRS 146 6.78 -0.05 +0.05
HRS 147 6.84 -0.04 +0.04

Continued on next column
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Continued from previous column

Galaxy name log(Mdust/M�) -dex +dex

HRS 148 6.97 -0.07 +0.06
HRS 154 7.06 -0.07 +0.08
HRS 157 6.68 -0.04 +0.03
HRS 158 6.89 -0.21 +0.21
HRS 169 6.59 -0.06 +0.07
HRS 177 6.41 -0.04 +0.04
HRS 182 6.69 -0.04 +0.04
HRS 187 7.12 -0.05 +0.06
HRS 188 6.91 -0.05 +0.05
HRS 189 6.36 -0.05 +0.05
HRS 194 7.99 -0.03 +0.03
HRS 196 6.91 -0.06 +0.06
HRS 198 6.75 -0.07 +0.08
HRS 201 7.69 -0.03 +0.03
HRS 203 6.81 -0.04 +0.04
HRS 204 7.84 -0.03 +0.03
HRS 205 7.53 -0.04 +0.04
HRS 212 6.33 -0.07 +0.07
HRS 213 8.27 -0.03 +0.03
HRS 215 6.99 -0.03 +0.03
HRS 216 7.38 -0.03 +0.03
HRS 227 6.87 -0.07 +0.07
HRS 237 6.62 -0.06 +0.05
HRS 238 5.59 -0.17 +0.24
HRS 239 6.85 -0.03 +0.03
HRS 242 6.83 -0.05 +0.05
HRS 244 7.12 -0.03 +0.03
HRS 246 7.27 -0.03 +0.04
HRS 247 7.57 -0.03 +0.03
HRS 251 7.87 -0.03 +0.02
HRS 252 6.58 -0.10 +0.11
HRS 255 6.88 -0.11 +0.11
HRS 257 7.27 -0.05 +0.05
HRS 259 6.78 -0.08 +0.10
HRS 262 6.89 -0.04 +0.05
HRS 263 8.19 -0.05 +0.04
HRS 264 6.35 -0.10 +0.10
HRS 266 7.45 -0.08 +0.12
HRS 267 6.77 -0.08 +0.07
HRS 268 6.83 -0.03 +0.03
HRS 271 6.75 -0.06 +0.07
HRS 273 7.05 -0.04 +0.04
HRS 274 6.79 -0.04 +0.05
HRS 275 7.01 -0.04 +0.04
HRS 276 6.56 -0.06 +0.06
HRS 279 6.93 -0.07 +0.08
HRS 280 6.38 -0.04 +0.04
HRS 281 5.82 -0.07 +0.07
HRS 283 7.04 -0.04 +0.04
HRS 284 6.80 -0.03 +0.03
HRS 286 6.70 -0.19 +0.19
HRS 287 6.78 -0.04 +0.05
HRS 289 7.34 -0.03 +0.03
HRS 290 6.04 -0.05 +0.05

Continued on next column

Continued from previous column

Galaxy name log(Mdust/M�) -dex +dex

HRS 292 6.68 -0.04 +0.04
HRS 293 6.68 -0.04 +0.05
HRS 295 7.66 -0.03 +0.03
HRS 296 5.49 -0.08 +0.09
HRS 297 7.38 -0.03 +0.04
HRS 298 6.52 -0.04 +0.04
HRS 299 7.10 -0.05 +0.06
HRS 301 7.36 -0.06 +0.08
HRS 302 6.97 -0.11 +0.13
HRS 307 7.71 -0.04 +0.04
HRS 308 5.15 -0.08 +0.09
HRS 309 6.24 -0.07 +0.07
HRS 314 6.73 -0.07 +0.07
HRS 315 6.18 -0.23 +0.31
HRS 317 6.16 -0.13 +0.14
HRS 318 6.75 -0.05 +0.05
HRS 319 7.10 -0.06 +0.06
HRS 320 7.48 -0.08 +0.09
HRS 321 6.39 -0.04 +0.04
HRS 322 7.28 -0.10 +0.12
HRS 323 7.06 -0.04 +0.03

HAPLESS+HiGH:

UGC 06877 5.32 -0.06 +0.06
PGC 037392 5.77 - 0.26 + 0.27
UGC 09215 6.94 -0.07 +0.07
UM 452 5.56 - 0.20 + 0.21
NGC 4030 7.87 -0.03 +0.03
NGC 5496 7.11 -0.07 +0.07
UGC 07000 6.36 -0.08 +0.08
UGC 09299 6.38 -0.14 +0.15
NGC 5740 7.18 -0.04 +0.04
UGC 07394 7.01 -0.25 +0.24
PGC 051719 6.19 -0.08 +0.09
NGC 5584 7.50 -0.05 +0.04
UGC 09348 6.58 -0.07 +0.07
UGC 06780 6.78 -0.34 +0.28
NGC 5719 7.46 -0.03 +0.03
NGC 5746 7.99 -0.03 +0.03
NGC 5690 7.60 -0.03 +0.03
NGC 5750 7.12 -0.05 +0.06
NGC 5705 7.36 -0.09 +0.09
UGC 09482 5.36 -0.19 +0.54
NGC 5691 6.85 -0.04 +0.04
NGC 5713 7.45 -0.03 +0.03
UGC 09470 6.05 -0.12 +0.14
UGC 06903 7.24 -0.06 +0.06
CGC G019-084 6.23 -0.06 +0.06
UM 491 5.63 - 0.30 + 0.46
UGC 07531 5.70 -0.22 +0.32
UGC 07396 6.59 - 0.30 + 0.33
UGC 04684 6.66 -0.19 +0.18
NGC 5725 6.32 -0.10 +0.12
UGC 06578 5.23 -0.26 +0.25

Continued on next column
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Continued from previous column

Galaxy name log(Mdust/M�) -dex +dex

UGC 04673 7.41 -0.37 +0.32
UGC 04996 6.95 -0.11 +0.13
UGC 06970 6.45 -0.36 +0.30
NGC 4202 7.50 -0.07 +0.06
2MASX J14265308 7.27 -0.17 +0.19
IC 1011 7.43 -0.06 +0.06
IC 1010 7.96 -0.12 +0.11

KINGFISH:

NGC 0337 7.00 -0.04 +0.04
NGC 0584 7.10 -0.28 +0.30
NGC 0628 7.24 -0.04 +0.05
NGC 0855 5.52 -0.05 +0.05
NGC 0925 7.18 -0.06 +0.05
NGC 1097 7.71 -0.04 +0.04
NGC 1291 7.12 -0.04 +0.04
IC 0342 7.45 -0.05 +0.05
NGC 1482 7.14 -0.04 +0.04
NGC 1512 7.20 -0.06 +0.06
NGC 2146 7.42 -0.04 +0.04
HoII 4.40 -0.04 +0.04
DDO 053 3.53 -0.06 +0.06
NGC 2798 6.82 -0.05 +0.04
NGC 2841 7.65 -0.04 +0.04
NGC 2915 4.62 -0.05 +0.05
HoI 4.77 -0.17 +0.21
NGC 2976 6.15 -0.05 +0.05
NGC 3049 6.54 -0.05 +0.06
NGC 3077 5.83 -0.04 +0.04
M81dwB 4.07 -0.10 +0.08
NGC 3184 7.38 -0.04 +0.04
NGC 3190 7.03 -0.04 +0.04
NGC 3198 7.44 -0.05 +0.05
IC 2574 5.55 -0.05 +0.05
NGC 3265 6.03 -0.05 +0.05
NGC 3351 7.07 -0.04 +0.04
NGC 3521 7.76 -0.04 +0.04
NGC 3621 7.15 -0.04 +0.04
NGC 3627 7.39 -0.04 +0.04
NGC 3773 5.66 -0.04 +0.04
NGC 3938 7.50 -0.04 +0.04
NGC 4236 6.21 -0.05 +0.05
NGC 4254 7.66 -0.04 +0.04
NGC 4321 7.73 -0.04 +0.04
NGC 4536 7.27 -0.05 +0.04
NGC 4559 6.81 -0.05 +0.05
NGC 4569 6.94 -0.03 +0.04
NGC 4579 7.40 -0.03 +0.03
NGC 4594 7.16 -0.04 +0.04
NGC 4625 6.14 -0.04 +0.04
NGC 4631 7.38 -0.05 +0.04
NGC 4826 6.43 -0.03 +0.03
NGC 5055 7.65 -0.03 +0.04
NGC 5398 5.61 -0.06 +0.05

Continued on next column

Continued from previous column

Galaxy name log(Mdust/M�) -dex +dex

NGC 5408 4.43 -0.05 +0.05
NGC 5457 7.69 -0.05 +0.05
NGC 5474 6.14 -0.05 +0.05
NGC 5713 7.22 -0.04 +0.04
NGC 5866 6.61 -0.03 +0.04
NGC 6946 7.64 -0.04 +0.04
NGC 7331 7.90 -0.04 +0.04
NGC 7793 6.65 -0.05 +0.05

Concluded

APPENDIX B: GALAXY SPECIFIC
PROPERTIES

To compare the dust properties and dust scaling trends of
JINGLE galaxies to other local galaxy samples, we assem-
bled data for several well-studied nearby galaxy samples
(HRS, KINGFISH, HiGH and HAPLESS). We repeat the
dust SED modelling procedure for each of these galaxy sam-
ples to allow for an unbiased comparison with JINGLE. The
same set of IR/submm filters has been used (where possible)
to infer the contribution from stellar emission (WISE 3.4 and
4.6µm), and to fit the dust emission (WISE 12 and 22µm,
IRAS 60µm, PACS 100 and 160µm, and SPIRE 250, 350
and 500µm flux). For each of these galaxy samples, galaxy
properties (i.e., metallicities, star formation rates and stellar
masses etc.) have been derived in a consistent way (where
possible). A short description and details about the data
assembly have been presented below.

B1 JINGLE

We have adopted the median M? and SFR parameters (and
uncertainties) inferred from a panchromatic SED fitting pro-
cedure using MagPhys (da Cunha et al. 2010). Gas-phase
metallicities have been calculated using the O3N2 calibra-
tion of Pettini & Pagel (2004) based on optical strong emis-
sion lines observed in the SDSS spectra of JINGLE galax-
ies (Saintonge et al. 2018). Due to the lack of uncertainty
measurements for some galaxy samples, we have assumed a
fixed 0.05 dex uncertainty on the oxygen abundances. The
Hi masses and uncertainties were extracted from the AL-
FALFA catalog (Haynes et al. 2018). For JINGLE galaxies
not covered or detected by ALFALFA, we have completed
our own JINGLE Hi observing campaign with Arecibo (PI:
M.W.L. Smith) and have taken the Hi masses and uncer-
tainties inferred from these recent observations. Combining
both datasets, we have Hi masses available for 161 JINGLE
galaxies. With distances ranging from 56 to 223 Mpc, it is
not always easy to assign a Hubble type to each of the JIN-
GLE galaxies. The distinction for JINGLE galaxies is there-
fore made only between early-type and late-type galaxies.
Due the selection criteria, the JINGLE sample is dominated
by late-type galaxies (186 galaxies) with a minority of 7
early-type galaxies (JINGLE 61, 63, 76, 85, 95, 104, 125).
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Figure A1. Left panel: a representative model fit for JINGLE 26 with our Bayesian THEMIS dust SED model. The best-fit SED models
for small (sCM20) and large (lCM20) carbonaceous grains and large silicate (sil) grains are indicated with green dashed, blue solid and

cyan dash-dotted lines, respectively. The stellar emission at NIR wavelengths is modelled using a blackbody function with temperature

T = 5, 000K (red dotted curve). The total best-fit stellar+dust SED emission is shown in black. The shaded grey region indicate the
lower and upper limit uncertainties on the SED models. Right panel: 1D and 2D posterior PDFs which indicate the likelihood of a given

output parameter value. The blue line indicates the position of the maximum likelihood (or best-fit model) solution which does not

always correspond to the peak of the posterior PDF, while the black dashed lines correspond to the 16th, 50th and 84th percentiles.

B2 Herschel Reference Survey

The Herschel Reference Survey (HRS, Boselli et al. 2010)
is a volume-limited sample of 32213 nearby galaxies with
distances ranging from 15 Mpc to 25 Mpc, selected based
on near-infrared magnitude limits of K<12 mag for late-
type galaxies (Sa-Sd-Im-BCD) and K<8.7 mag for early-
type galaxies (E, S0 and S0a). Due to the K-band selection
criteria, the HRS is a stellar mass-selected sample dominated
by more evolved sources which have already converted most
of their gas into stars. It is thus not surprising that the HRS
sample contains a large fraction of early-type galaxies (62),
in addition to 261 late-type galaxies. Even though early-type
galaxies are considered to be red and dead, nearly one quar-
ter of the HRS ellipticals and up to 62% of HRS lenticular
galaxies (S0s) have been observed to contain a non-negligible
amount of dust (Smith et al. 2012).

For the HRS flux measurements and errors, we relied
on the aperture-matched photometry measurements from
CAAPR (Comprehensive & Adaptable Aperture Photom-
etry Routine, Clark et al. 2018). The PACS and SPIRE ob-
servations were presented in Cortese et al. (2014) and Ciesla
et al. (2012). Metal abundances (using the O3N2 calibra-
tion) have been taken from Hughes et al. (2013). We use the
stellar masses and star formation rates and corresponding
uncertainties inferred from MagPhys14 (as presented in De
Vis et al. 2017a). The Hi and H2 masses and uncertainties

13 We removed HRS 228 from the sample as it was identified as
a background object, rather than a nearby galaxy (Ciesla et al.

2012).
14 MagPhys results are missing for four HRS galaxies (HRS 138,

were taken from Boselli et al. (2014a), with Hi mass mea-
surements available for 315 HRS galaxies (of which 52 are
upper limits).

B3 KINGFISH

The KINGFISH sample is composed of 61 nearby
(D≤30 Mpc) galaxies with a wide range of morphologi-
cal classifications (Kennicutt et al. 2011). The sample is
not complete as such, but with KINGFISH galaxies cov-
ering more than four orders of magnitude in stellar mass
and star formation activity, the KINGFISH galaxies stretch
across most of the parameter space occupied by local galax-
ies. Photometric measurements and errors were taken from
Dale et al. (2017), who presented an updated set of multi-
wavelength photometry for all KINGFISH and SINGS galax-
ies. The Hi and H2 masses and uncertainties were taken from
Rémy-Ruyer et al. (2014) (including three galaxies with Hi
upper limits and three galaxies without Hi masses). Stel-
lar masses and SFRs (and uncertainties) have been adopted
from the MagPhys fitting results presented in Hunt et al.
(2019). Oxygen abundances (based on the O3N2 calibra-
tion) have been extracted from De Vis et al. (2019), with
metallicities available for 46 out of 61 KINGFISH galax-
ies. For the missing 15 galaxies, oxygen abundances (relying
on the Kobulnicky & Kewley 2004 metallicity calibration)
have been taken from Kennicutt et al. (2011), and were con-
verted to the 03N2 calibration from Pettini & Pagel (2004)

150, 183, 241) due to possible contamination from an AGN, hot

X-ray halo and/or synchrotron component (Eales et al. 2017).
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following the conversion formula from Kewley & Ellison
(2008). For two metal-poor KINGFISH galaxies (DDO 053
and DDO 165), the metal abundances reported in Kenni-
cutt et al. (2011) were used due to the absence of a reli-
able conversion at these low metallicities (Kewley & Ellison
2008). To avoid any contamination from an AGN, we have
removed three KINGFISH galaxies (NGC 1316, NGC 4725,
NGC 4736; Rémy-Ruyer et al. 2015) from our sample.

B4 HAPLESS and HiGH samples

The HAPLESS and HiGH galaxy samples have been selected
from the Herschel Astrophysical Terahertz Large Area Sur-
vey (H-ATLAS, Eales et al. 2010). The HAPLESS sample
was selected based on bright 250µm emission, resulting in a
local sample of 42 dusty galaxies at distances between 15 and
46 Mpc. The selection criteria and galaxy properties have
been outlined in Clark et al. (2015); they show that HAP-
LESS galaxies are predominantly blue, star-forming galaxies
in an early stage of evolution. HiGH galaxies were selected
based on their Hi detections. The 40 Hi-rich galaxies span
distances from 11.3 to 158.9 Mpc, and typically have low
stellar masses (≤109 M�) and relatively low dust masses for
their stellar mass content, indicating that these galaxies are
also at an early stage of evolution. Due to similarities in the
selection criteria, it is not surprising that the dust-selected
HAPLESS and Hi-selected HiGH galaxy samples have 22
galaxies in common.

Photometry measurements and errors for HAPLESS
and HiGH samples have been derived using the CAAPR
software from Clark et al. (2018), and the MagPhys fitting
results (for stellar masses and SFRs) and Hi masses (and
uncertainties) were taken from Clark et al. (2015) and De
Vis et al. (2017a), respectively. Hi mass measurements were
available for all HiGH galaxies, and 38/42 HAPLESS galax-
ies. Metal abundances were taken from De Vis et al. (2017b).

APPENDIX C: ESTIMATING STAR
FORMATION HISTORIES

A reasonable estimation of a galaxy’s SFH is vital to con-
strain stellar dust production and supernova rates. To avoid
biasing the inferred SFHs by assuming a particular SFH
shape, we resort to non-parametric star formation histo-
ries, where we determine the average SFR in three “look-
back time” bins: 0-10 Myr, 10-100 Myr and 100 Myr-12 Gyr,
and where we have assumed that galaxies started form-
ing stars roughly 12 Gyr ago. To determine the average
SFR during those three distinct periods, we assembled Hα,
WISE 22µm, FUV, and TIR luminosities, and inferred two
different measurements of the recent star formation activ-
ity: SFR(Hα+WISE 22µm) and SFR(FUV+TIR)15 (see Ta-
ble C1 for the estimated SFRs). With Hα and WISE 22µm
emission being mostly sensitive to young stellar popula-
tions with ages .10 Myr, while FUV and TIR probe star

15 We have used the prescriptions from Kennicutt & Evans

(2012), and have assumed that the WISE 22µm filter is equiv-

alent to the MIPS 24µm or IRAS 25µm filter.

formation on recent timescales of ∼100 Myr (e.g., Kenni-
cutt & Evans 2012), the ratio of these SFR estimates,
SFR(Hα+WISE 22µm)/SFR(FUV+TIR), provides an indi-
cation of how much star formation occurred during the last
10 Myr as opposed to a longer 100 Myr look-back time pe-
riod. For each sample of galaxies at a similar evolutionary
stage, as indicated by the ratio of their Hi gas mass versus
stellar mass, MHI/M?, we have calculated the average ratio
of these SFRs. These ratios, in comparison to the average
stellar mass and SFR (which corresponds to a constant SFR
over the last 100 Myr as inferred by MagPhys), allow us to
constrain the average SFR during the last 10 and 100 Myr.
The average (constant) SFR during the 100 Myr-12 Gyr pe-
riod is then constrained based on the current “average” stel-
lar mass for each galaxy bin.

Figure C1 shows the SFHs that have been inferred in
this way for the six MHI/M? bins. For comparison, the de-
layed SFH model used by De Vis et al. (2017b) is indicated
with a red, solid line and was used in Models II to test the
sensitivity of our model results to the assumed SFH. Galax-
ies at an early stage of evolution (Bin 1) did experience some
star formation in the past, but have converted gas into stars
at an increased rate during the last 100 Myr, with a further
increment in their star formation activity during the last
10 Myr. Similar SFHs were inferred for the two subsequent
bins (Bins 2 and 3), but show less pronounced differences
in their average SFRs during the three subsequent epochs.
More evolved galaxies (Bins 4-5) show a dip in their star
formation activity over 100 Myr timescales, followed by an
increased star formation activity during the last 10 Myr. The
most evolved galaxies (Bin 6) show an overall decrease in
their star formation activity during the last 100 Myr, which
can be expected if most gas has been consumed in earlier
star formation episodes (or has been partly removed from
the galaxy).

We realise that these SFHs will not be representative for
all galaxies presented in this paper. However, the star forma-
tion activity during the last 10 and 100 Myr, and how this
relates to any earlier star formation activity in the galaxy,
will be important to assess how much dust has formed over a
galaxy lifetime. The non-parametric SFHs for the six galaxy
bins have been overlaid on the star formation main sequence
(see Figure C2). All model SFH tracks display a horizontal
trend in the M?-SFR plane, due to the fixed SFR at look-
back times older than 100 Myr, and reside on the SF main
sequence during most of a galaxy’s lifetime. Only for look-
back times >11 Gyr, the model SFH tracks are positioned
above the SF main sequence inferred for the local Universe,
which is consistent with the expected shift of the main se-
quence at earlier times (Santini et al. 2017).

APPENDIX D: DUST AND ELEMENT
EVOLUTION MODELS: DEUS

We here describe the evolution of stars, metals and dust,
as it is implemented in DEUS. We have adopted the same
notation as commonly used throughout the literature (e.g.,
Rowlands et al. 2014; De Vis et al. 2017b).
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Figure C1. The customised star formation histories that have been inferred for each of the galaxy subsamples following the method

presented in Appendix C, and were used in our Model I. Galaxies evolve from Bin 1 (corresponding to an early stage of evolution as
inferred from the high MHI/M? ratios) through to Bin 6 (characteristic of evolved galaxies with low MHI/M? ratios). The customised

SFHs are compared to the delayed star formation history (red curve) applied by De Vis et al. (2017b), which has been used to predict

galaxy’s dust, Hi and metal content in our Model II.

Table C1. We present the log MHI/M? range and sample size in each galaxy bin, along with the subsample size with available Hα,
FUV, WISE 22 and TIR measurements which were used to estimate the past (>100 Myr), recent (10-100 Myr) and present (0-10 Myr)

SFRs inferred for each of the six galaxy bins.

Bin log MHI/M? range Ngalaxies NSFR SFR>100Myr [M� yr−1] SFR10-100Myr [M� yr−1] SFR<10Myr [M� yr−1]

1 [0.5,-] 17 3 0.04 0.10 0.51
2 [0,0.5[ 81 31 0.18 0.43 1.14

3 [-0.5,0[ 134 47 0.44 0.45 1.64

4 [-1.0,-0.5[ 132 62 1.30 0.68 3.30
5 [-1.5,-1.0[ 46 20 2.09 0.44 2.75
6 [-,-1.5[ 13 2 1.91 0.09 0.31

D1 Model implementation

D1.1 Stellar populations

The stellar mass of a galaxy,M?, evolves with time according
to:

dM?

dt
= ψ(t)− e(t) (D1)

where ψ(t) is the SFR and e(t) is the ejected mass lost from
stars throughout their lives. We assume the mass loss occurs
at the end of stellar evolution:

e(t) =

∫ mmax

mτm

[m−mR(m)]ψ(t− τm)φ(m)dm, (D2)

where the integral runs over stars with masses (mτm) with
a lifetime τm, which formed at a time t − τm. The ejected
masses are calculated as the difference between the initial
stellar mass, m, and the remnant mass, mR(m) for a star
with a given initial mass m. The stellar lifetimes are adopted
from Schaller et al. (1992), while the remnant masses are
taken from Prantzos et al. (1993). We assume a Chabrier
(2003) initial mass function φ(m), maximum stellar mass

mmax of 100 M�, with the masses of stars ranging from 0.1
to 100 M� in stellar mass bins of 0.1 M�.

D1.2 Gaseous reservoirs

The total (interstellar) gas content of a galaxy, Mgas, evolves
as:

dMgas

dt
= − ψ(t) + e(t) + I(t) − O(t), (D3)

where the first term accounts for the gas lost through “as-
tration”, as the gas is being consumed to form new stars at
a rate equal to the SFR, ψ(t). The second term accounts for
the mass gain through mass loss during late stellar evolution-
ary phases, while the third and fourth term represent the in-
fall and outflow of gas. For Models I and II, we have assumed
closed-box models with no infalling or outflowing gas (i.e.,
I(t) = 0 and O(t) = 0). In Model III, we abandoned this
closed-box assumption (see Section D3) and have explored
how the DEUS parameters are affected by the in- and out-
flow of gas. Our current picture of galaxy evolution suggests
that relatively pristine gas is being funneled through cold
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Figure C2. The star formation main sequence for JINGLE, HRS,
KINGFISH, HAPLESS and HiGH galaxies (grey symbols), with

the average trend found by Saintonge et al. (2016) overlaid as a
solid black line. An offset of 0.3 dex on either side of this trend

(similar to the spread observed by Noeske et al. 2007; Pannella

et al. 2009; Rodighiero et al. 2010) has been indicated by dashed
black lines, and encloses galaxies located on the SF main se-

quence. The evolutionary path for the customised and delayed

SFHs have been overlaid with solid and dashed curves, respec-
tively, for galaxy Bins 1 through to 6 in black, purple, blue, green,

yellow and red. The location of the asterisk corresponds to a look-

back time of 2 Gyr.

gas streams and is slowly accreted from the halo onto the
galaxy disk during its lifetime (e.g., Dekel et al. 2009). Ne-
glecting this process, which works to dilute metal fractions
in the interstellar medium, will accelerate the buildup of a
galaxy’s metal content over time. Due to poor constraints on
the initial gas mass and metallicity of the halo from which
a galaxy forms, it is quite tedious to constrain the rates of
infalling and outflowing gas, and their mass loading factors
(as they will be influenced by the initial gas and metal abun-
dances) based on the observations at hand. To work around
this problem, we leave the initial gas mass of the halo as a
free parameter in DEUS and infer what gas mass is needed
to reproduce the observed present-day specific Hi gas masses
(Mgas/M?) and oxygen abundances. In this manner, the ini-
tial gas mass will be adapted to account for any gas mass
accreted/lost throughout a galaxy’s lifetime. Naturally, this
approach will only work for galaxies that have not experi-
enced any recent gas in- or outflows, as those would affect
their dust and gas masses on timescales significantly shorter
than the time needed to replenish a galaxy’s dust and gas
content. In this paper, we therefore refrain from modelling
the sub-population of Hi-deficient HRS galaxies which have
experienced massive gas outflows that have shut down star
formation on galaxy-wide scales in these systems over the
last .1.5 Gyr (e.g., Boselli et al. 2006; Pappalardo et al.
2010; Ciesla et al. 2016).

Rather than total gas masses, we only have Hi gas mass
measurements available for most galaxies in our local galaxy
sample. The determination of molecular gas masses for JIN-
GLE galaxies has been deferred to JINGLE Paper III for
a subsample of JINGLE galaxies, and to future work, in

anticipation of the completion of our JCMT CO(2-1) sur-
vey. Molecular gas mass estimates exist for a few nearby
galaxy samples (e.g., HRS, KINGFISH), but these measure-
ments are either hampered by the extrapolation of localized
CO observations to galaxy-wide scales, or by the uncertain-
ties involved in the conversion from CO-to-H2 masses, which
varies non-linearly with the metallicity and ISM phase filling
factors in galaxies (e.g., Schruba et al. 2012; Amoŕın et al.
2016; Accurso et al. 2017, Madden et al. in prep.).

To compare the total gas masses in our model to the
observed Hi content, which are related through:

Mgas = ξ (MHI +MH2), (D4)

we need to estimate the correction factor (ξ) to take into
account the gas fraction of elements heavier than hydrogen.
Rather than a canonical correction factor of 1.36, often used
in the literature, we follow Clark et al. (2016) to define the
correction factor ξ as:

ξ =
1

1−
(
fHep + fZ

[
∆fHe
∆fZ

])
− fZ

(D5)

which depends on the primordial helium mass fraction
(fHep=0.2485±0.0002, Aver et al. 2013), the metal mass
fraction fZ of the galaxy at that point in time, and the
evolution of the helium mass fraction with metallicity,[

∆fHe
∆fZ

]
, which is assumed to be equal to

[
∆fHe
∆fZ

]
=1.41±0.62

(Balser 2006). The metal mass fraction is defined as fZ =
fZ�ZO with the Solar metal mass fraction assumed to be
fZ�=0.0134 (Asplund et al. 2009). The oxygen-based metal-
licity ZO is defined as:

ZO = δO

[
O

H

]
/

[
O

H

]
�

(D6)

with the Solar oxygen abundance [12+log O
H

]=8.69±0.05
(Asplund et al. 2009), and a correction factor δO
(=1.32±0.09, Mesa-Delgado et al. 2009) to account for the
depletion of oxygen (mostly in Hii regions).

In addition to this ξ correction factor, we need to correct
our model gas masses for a contribution from molecular gas,
to allow a direct comparison with the observed Hi masses.
Hereto, we rely on the scaling relation of the H2-to-Hi mass
ratio as a function of the stellar mass inferred by Popping
et al. (2014) for disc-dominated galaxies using metallicity-
based H2 formation recipes in their semi-analytic models
of galaxy evolution. Their modelled scaling laws agree well
with various literature sets of observed data from Leroy et al.
(2008), Saintonge et al. (2011) and Boselli et al. (2014b), and
are applicable up to redshifts of z∼2.

D1.3 Metal budgets

The mass of metals in the ISM (Mmetals(gas)) evolves with
time according to:

dMmetals(gas)

dt
= −ZM(t)ψ(t) + eZ(t) + ZII(t) − ZOO(t)

(D7)

where ZM(t) represents the mass fraction of heavy elements
in the gas phase (i.e., ZM = Mmetals(gas)/Mgas). eZ accounts
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for the ejected metals through stellar mass loss during late
stellar evolutionary stages, and can be calculated as:

eZ(t) =

∫ mmax

mτm

([
m−mR(m)

]
Z(t− τm) +mpZ

)
×ψ(t− τm)φ(m)dm

(D8)

where the first term between parentheses accounts for the
metals ejected through stellar mass loss (based on the metal-
licity of the gas from which the star formed t - τm ago),
and the second term (mpZ(m)) represents the heavy ele-
ments produced by a star with initial mass m and metal-
licity Z (where pZ(m) represents the stellar yields). The
metal yields for low- and intermediate mass stars (LIMS,
with progenitor masses Mprog ≤8 M�) and for massive stars
(8 M� < Mprog ≤40M�) were taken from van den Hoek
& Groenewegen (1997) and Woosley & Weaver (1995), re-
spectively. The third and fourth term of Eq. D7, which are
related to gas inflows and outflows, are not considered in our
closed-box Models I and II.

Rather than tracking metal fractions, our observa-
tions constrain the oxygen abundances in galaxies. To
convert these oxygen abundances into metal mass frac-
tions, we rely on the conversion from Solar oxygen abun-
dance (12+log(O/H)�=8.69) to the Solar metal fraction
(fZ�=0.134), which results in the following relation16: fZ =

27.36× 10(12+log(O/H))−12. Note that this relation has been
inferred based on the conversion from total metal frac-
tion to oxygen abundance at solar metallicity, but that
the exact conversion at other metallicities likely devi-
ates from this relation due to oxygen abundance varia-
tions. At the onset of our simulation, we have assumed a
metallicity Zini=MZ/Mgas=0.000117, and an oxygen mass
MO=0.44×MZ .

D1.4 Dust reservoirs

The dust mass evolves with time according to:

dMdust

dt
=

∫ mmax

mτm

([m−mR(m)]Z(t− τm)δLIMS +mpZδdust)

×ψ(t− τm)φ(m)dm− (Mdust/Mgas)ψ(t)

−Mdustδdestr(t) +Mdustδgrow(t)

+(Mdust/Mgas)II(t)− (Mdust/Mgas)OO(t)

(D9)

where the first term accounts for dust production by LIMS
(during late stellar evolutionary stages) and massive stars
(after their explosion as core-collapse supernovae). The sec-
ond and third term account for dust destruction through
astration (i.e., dust that is incorporated into new stars)
and dust destruction (mostly) through supernova shocks in
the interstellar medium. The fourth term accounts for dust
grown through accretion of elements onto pre-existing grain

16 This conversion factor translates into an oxygen mass fraction,
compared to the total mass of metals, of 44%, if we first con-
vert the oxygen abundance into oxygen mass fractions through
XO = 12O

H
. The latter value corresponds to the lower limit of

predictions between 45-60% from Garnett (2002).
17 We verified that assuming an absence of any metals at the

start of our simulation renders similar results.

seeds in interstellar clouds. The last two terms have been ne-
glected for closed-box Models I and II, while dust outflows
(no dust inflows) have been accounted for in Model III (see
App. D3).

We rely on the model dust yields, δdust, from Ferrarotti
& Gail (2006) for LIMS and from Marassi et al. (2019) (for
their non-rotating CE models18) for supernovae to model
stellar dust production19. The supernova dust yields from
Marassi et al. (2019) are at the high end of values reported
in the literature, and have not yet been corrected for the de-
struction of freshly condensed supernova dust by a reverse
shock. There is a large uncertainty inherent to the efficiency
of reverse shock dust destruction, due to its dependence on
the grain size and composition, the clumpiness of the dust
distribution in the supernova ejecta, and the reverse shock
velocity (which is set by the ambient circum- and interstel-
lar densities). Values have been quoted ranging from a few
percent to 100% dust destruction efficiencies (e.g., Bianchi &
Schneider 2007; Silvia et al. 2010; Bocchio et al. 2016; Kirch-
schlager et al. 2019). Rather than fixing the survival fraction
of supernova dust for destruction by the reverse shock, we
implement the reverse shock dust destruction efficiency as
a free parameter (fsurvival) of our model. We furthermore
assume that stars more massive than 40 M� will end up as
black holes, and do not contribute to the dust enrichment of
the ISM.

To model the dust destruction efficiency, δdestr, we in-
fer an estimate for the average dust destruction timescale
τdestr, which describes the destruction of dust with time
through Mdust(t) = Mdust(0) exp(−t/τdestr) and which is
assumed to be the inverse of the dust destruction efficiency,
i.e., δdestr=τ

−1
destr. We define the dust destruction timescale

as:

τdestr =
Mgas

δSNRSNMcl
(D10)

where RSN is the supernova rate per gas mass, Mgas, and
per 20 Myr (i.e., the time interval in our chemical evolution
model), which can be inferred from the star formation his-
tory and the number of massive stars with progenitor masses
between 8 and 40 M� that have reached the end of their lives
during the last 20 Myr period. The average gas mass cleared
by each supernova, Mcl, (which is a free parameter in our
models) depends on the supernova energy, and the structure,
clumpiness and density of the ambient interstellar medium
(Slavin et al. 2015; Hu et al. 2019). The gas mass cleared
of dust, Mcl, is thought to vary from 1000 M� under av-
erage warm neutral medium conditions (nH ∼0.1 cm3) to
700 M� for the cold neutral medium (nH ∼10 cm3) up to
.350 M� in molecular clouds with nH >100 cm3 (Hu et al.
2019). The correction factor δSN accounts for “delayed” or
“clustered” supernova explosions occurring above the galac-
tic plane and within superbubbles, where they will neglect

18 The “CE” models from Marassi et al. (2019) correspond to

a set of models for which the properties of the explosions have
been calibrated to reproduce empirically inferred values of the
56Ni mass, as opposed to their “FE” models for which a fixed
explosion energy is assumed.
19 We have interpolated between the yields for evolved stars and
supernovae to infer dust yields for progenitor masses between 7

and 13 M�.
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to destroy a significant mass of pre-existing dust. We fix δSN

to 0.4, estimated from simulations with a random positional
occurrence of supernova (Hu et al. 2019), and consistent with
earlier estimates (0.36, McKee 1989).

The efficiency of grain growth processes δgrow(=τ−1
grow)

is estimated from the average grain growth timescale:

τgrow =
Mgas

εZMψ

(
1− ηdust

ZM

)−1

(D11)

following Mattsson et al. (2012); Mattsson & Andersen
(2012) (see Section D2 for a quick summary of their
derivation of the grain growth parameter), where ZM

(=Mmetals(gas)/Mgas) represents the metallicity (in the gas
phase), ψ corresponds to the star formation rate and ηdust is
the dust-to-gas ratio. The ε parameter determines the grain
growth parameter, and is set as a free parameter in our
model.

D2 Grain growth parameter

In this paragraph, we reiterate the derivation of the grain
growth prescription presented by Mattsson et al. (2012) to
illustrate the assumptions that have gone into the derivation
of Eq. D11 and to give a physical interpretation of the grain
growth parameter ε.

The rate (per unit volume) at which the number of
atoms, NA, increases in dust grains through accretion of
metals on to these dust grains can be expressed as:

dNA

dt
= fs πa

2 nZ ngr 〈vgas〉 (D12)

where fs is the sticking coefficient (which gives the probabil-
ity that an atom will stick to a grain), a is the typical grain
radius, and nZ and ngr are the average number densities for
atomic metals and dust grains, respectively, while 〈vgas〉 is
the mean thermal speed of the gas particles. Rather than
number densities, this expression can be rewritten in terms
of dust surface densities (Σdust) of molecular gas clouds, i.e.:

dΣdust

dt
=

fs πa
2 Σ̃Z Σdust 〈vgas〉
〈mgr〉 dc

(D13)

where Σ̃Z is the surface density of free (atomic) metals, 〈mgr〉
is the mean mass of interstellar dust grains, and dc is the size
of the molecular cloud. The inferred grain growth timescale
can then be written as:

τgr = τ0

(
1− ηdust

ZM

)−1

(D14)

with

τ0 =
〈mgr〉 dc

fs πa2 Σ̃Z 〈vgas〉
≈ 〈mgr〉 dc

fs πa2 ZM Σmol 〈vgas〉
(D15)

where Σmol is the molecular gas surface density and ZM the
metallicity. It is assumed that Σmol ≈ ΣH2 , and that the
star formation rate surface density scales with ΣH2 (where
α is a constant):

ΣSFR = αΣH2 (D16)

through the Kennicutt-Schmidt relation (Schmidt 1959;
Kennicutt 1998) for molecular (rather than total) gas mass
surface densities (e.g., Bigiel et al. 2008). The mean thermal

speed 〈vgas〉 is furthermore assumed to be roughly constant,
and the typical grain radius a is assumed not to vary much,
which allows to reduce Eq. D15 to:

τ−1
0 =

ε ZM ΣSFR

Σgas
(D17)

which only depends on the metallicity ZM, the gas (Σgas)
and star formation rate (ΣSFR) surface densities, with a con-
stant (dimensionless) factor ε that is left as a free parameter.
This factor ε will set the grain growth efficiency and will be
sensitive to the average grain size, the mean thermal speed
of gas particles, and other assumptions that have gone into
this derivation. As we do not consider the resolved nature of
galaxies in this work, we convert the surface densities from
Eq. D17 to total gas mass and SFR measurements in Eq.
D11.

The derivation of this grain growth prescription from
Mattsson et al. (2012) is based on the assumption that
the accretion rate of gas-phase elements onto grain surfaces
scales with the molecular cloud surface density, and does
not account for any barriers which could reduce the grain
growth efficiency (e.g., ice mantle formation, or Coulomb
barriers). Due to the molecular gas mass not always being
readily available from observations or simulations, the star
formation rate (assumed to scale with the molecular gas con-
tent) is used to parameterise the efficiency of grain growth
processes.

D3 Including gas infall and outflows

It is commonly believed that the infall from primordial gas
along dense filaments from the cosmic web plays an impor-
tant role in fueling and sustaining star formation in galax-
ies (e.g. Dekel et al. 2009; Silk & Mamon 2012). This gas
accretion of metal-poor gas is also required to explain the
fundamental relation between the stellar mass, metallicity
and star formation rate of galaxies (e.g., Sánchez Almeida
et al. 2014). For this work, we assume that gas infall scales
directly with the star formation rate, and that the gas is pris-
tine and dust-free (i.e., the infalling gas does not contribute
to the overall metal and dust budget in galaxies).

Multi-phase galactic outflows, on the other hand, have
been shown to play an important role in the quenching of
star formation activity, but the main driving force of these
outflows (supernovae, stellar wind, accreting black holes,
cosmic rays) has yet to be identified (see Naab & Ostriker
2017 for a recent review). Other than simulations, the copi-
ous number of detections of massive galactic outflows (e.g.,
Cicone et al. 2014; Walter et al. 2017; Fluetsch et al. 2019)
during recent years has reinforced the importance of these
outflows in regulating galaxy evolution. Galactic outflows
are thought to be most powerful in galaxies at high redshift
which undergo strong bursts of star formation; while low red-
shift galaxies with M? & 1010 M� tend to have a suppressed
galactic outflows due to the lower gas fraction and turbulent
velocity dispersion in these galaxies, which makes it tenuous
to drive outflows with high mass loading factors (Hayward
& Hopkins 2017). The mass loading factor η (=Ṁout/Ṁ?) is
defined as the ratio of the mass outflow rate to the star for-
mation rate. To quantify how the mass loading factor varies
across a galaxy’s lifetime, we rely on the prescription from
Hayward & Hopkins (2017) (see their Eq. 44) which relates
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η to the stellar mass M? and gas fraction fgas of galaxies
through:

η = 14

(
fgasM?

1010M�

)−0.23

exp

(
−0.75

fgas

)
(D18)

and accounts for the decreased mass loading factors in the
local Universe. The prescriptions from Hayward & Hopkins
(2017) furthermore agree well with the mass-loading factors
inferred from the FIRE simulations (Muratov et al. 2015).

APPENDIX E: TABLES
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APPENDIX F: LIST OF ACRONYMS AND
SYMBOLS

APPENDIX G: FIGURES

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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Table F1. We collected the acronyms used throughout this paper in this summary table for quick reference.

Symbol Explanation

AGB asymptotic giant branch

DEUS Dust and Element evolUtion modelS

FUV far-ultraviolet
HAPLESS Herschel-ATLAS Phase-1 Limited-Extent Spatial Survey

Hi def Hi deficiency
HIGH Hi-selected Galaxies in Herschel-ATLAS

HRS Herschel Reference Survey

IMF initial mass function
IR infrared

ISM interstellar medium

JINGLE JCMT dust and gas In Nearby Galaxies Legacy Exploration
KINGFISH Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel

LIMS low-and intermediate mass stars

MCMC Markov Chain Monte Carlo
PDF probability density function

PP04 metallicity calibration from Pettini & Pagel (2004)

SED spectral energy distribution
SFH star formation history

SFR star formation rate

sSFR specific star formation rate
THEMIS The Heterogeneous dust Evolution Model for Interstellar Solids

TIR total infrared
UV ultraviolet
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Table F2. We collected the symbols used throughout this paper in this summary table for quick reference.

Symbol Explanation

12+log(O/H) oxygen abundance (as proxy of metallicity)

D distance

DTM dust-to-metal ratio
δdestr dust destruction efficiency

δgrow grain growth efficiency
δLIMS dust yields for low- and intermediate mass stars (LIMS)

δdust dust yields for supernovae

δSN correction factor to account for “clustered” or “delayed” supernova explosions (which will not clear interstellar material)
e(t) mass loss (at time t) during late stellar evolutionary stages

ε grain growth parameter – DEUS parameter

fc cold gas fraction
fgas gas fraction (i.e., Mgas/(Mgas+M?))

fsurvival fraction [in %] of freshly condensed supernova dust capable of surviving the reverse shock – DEUS parameter

fZ metal mass fraction
η mass loading factor (= ratio of the mass outflow rate to the star formation rate)

ηdust dust-to-gas ratio

I(t) infalling gas at time t
lcm20 large hydrocarbon grains (in the THEMIS dust model)

mR remnant mass for a star with initial mass m
M� solar mass

Mgas,ini initial gas mass (in M�) – DEUS parameter

Mcl interstellar cleared mass (in M�) per single supernova event – DEUS parameter
Mgas total (interstellar) gas mass, i.e. ξ(MHI+MH2 )

MHI atomic gas mass

MH2 molecular gas mass
Mmetals(gas) metal mass in the gas phase

Mmetals(gas+dust) metal mass in the gas phase + locked in dust grains

Mprog progenitor mass (where progenitor refers to the star prior to the supernova event)
M? stellar mass

MHI/M? specific Hi gas mass

Mdust/M? specific dust mass
nH hydrogen density

Nburn MCMC steps in the warm-up phase

Nchain the length of the MCMC chain
Neff effective sample size, defined as Nchain/τint

ξ correction factor to account for gas fraction heavier than hydrogen
O(t) outflowing gas at time t

pZ(m) stellar yields for a star with initial mass m and metallicity Z

p probability (significance) level (both for Spearman rank correlation and Mann-Whitney U-tests)
ρ Spearman rank correlation coefficient

sCM20 small hydrocarbon grains (in the THEMIS dust model)

σ standard deviation
Σdust dust mass surface density

Σgas gas mass surface density

ΣSFR SFR surface density
sil silicates (in the THEMIS dust model)

RSN supernova rate per gas mass, Mgas

Tdust dust temperature

τdestr dust destruction timescale (= δ−1
destr)

τint integrated auto-correlation time of the MCMC chain

τgrow grain growth timescale (= δ−1
grow)

τm lifetime of a star with initial mass m
φm initial mass function (IMF)

χ2 chi-squared statistic

χ2
red reduced chi-squared statistic
ψ(t) star formation rate (SFR) at time t

XCO CO-to-H2 conversion factor

ZI metallicity of infalling gas
ZM metallicity (=Mmetals(gas)/Mgas)

ZO metallicity of outflowing gas
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Figure G1. Corner plot for Model I (i.e., closed-box models with a customised SFH) for galaxy bin 1. The contour plots correspond to

2D posterior PDFs indicating the probability of two parameters in a 2D plane, where contours represent the 0.5σ, 1.0σ, 1.5σ and 2.0σ
likelihoods. The histograms correspond to 1D marginalised posterior PDFs showing the likelihood that a certain value will be assigned to

a given parameter (by marginalising over the other parameters). The maximum likelihood (blue solid curve) corresponds to the best-fit
solution. The black dashed lines correspond to the 16th, 50th and 84th percentiles of the 1D posterior PDFs to reflect the uncertainties
on these median model parameter values.
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Figure G2. Corner plot for Model II (i.e., closed-box models with a delayed SFH) for galaxy bin 1. See caption of Fig. G1 for more

information.
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Figure G3. Corner plot for Model III (i.e., models with gaseous flows and a customised SFH) for galaxy bin 1. See caption of Fig. G1

for more information.
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Figure G4. Corner plot for Model I (i.e., closed-box models with a customised SFH) for galaxy bin 2. See caption of Fig. G1 for more

information.
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Figure G5. Corner plot for Model II (i.e., closed-box models with a delayed SFH) for galaxy bin 2. See caption of Fig. G1 for more

information.
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Figure G6. Corner plot for Model III (i.e., models with gaseous flows and a customised SFH) for galaxy bin 2. See caption of Fig. G1
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Figure G7. Corner plot for Model I (i.e., closed-box models with a customised SFH) for galaxy bin 3. See caption of Fig. G1 for more

information.
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Figure G8. Corner plot for Model II (i.e., closed-box models with a delayed SFH) for galaxy bin 3. See caption of Fig. G1 for more

information.
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Figure G10. Corner plot for Model I (i.e., closed-box models with a customised SFH) for galaxy bin 4. See caption of Fig. G1 for more

information.
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Figure G11. Corner plot for Model II (i.e., closed-box models with a delayed SFH) for galaxy bin 4. See caption of Fig. G1 for more

information.
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Figure G12. Corner plot for Model III (i.e., models with gaseous flows and a customised SFH) for galaxy bin 4. See caption of Fig. G1
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Figure G13. Corner plot for Model I (i.e., closed-box models with a customised SFH) for galaxy bin 5. See caption of Fig. G1 for more

information.
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Figure G14. Corner plot for Model II (i.e., closed-box models with a delayed SFH) for galaxy bin 5. See caption of Fig. G1 for more

information.
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Figure G15. Corner plot for Model III (i.e., models with gaseous flows and a customised SFH) for galaxy bin 5. See caption of Fig. G1

for more information.
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Figure G16. Corner plot for Model I (i.e., closed-box models with a customised SFH) for galaxy bin 6. See caption of Fig. G1 for more

information.
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Figure G17. Corner plot for Model II (i.e., closed-box models with a delayed SFH) for galaxy bin 6. See caption of Fig. G1 for more

information.
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Figure G18. Corner plot for Model III (i.e., models with gaseous flows and a customised SFH) for galaxy bin 6. See caption of Fig. G1

for more information.
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