
pPXF: Full Spectrum and SED Fitting of Galactic and
Stellar Spectra

(Package v8.1, June 2022)

This pPXF package contains a Python implementation of the Penalized PiXel-Fitting (pPXF)
method to fit the stellar and gas kinematics, as well as the stellar population and the photometry
(SED) of galaxies. The method was originally described in Cappellari & Emsellem (2004) and
was substantially upgraded in subsequent years and particularly in Cappellari (2017).

Attribution
If you use this software for your research, please cite at least Cappellari (2017), or both pPXF
papers above. The BibTeX entry for the paper is:

@ARTICLE{Cappellari2017,
author = {{Cappellari}, M.},
title = "{Improving the full spectrum fitting method:

accurate convolution with Gauss-Hermite functions}",
journal = {MNRAS},
eprint = {1607.08538},
year = 2017,
volume = 466,
pages = {798-811},
doi = {10.1093/mnras/stw3020}

}

Installation
install with:

pip install ppxf

Without write access to the global site-packages directory, use:

pip install --user ppxf

To upgrade pPXF to the latest version use:

pip install --upgrade ppxf

1

https://ui.adsabs.harvard.edu/abs/2004PASP..116..138C
https://ui.adsabs.harvard.edu/abs/2017MNRAS.466..798C
https://ui.adsabs.harvard.edu/abs/2017MNRAS.466..798C

Usage Examples
To learn how to use the pPXF package, copy, modify and run the example programs in the
ppxf/examples directory. It can be found within the main ppxf package installation folder inside
site-packages. The detailed documentation is contained in the docstring of the file ppxf.py, or
on PyPi or as PDF from https://purl.org/cappellari/software.

Examples as Jupyter Notebooks are also available on my GitHub repository.

pPXF Purpose
Extract the galaxy stellar and gas kinematics, stellar population and gas emission by fitting a set
of templates to an observed spectrum, or to a combination of a spectrum and photometry (SED),
via full-spectrum fitting, using the Penalized PiXel-Fitting (pPXF) method originally described in

Cappellari & Emsellem (2004)

and substantially upgraded in subsequent years and particularly in

Cappellari (2017).

The following key optional features are also available:

1) An optimal template, positive linear combination of different input templates, can be fitted
together with the kinematics.

2) One can enforce smoothness on the template weights during the fit. This is useful to attach
a physical meaning to the weights e.g. in terms of the star formation history of a galaxy.

3) One can fit multiple kinematic components for both the stars and the gas emission lines.
Both the stellar and gas LOSVD can be penalized and can be described by a general
Gauss-Hermite series.

4) One can fit simultaneously a spectrum and a set of photometric measurements (SED fitting).
5) Any parameter of the LOSVD (e.g. sigma) for any kinematic component can either be

fitted or held fixed to a given value, while other parameters are fitted. Alternatively,
parameters can be constrained to lie within given limits or tied by nonlinear equalities to
other parameters.

6) One can enforce linear equality/inequality constraints on either the template weights or the
kinematic parameters.

7) Additive and/or multiplicative polynomials can be included to adjust the continuum shape
of the template to the observed spectrum.

8) Iterative sigma clipping can be used to clean the spectrum.
9) It is possible to fit a mirror-symmetric LOSVD to two spectra at the same time. This is

useful for spectra taken at point-symmetric spatial positions with respect to the center of
an equilibrium stellar system.

10) One can include sky spectra in the fit, to deal with cases where the sky dominates the
observed spectrum and an accurate sky subtraction is critical.

11) One can derive an estimate of the reddening in the spectrum. This can be done independently
for the stellar spectrum or the gas emission lines.

12) The covariance matrix can be input instead of the error spectrum, to account for correlated
errors in the spectral pixels.

2

https://stackoverflow.com/a/46071447
https://pypi.org/project/ppxf/
https://purl.org/cappellari/software
https://jupyter.org/
https://github.com/micappe/ppxf_examples
https://ui.adsabs.harvard.edu/abs/2004PASP..116..138C
https://ui.adsabs.harvard.edu/abs/2017MNRAS.466..798C

13) One can specify the weights fraction between two kinematics components, e.g. to model
bulge and disk contributions.

14) One can use templates with higher resolution than the galaxy, to improve the accuracy of
the LOSVD extraction at low dispersion.

Calling Sequence
from ppxf.ppxf import ppxf

pp = ppxf(templates, galaxy, noise, velscale, start,
bias=None, bounds=None, clean=False, component=0, constr_templ={},
constr_kinem={}, degree=4, fixed=None, fraction=None, ftol=1e-4,
gas_component=None, gas_names=None, gas_reddening=None,
global_search=False, goodpixels=None, lam=None, lam_temp=None,
linear=False, linear_method='lsq_box', mask=None, method='capfit',
mdegree=0, moments=2, phot={}, plot=False, quiet=False,
reddening=None, reddening_func=None, reg_dim=None, reg_ord=2,
regul=0, sigma_diff=0, sky=None, templates_rfft=None, tied=None,
trig=False, velscale_ratio=1, vsyst=0, x0=None)

print(pp.sol) # print best-fitting kinematics (V, sigma, h3, h4)
pp.plot() # Plot best fit with gas lines and photometry

Example programs are in the ppxf/examples directory. It can be found within the main ppxf
package installation folder inside site-packages.

Examples as Jupyter Notebooks are also available on my GitHub repository.

Input Parameters
templates: array_like with shape (n_pixels_temp, n_templates) Vector containing a

single optimized spectral template, or an array of dimensions templates[n_pixels_temp,
n_templates] containing different stellar or gas emission spectral templates to be optimized
during the fit of the galaxy spectrum. It has to be n_pixels_temp >= galaxy.size.

To apply linear regularization to the weights via the keyword regul, templates should be
an array of

• 2-dim: templates[n_pixels_temp, n_age],
• 3-dim: templates[n_pixels_temp, n_age, n_metal]
• 4-dim: templates[n_pixels_temp, n_age, n_metal, n_alpha]

depending on the number of population variables one wants to study. This can be useful to
try to attach a physical meaning to the output weights, in term of the galaxy star formation
history and chemical composition distribution. In that case the templates may represent
single stellar population SSP models and should be arranged in sequence of increasing age,
metallicity or alpha (or alternative population parameters) along the second, third or fourth
dimension of the array respectively.

IMPORTANT: The templates must be normalized to unity order of magnitude, to avoid
numerical instabilities.

3

https://stackoverflow.com/a/46071447
https://jupyter.org/
https://github.com/micappe/ppxf_examples

When studying stellar population, the relative fluxes of the templates are important. For
this reason one must scale all templates by a scalar. This can be done with a command like:

templates /= np.median(templates)

When using individual stars as templates, the relative fluxes are generally irrelevant and
one can normalize each template independently. This can be done with a command like:

templates /= np.median(templates, 0)

galaxy: array_like with shape (n_pixels,) Vector containing the spectrum of the galaxy
to be measured. The star and the galaxy spectra have to be logarithmically rebinned but the
continuum should not be subtracted. The rebinning may be performed with the log_rebin
routine in ppxf.ppxf_util. The units of the spectrum flux are arbitrary. One can use
e.g. erg/(s cmˆ2 A) or erg/(s cmˆ2 pixel) as long as the same are used for templates.
But see the note at the end of this section.

For high redshift galaxies, it is generally easier to bring the spectra close to the restframe
wavelength, before doing the pPXF fit. This can be done by dividing the observed wavelength
by (1 + z), where z is a rough estimate of the galaxy redshift. There is no need to modify
the spectrum in any way, given that a red shift corresponds to a linear shift of the log-
rebinned spectrum. One just needs to compute the wavelength range in the rest-frame and
adjust the instrumental resolution of the galaxy observations. See Section 2.4 of Cappellari
(2017) for details.

galaxy can also be an array of dimensions galaxy[n_pixels, 2] containing two spectra to
be fitted, at the same time, with a reflection-symmetric LOSVD. This is useful for spectra
taken at point-symmetric spatial positions with respect to the center of an equilibrium
stellar system. For a discussion of the usefulness of this two-sided fitting see e.g. Section
3.6 of Rix & White (1992).

IMPORTANT: (1) For the two-sided fitting the vsyst keyword has to be used. (2) Make
sure the spectra are rescaled to be not too many order of magnitude different from unity, to
avoid numerical instability. E.g. units of erg/(s cmˆ2 A) may cause problems!

noise: array_like with shape (n_pixels,) Vector containing the 1*sigma uncertainty (per
spectral pixel) in the galaxy spectrum, or covariance matrix describing the correlated
uncertainties in the galaxy spectrum. Of course this vector/matrix must have the same
units as the galaxy spectrum.

The overall normalization of the noise does not affect the location of the chi2 minimum.
For this reason one can measure reliable kinematics even when the noise is not accurately
know.

If galaxy is a n_pixels*2 array, noise has to be an array with the same dimensions.

When noise has dimensions n_pixels*n_pixels it is assumed to contain the covari-
ance matrix with elements cov(i, j). When the errors in the spectrum are uncorre-
lated it is mathematically equivalent to input in pPXF an error vector noise=errvec or a
n_pixels*n_pixels diagonal matrix noise = np.diag(errvec**2) (note squared!).

IMPORTANT: the penalty term of the pPXF method is based on the relative change of the
fit residuals. For this reason, the penalty will work as expected even if the normalization of
the noise is arbitrary. See Cappellari & Emsellem (2004) for details. If no reliable noise is
available this keyword can just be set to:

4

http://ui.adsabs.harvard.edu/abs/1992MNRAS.254..389R

noise = np.ones_like(galaxy) # Same uncertainty for all pixels

velscale: float Velocity scale of the spectra in km/s per pixel. It has to be the same for both
the galaxy and the template spectra. An exception is when the velscale_ratio keyword
is used, in which case one can input templates with smaller velscale than galaxy.

velscale is precisely defined in pPXF by velscale = c*np.diff(np.log(lambda)), which
is approximately velscale ~ c*np.diff(lambda)/lambda. See Section 2.3 of Cappellari
(2017) for details.

start: Vector, or list/array of vectors [start1, start2, ...], with the initial estimate for the
LOSVD parameters.

When LOSVD parameters are not held fixed, each vector only needs to contain start =
[velStart, sigmaStart] the initial guess for the velocity and the velocity dispersion in
km/s. The starting values for h3-h6 (if they are fitted) are all set to zero by default. In
other words, when moments=4:

start = [velStart, sigmaStart]

is interpreted as:

start = [velStart, sigmaStart, 0, 0]

When the LOSVD for some kinematic components is held fixed (see fixed keyword), all
values for [Vel, Sigma, h3, h4,...] can be provided.

Unless a good initial guess is available, it is recommended to set the starting sigma >=
3*velscale in km/s (i.e. 3 pixels). In fact, when the sigma is very low, and far from the
true solution, the chiˆ2 of the fit becomes weakly sensitive to small variations in sigma
(see pPXF paper). In some instances, the near-constancy of chiˆ2 may cause premature
convergence of the optimization.

In the case of two-sided fitting a good starting value for the velocity is velStart = 0.0
(in this case vsyst will generally be nonzero). Alternatively on should keep in mind that
velStart refers to the first input galaxy spectrum, while the second will have velocity
-velStart.

With multiple kinematic components start must be a list of starting values, one for each
different component.

EXAMPLE: We want to fit two kinematic components. We fit 4 moments for the first
component and 2 moments for the second one as follows:

component = [0, 0, ... 0, 1, 1, ... 1]
moments = [4, 2]
start = [[V1, sigma1], [V2, sigma2]]

Optional Keywords
bias: float, optional When moments > 2, this parameter biases the (h3, h4, ...) measure-

ments towards zero (Gaussian LOSVD) unless their inclusion significantly decreases the
error in the fit. Set this to bias=0 not to bias the fit: the solution (including [V, sigma])
will be noisier in that case. This parameter is ignored if moments <= 2. The default bias
should provide acceptable results in most cases, but it would be safe to test it with Monte

5

Carlo simulations as described in the section "How to Set the Kinematic Penalty Keyword"
near the end of the documentation. This keyword precisely corresponds to the parameter
lambda in the Cappellari & Emsellem (2004) paper. Note that the penalty depends on the
relative change of the fit residuals, so it is insensitive to proper scaling of the noise vector.
A nonzero bias can be safely used even without a reliable noise spectrum, or with equal
weighting for all pixels.

bounds: Lower and upper bounds for every kinematic parameter. This is an array, or list of
arrays, with the same dimensions as start, except for the last dimension, which is 2. In
practice, for every element of start one needs to specify a pair of values [lower, upper].

EXAMPLE: We want to fit two kinematic components, with 4 moments for the first
component and 2 for the second (e.g. stars and gas). In this case:

moments = [4, 2]
start_stars = [V1, sigma1, 0, 0]
start_gas = [V2, sigma2]
start = [start_stars, start_gas]

then we can specify boundaries for each kinematic parameter as:

bounds_stars = [[V1_lo, V1_up], [sigma1_lo, sigma1_up],
[-0.3, 0.3], [-0.3, 0.3]]

bounds_gas = [[V2_lo, V2_up], [sigma2_lo, sigma2_up]]
bounds = [bounds_stars, bounds_gas]

component: When fitting more than one kinematic component, this keyword should contain
the component number of each input template. In principle, every template can belong to a
different kinematic component.

EXAMPLE: We want to fit the first 50 templates to component 0 and the last 10 templates
to component 1. In this case:

component = [0]*50 + [1]*10

which, in Python syntax, is equivalent to:

component = [0, 0, ... 0, 1, 1, ... 1]

This keyword is especially useful when fitting both emissions (gas) and absorption (stars)
templates simultaneously (see the example for the moments keyword).

constr_kinem: dictionary, optional It enforces linear constraints on the kinematic parame-
ters during the fit. This is specified by the following dictionary, where A_ineq and A_eq are
arrays (have A.ndim = 2), while b_ineq and b_eq are vectors (have b.ndim = 1). Either
the _eq or the _ineq keys can be omitted if not needed:

constr_kinem = {"A_ineq": A_ineq, "b_ineq": b_ineq, "A_eq": A_eq, "b_eq": b_eq}

The resulting pPXF kinematics solution will satisfy the following linear matrix inequalities
and/or equalities:

params = np.ravel(pp.sol) # Unravel for multiple components
A_ineq @ params <= b_ineq
A_eq @ params == b_eq

6

IMPORTANT: the starting guess start must satisfy the constraints, or in other words, it
must lie in the feasible region.

Inequalities can be used e.g. to force one kinematic component to have larger velocity or
dispersion than another one. This is useful e.g. when extracting two stellar kinematic
components or when fitting both narrow and broad components of gas emission lines.

EXAMPLES: We want to fit two kinematic components, with two moments for both the
first and second component. In this case:

moments = [2, 2]
start = [[V1, sigma1], [V2, sigma2]]

then we can set the constraint sigma1 >= 3*sigma2 as follows:

A_ineq = [[0, -1, 0, 3]] # 0*V1 - 1*sigma1 + 0*V2 + 3*sigma2 <= 0
b_ineq = [0]
constr_kinem = {"A_ineq": A_ineq, "b_ineq": b_ineq}

We can set the constraint sigma1 >= sigma2 + 2*velscale as follows:

A_ineq = [[0, -1, 0, 1]] # -sigma1 + sigma2 <= -2*velscale
b_ineq = [-2] # kinem. in pixels (-2 --> -2*velscale)!
constr_kinem = {"A_ineq": A_ineq, "b_ineq": b_ineq}

We can set both the constraints V1 >= V2 and sigma1 >= sigma2 + 2*velscale as follows:

A_ineq = [[-1, 0, 1, 0], # -V1 + V2 <= 0
[0, -1, 0, 1]] # -sigma1 + sigma2 <= -2*velscale

b_ineq = [0, -2] # kinem. in pixels (-2 --> -2*velscale)!
constr_kinem = {"A_ineq": A_ineq, "b_ineq": b_ineq}

We can constrain the velocity dispersion of the second kinematic component to differ less
than 10% from that of the first component sigma1/1.1 <= sigma2 <= sigma1*1.1 as
follows:

A_ineq = [[0, 1/1.1, 0, -1], # +sigma1/1.1 - sigma2 <= 0
[0, -1.1, 0, 1]] # -sigma1*1.1 + sigma2 <= 0

b_ineq = [0, 0]
constr_kinem = {"A_ineq": A_ineq, "b_ineq": b_ineq}

EXAMPLE: We want to fit three kinematic components, with four moments for the first
and two for the rest. In this case:

moments = [4, 2, 2]
start = [[V1, sigma1, 0, 0], [V2, sigma2], [V3, sigma3]]

then we can set the constraints sigma3 >= sigma1 + 2*velscale and V1 <= V2 <= V3
as follows:

A_ineq = [[0, 1, 0, 0, 0, 0, 0, -1], # sigma1 - sigma3 <= -2*velscale
[1, 0, 0, 0, -1, 0, 0, 0], # V1 - V2 <= 0
[0, 0, 0, 0, 1, 0, -1, 0]] # V2 - V3 <= 0

b_ineq = [-2, 0, 0] # kinem. in pixels (-2 --> -2*velscale)!
constr_kinem = {"A_ineq": A_ineq, "b_ineq": b_ineq}

7

NOTE: When possible, it is more efficient to set equality constraints using the tied keyword,
instead of setting A_eq and b_eq in constr_kinem.

constr_templ: dictionary, optional It enforces linear constraints on the template weights
during the fit. This is specified by the following dictionary, where A_ineq and A_eq are
arrays (have A.ndim = 2), while b_ineq and b_eq are vectors (have b.ndim = 1). Either
the _eq or the _ineq keys can be omitted if not needed:

constr_templ = {"A_ineq": A_ineq, "b_ineq": b_ineq, "A_eq": A_eq, "b_eq": b_eq}

The resulting pPXF solution will satisfy the following linear matrix inequalities and/or
equalities:

A_ineq @ pp.weights <= b_ineq
A_eq @ pp.weights == b_eq

Inequality can be used e.g. to constrain the fluxes of emission lines to lie within prescribed
ranges. Equalities can be used e.g. to force the weights for different kinematic components
to contain prescribed fractions of the total weights.

EXAMPLES: We are fitting a spectrum using four templates, the first two templates belong
to one kinematic component and the rest to the other. (NOTE: This 4-templates example
is for illustration, but in real applications one will use many more than two templates per
component!) This implies we have:

component=[0, 0, 1, 1]

then we can set the equality constraint that the sum of the weights of the first kinematic
component is a given fraction of the total:

pp.weights[component == 0].sum()/pp.weights.sum() == fraction

as follows [see equation 30 of Cappellari (2017)]:

A_eq = [[fraction - 1, fraction - 1, fraction, fraction]]
b_eq = [0]
constr_templ = {"A_eq": A_eq, "b_eq": b_eq}

An identical result can be obtained in this case using the legacy fraction keyword, but
constr_templ additionally allows for general linear constraints for multiple kinematic
components.

Similarly, we can set the inequality constraint that the total weights of each of the two
kinematic components is larger than fraction:

fraction <= pp.weights[component == 0].sum()/pp.weights.sum()
fraction <= pp.weights[component == 1].sum()/pp.weights.sum()

as follows:

A_ineq = [[fraction - 1, fraction - 1, fraction, fraction],
[fraction, fraction, fraction - 1, fraction - 1]]

b_ineq = [0, 0]
constr_templ = {"A_ineq": A_ineq, "b_ineq": b_ineq}

We can constrain the ratio of the first two templates weights to lie in the interval ratio_min
<= w[0]/w[1] <= ratio_max as follows:

8

A_ineq = [[-1, ratio_min, 0, 0], # -w[0] + ratio_min*w[1] <= 0
[1, -ratio_max, 0, 0]] # +w[0] - ratio_max*w[1] <= 0

b_ineq = [0, 0]
constr_templ = {"A_ineq": A_ineq, "b_ineq": b_ineq}

If we have six templates for three kinematics components:

component=[0, 0, 1, 1, 2, 2]

we can set the fractions for the first two components to be fraction1 and fraction2 (of
the total weights) respectively as follows (the third components will be 1 - fraction1 -
fraction2):

A_eq = [[fraction1 - 1, fraction1 - 1, fraction1, fraction1, fraction1, fraction1],
[fraction2, fraction2, fraction2 - 1, fraction2 - 1, fraction2, fraction2]]

b_eq = [0, 0]
constr_templ = {"A_eq": A_eq, "b_eq": b_eq}

clean: bool, optional Set this keyword to use the iterative sigma clipping method described in
Section 2.1 of Cappellari et al. (2002). This is useful to remove from the fit unmasked bad
pixels, residual gas emissions or cosmic rays.

IMPORTANT: This is recommended only if a reliable estimate of the noise spectrum is
available. See also note below for .chi2.

degree: int, optional Degree of the additive Legendre polynomial used to correct the template
continuum shape during the fit (default: 4). This uses the standard mathematical definition
where e.g. degree=2 is a quadratic polynomial. Set degree=-1 not to include any additive
polynomial.

fixed: Boolean vector set to True where a given kinematic parameter has to be held fixed with
the value given in start. This is an array, or list, with the same dimensions as start.

EXAMPLE: We want to fit two kinematic components, with 4 moments for the first
component and 2 for the second. In this case:

moments = [4, 2]
start = [[V1, sigma1, h3, h4], [V2, sigma2]]

then we can held fixed e.g. the sigma (only) of both components using:

fixed = [[0, 1, 0, 0], [0, 1]]

NOTE: Setting a negative moments for a kinematic component is entirely equivalent to
setting fixed = 1 for all parameters of the given kinematic component. In other words:

moments = [-4, 2]

is equivalent to:

moments = [4, 2]
fixed = [[1, 1, 1, 1], [0, 0]]

fraction: float, optional This keyword allows one to fix the ratio between the first two kine-
matic components. This is a scalar defined as follows:

fraction = np.sum(weights[component == 0])
/ np.sum(weights[component < 2])

9

http://ui.adsabs.harvard.edu/abs/2002ApJ...578..787C

This is useful e.g. to try to kinematically decompose bulge and disk.

The remaining kinematic components (component > 1) are left free, and this allows, for
example, to still include gas emission line components. More general linear constraints, for
multiple kinematic components at the same time, can be specified using the more general
and flexible constr_templ keyword.

ftol: float, optional Fractional tolerance for stopping the non-linear minimization (default
1e-4).

gas_component: Boolean vector, of the same size as component, set to True where the given
component describes a gas emission line. If given, pPXF provides the pp.gas_flux and
pp.gas_flux_error in output.

EXAMPLE: In the common situation where component = 0 are stellar templates and the
rest are gas emission lines, one will set:

gas_component = component > 0

This keyword is also used to plot the gas lines with a different color.

gas_names: String array specifying the names of the emission lines (e.g. gas_names=["Hbeta",
"[OIII]",...], one per gas line. The length of this vector must match the number of
nonzero elements in gas_component. This vector is only used by pPXF to print the line
names on the console.

gas_reddening: float, optional Set this keyword to an initial estimate of the gas reddening
E(B-V) >= 0 to fit a positive gas reddening together with the kinematics and the templates.
This reddening is applied only to the gas templates, namely to the templates with the
corresponding element of gas_component=True. The typical use of this keyword is when
using a single template for all the Balmer lines, with assumed intrinsic ratios for the lines.
In this way the gas fit becomes sensitive to redening. The fit assumes by default the
extinction curve of Calzetti et al. (2000) but any other prescription can be passed via
the reddening_func keyword. By default gas_reddening=None and this parameter is not
fitted.

global_search: bool or dictionary, optional Set to True to perform a global optimiza-
tion of the nonlinear parameters (kinematics) before starting the usual local optimizer.
Alternatively, one can pass via this keyword a dictionary of options for the function
scipy.optimize.differential_evolution. Default options are global_search={'tol': 0.1,
'disp': 1}.

The fixed and tied keywords, as well as constr_kinem are properly supported when using
global_search and one is encouraged to use them to reduce parameters degeneracies.

NOTE: This option is computationally intensive and completely unnecessary in most
situations. It should only be used in special situations where there are obvious multiple
local chi2 minima. An example is when fitting multiple stellar or gas kinematic components
with well-resolved velocity differences.

IMPORTANT: when using this keyword it is recommended not to use multiplicative
polynomials but only additive ones to avoid unnecessarily long computation times. After
converging to a global solution, if desired one can repeat the pPXF fit with multiplicative
polynomials but without setting global_search.

10

http://ui.adsabs.harvard.edu/abs/2000ApJ...533..682C
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html

goodpixels: array_like of int with shape (n_pixels,), optional Integer vector contain-
ing the indices of the good pixels in the galaxy spectrum (in increasing order). Only
these spectral pixels are included in the fit.

lam: array_like with shape (n_pixels,), optional Vector with the restframe wavelength
in Angstrom of every pixel in the input galaxy spectrum. This keyword is required when
using the keyword reddening or gas_reddening.

If one uses my ppxf_util.log_rebin routine to rebin the spectrum before the pPXF fit,
the wavelength can be obtained as lam = np.exp(ln_lam) below:

from ppxf.ppxf_util import log_rebin
specNew, ln_lam, velscale = log_rebin(lamRange, galaxy)

When lam is given, the wavelength is shown in the best-fitting plot, instead of the pixels.

lam_temp: array_like with shape (n_pixels_temp,), optional Vector with the
restframe wavelength in Angstrom of every pixel in the input templates spectra.

When both the wavelength of the templates lam_temp and of the galaxy lam are given, the
templates are automatically truncated to the minimal range required, for the adopted input
velocity guess. In this case it is unnecessary to use the vsyst keyword.

If phot is also given, the final plot will include a best fitting spectrum estimated using the
full template, before truncation, together with the photometric values and the truncated
best fit to the galaxy spectrum. This is useful to see the underlying best fitting spectrum,
in the wavelength range where only photometry (SED) was fitted.

linear: bool, optional Set to True to keep all nonlinear parameters fixed and only perform a
linear fit for the templates and additive polynomials weights. The output solution is a copy
of the input one and the errors are zero.

linear_method: {’nnls’, ’lsq_box’, ’lsq_lin’, ’cvxopt’} optional Method used for the
solution of the linear least-squares subproblem to fit for the templates weights (default
’lsq_box’ fast box-constrained).

The computational speed of the four alternative linear methods depends on the size of the
problem, with the default ’lsq_box’ generally being the fastest without linear inequality
constraints. Note that ’lsq_lin’ is included in ppxf, while ’cvxopt’ is an optional external
package. The ’nnls’ option (the only one before v7.0) is generally slower and for this reason
is now deprecated.

The inequality constraints in constr_templ are only supported with linear_method='lsq_lin'
or linear_method='cvxopt'.

mask: array_like of bool with shape (n_pixels,), optional Boolean vector of length
galaxy.size specifying with True the pixels that should be included in the fit. This
keyword is just an alternative way of specifying the goodpixels.

mdegree: int, optional Degree of the multiplicative Legendre polynomial (with a mean of
1) used to correct the continuum shape during the fit (default: 0). The zero degree
multiplicative polynomial (i.e. constant) is always included in the fit as it corresponds to
the multiplicative weights assigned to the templates. Note that the computation time is
longer with multiplicative polynomials than with the same degree of additive polynomials.

11

method: {’capfit’, ’trf’, ’dogbox’, ’lm’}, optional. Algorithm to perform the non-linear
minimization step. The default ’capfit’ is a novel linearly-constrained non-linear least-
squares optimization program, which combines the Sequential Quadratic Programming and
the Levenberg-Marquardt methods. For a description of the other methods (’trf’, ’dogbox’,
’lm’), see the documentation of scipy.optimize.least_squares.

The use of linear constraints with constr_kinem is only supported with the default
method='capfit'.

moments: Order of the Gauss-Hermite moments to fit. Set this keyword to 4 to fit [h3, h4]
and to 6 to fit [h3, h4, h5, h6]. Note that in all cases the G-H moments are fitted
(non-linearly) together with [V, sigma].

If moments=2 or moments is not set then only [V, sigma] are fitted.

If moments is negative then the kinematics of the given component are kept fixed to the
input values. NOTE: Setting a negative moments for a kinematic component is entirely
equivalent to setting fixed = 1 for all parameters of the given kinematic component.

EXAMPLE: We want to keep fixed component = 0, which has a LOSVD described by [V,
sigma, h3, h4] and is modelled with 100 spectral templates; At the same time, we fit [V,
sigma] for component = 1, which is described by 5 templates (this situation may arise
when fitting stellar templates with pre-determined stellar kinematics, while fitting the gas
emission). We should give in input to pPXF the following parameters:

component = [0]*100 + [1]*5 # --> [0, 0, ... 0, 1, 1, 1, 1, 1]
moments = [-4, 2]
start = [[V, sigma, h3, h4], [V, sigma]]

phot: dictionary, optional Dictionary of parameters used to fit photometric data (SED fitting)
together with a spectrum. This is defined as follows:

phot = {"templates": phot_templates, "galaxy": phot_galaxy,
"noise": phot_noise, "lam": phot_lam}

The keys of this dictionary are analogue to the pPXF parameters galaxy, templates, noise
and lam for the spectra. However, the ones in this dictionary contain photometric data
instead of spectra and will generally consist just a few values (one per photometric band)
instead of thousands of elements like the spectra. Specifically:

• phot_templates: array_like with shape (n_phot, n_templates) -Mean flux of the
templates in the observed photometric bands. This array has the same number of
dimension as the templates input parameter. The same description applies. The
only difference is that the first dimension is n_phot instead of n_pixels_temp. This
array can have 2-4 dimensions and all dimensions must match those of the spectral
templates, except for the first dimension. These templates must have the same units
and normalization as the spectral templates. If the spectral templates cover the
ranges of the photometric bands, and filter responses resp are available, the mean
fluxes for each template can be computed as (e.g. equation A11 of Bessell & Murphy
2012):

phot_template = Integrate[template*resp(lam)*lam, {lam, -inf, inf}]
/ Integrate[resp(lam)*lam, {lam, -inf, inf}]

12

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://ui.adsabs.harvard.edu/abs/2012PASP..124..140B
https://ui.adsabs.harvard.edu/abs/2012PASP..124..140B

One can use the function ppxf_util.photometry_from_spectra as an illustration of
how to compute the phot_templates. This function can be easily modified to include
any additional filter.

Alternatively, the fluxes may be tabulated by the authors of the SSP models, for the
same model parameters as the spectral SSP templates. However, this can only be used
for redshift z ~ 0.

• phot_galaxy: array_like with shape (n_phot) - Observed photometric measurements
for the galaxy in linear flux units. These values must be matched to the same spatial
aperture used for the spectra and they must have the same units (e.g. erg/(s cmˆ2
A)). This means that these values must be like the average fluxes one would measure
on the fitted galaxy spectrum if it was sufficiently extended. One can think of these
photometric values as some special extra pixels to be added to the spectrum. The
difference is that they are not affected by the polynomials nor by the kinematics.

• phot_noise: array_like with shape (n_phot) -Vector containing the 1*sigma un-
certainty of each photometric measurement in phot_galaxy. One can change the
normalization of these uncertainties to vary the relative influence of the photometric
measurements versus the spectral fits.

• phot_lam: array_like with shape (n_phot) or (n_phot, n_templates)

- Mean restframe wavelength for each photometric band in phot_galaxy. This is only
used to estimate reddening of each band and to produce the plots. It can be computed
from the system response function resp as (e.g. equation A17 of Bessell & Murphy
2012):

phot_lam = Integrate[resp(lam)*lam^2, {lam, -inf, inf}]
/ Integrate[resp(lam)*lam, {lam, -inf, inf}]

If spectral templates are available over the full extent of the photometric bands, then
one can compute a more accurate effective wavelength for each template separately.
In this case phot_lam must have the same dimensions as phot_templates. For each
templates the effective wavelength can be computed as (e.g. equation A21 of Bessell
& Murphy 2012):

phot_lam = Integrate[template*resp(lam)*lam^2, {lam, -inf, inf}]
/ Integrate[template*resp(lam)*lam, {lam, -inf, inf}]

plot: bool, optional Set this keyword to plot the best fitting solution and the residuals at the
end of the fit.

One can also call separately the class function pp.plot() after the call to pp = ppxf(...).

quiet: bool, optional Set this keyword to suppress verbose output of the best fitting parameters
at the end of the fit.

reddening: float, optional Set this keyword to an initial estimate of the stellar reddening
E(B-V) >= 0 to fit a positive stellar reddening together with the kinematics and the tem-
plates. This reddening is applied only to the stellar templates (both spectral and photometric
ones), namely to the templates with the corresponding element of gas_component=False, or
to all templates, if gas_component is not set. The fit assumes by default the extinction curve
of Calzetti et al. (2000) but any other prescription can be passed via the reddening_func
keyword. By default reddening=None and this parameter is not fitted.

13

regul: float, optional If this keyword is nonzero, the program applies first or second-order
linear regularization to the weights during the pPXF fit. Regularization is done in one,
two or three dimensions depending on whether the array of templates has two, three or
four dimensions respectively. Large regul values correspond to smoother weights output.
When this keyword is nonzero the solution will be a trade-off between the smoothness of
weights and goodness of fit.

Section 3.5 of Cappellari (2017) gives a description of regularization.

When fitting multiple kinematic component the regularization is applied only to the first
component = 0, while additional components are not regularized. This is useful when
fitting stellar population together with gas emission lines. In that case, the SSP spectral
templates must be given first and the gas emission templates are given last. In this
situation, one has to use the reg_dim keyword (below), to give pPXF the dimensions of the
population parameters (e.g. n_age, n_metal, n_alpha). A usage example is given in the
file ppxf_example_population_gas_sdss.py.

The effect of the regularization scheme is the following:

• With reg_ord=1 it enforces the numerical first derivatives between neighbouring
weights (in the 1-dim case) to be equal to w[j] - w[j+1] = 0 with an error Delta =
1/regul.

• With reg_ord=2 it enforces the numerical second derivatives between neighboring
weights (in the 1-dim case) to be equal to w[j-1] - 2*w[j] + w[j+1] = 0 with an
error Delta = 1/regul.

It may be helpful to define regul = 1/Delta and think of Delta as the regularization
error.

IMPORTANT: Delta needs to be smaller but of the same order of magnitude of the typical
weights to play an effect on the regularization. One quick way to achieve this is:

1. Divide the full templates array by a scalar in such a way that the typical template
has a median of one:

templates /= np.median(templates)

2. Do the same for the input galaxy spectrum:

galaxy /= np.median(galaxy)

3. In this situation, a sensible guess for Delta will be a few percent (e.g. Delta=0.01
--> regul=100).

Alternatively, for a more rigorous definition of the parameter regul:

A. Perform an un-regularized fit (regul=0) and then rescale the input noise spectrum
so that:

Chi^2/DOF = Chi^2/goodPixels.size = 1.

This is achieved by rescaling the input noise spectrum as:

noise = noise*np.sqrt(Chi**2/DOF) = noise*np.sqrt(pp.chi2);

14

B. Increase regul and iteratively redo the pPXF fit until the Chiˆ2 increases
from the unregularized value Chiˆ2 = goodPixels.size by DeltaChiˆ2 =
np.sqrt(2*goodPixels.size).

The derived regularization corresponds to the maximum one still consistent with the
observations and the derived star formation history will be the smoothest (minimum
curvature or minimum variation) that is still consistent with the observations.

reg_dim: tuple, optional When using regularization with more than one kinematic compo-
nent (using the component keyword), the regularization is only applied to the first one
(component=0). This is useful to fit the stellar population and gas emission together.

In this situation, one has to use the reg_dim keyword, to give pPXF the dimensions of the
population parameters (e.g. n_age, n_metal, n_alpha). One should creates the initial array
of population templates like e.g. templates[n_pixels, n_age, n_metal, n_alpha] and
define:

reg_dim = templates.shape[1:] # = [n_age, n_metal, n_alpha]

The array of stellar templates is then reshaped into a 2-dim array as:

templates = templates.reshape(templates.shape[0], -1)

and the gas emission templates are appended as extra columns at the end. An usage
example is given in ppxf_example_population_gas_sdss.py.

When using regularization with a single component (the component keyword is not used, or
contains identical values), the number of population templates along different dimensions
(e.g. n_age, n_metal, n_alpha) is inferred from the dimensions of the templates array
and this keyword is not necessary.

reg_ord: int, optional Order of the derivative that is minimized by the regularization. The
following two rotationally-symmetric estimators are supported:

• reg_ord=1: minimizes the integral over the weights of the squared gradient:

Grad[w] @ Grad[w].

• reg_ord=2: minimizes the integral over the weights of the squared curvature:

Laplacian[w]**2.

sigma_diff: float, optional Quadratic difference in km/s defined as:

sigma_diff**2 = sigma_inst**2 - sigma_temp**2

between the instrumental dispersion of the galaxy spectrum and the instrumental dispersion
of the template spectra.

This keyword is useful when the templates have higher resolution than the galaxy and
they were not convolved to match the instrumental dispersion of the galaxy spectrum. In
this situation, the convolution is done by pPXF with increased accuracy, using an analytic
Fourier Transform.

sky: vector containing the spectrum of the sky to be included in the fit, or array of dimensions
sky[n_pixels, nSky] containing different sky spectra to add to the model of the observed
galaxy spectrum. The sky has to be log-rebinned as the galaxy spectrum and needs to
have the same number of pixels.

15

The sky is generally subtracted from the data before the pPXF fit. However, for observations
very heavily dominated by the sky spectrum, where a very accurate sky subtraction is
critical, it may be useful not to subtract the sky from the spectrum, but to include it in the
fit using this keyword.

templates_rfft: When calling pPXF many times with an identical set of templates, one can
use this keyword to pass the real FFT of the templates, computed in a previous pPXF call,
stored in the pp.templates_rfft attribute. This keyword mainly exists to show that there
is no need for it...

IMPORTANT: Use this keyword only if you understand what you are doing!

tied: A list of string expressions. Each expression "ties" the parameter to other free or fixed
parameters. Any expression involving constants and the parameter array p[j] are permitted.
Since they are totally constrained, tied parameters are considered to be fixed; no errors are
computed for them.

This is an array, or list of arrays, with the same dimensions as start. In practice, for
every element of start one needs to specify either an empty string '' implying that the
parameter is free, or a string expression involving some of the variables p[j], where j
represents the index of the flattened list of kinematic parameters.

EXAMPLE: We want to fit three kinematic components, with 4 moments for the first
component and 2 moments for the second and third (e.g. stars and two gas components).
In this case:

moments = [4, 2, 2]
start = [[V1, sigma1, 0, 0], [V2, sigma2], [V3, sigma3]]

then we can force the equality constraint V2 = V3 as follows:

tied = [['', '', '', ''], ['', ''], ['p[4]', '']] # p[6] = p[4]

or we can force the equality constraint sigma2 = sigma3 as follows:

tied = [['', '', '', ''], ['', ''], ['', 'p[5]']] # p[7] = p[5]

One can also use more general formulas. For example one could constrain V3 = (V1 +
V2)/2 as well as sigma1 = sigma2 as follows:

p[5] = p[1]
p[6] = (p[0] + p[4])/2
tied = [['', '', '', ''], ['', 'p[1]'], ['(p[0] + p[4])/2', '']]

NOTE: One could in principle use the tied keyword to completely tie the LOSVD of two
kinematic components. However, this same effect is more efficient achieved by assigning
them to the same kinematic component using the component keyword.

trig: Set trig=True to use trigonometric series as an alternative to Legendre polynomials, for
both the additive and multiplicative polynomials. When trig=True the fitted series below
has N = degree/2 or N = mdegree/2:

poly = A_0 + sum_{n=1}^{N} [A_n*cos(n*th) + B_n*sin(n*th)]

IMPORTANT: The trigonometric series has periodic boundary conditions. This is sometimes
a desirable property, but this expansion is not as flexible as the Legendre polynomials.

16

velscale_ratio: int, optional Integer. Gives the integer ratio >= 1 between the velscale
of the galaxy and the templates. When this keyword is used, the templates are convolved
by the LOSVD at their native resolution, and only subsequently are integrated over the
pixels and fitted to galaxy. This keyword is generally unnecessary and mostly useful for
testing.

Note that in realistic situations the uncertainty in the knowledge and variations of the
intrinsic line-spread function becomes the limiting factor in recovering the LOSVD well
below velscale.

vsyst: float, optional Reference velocity in km/s (default 0). The input initial guess and the
output velocities are measured with respect to this velocity. This keyword can be used
to account for the difference in the starting wavelength of the templates and the galaxy
spectrum as follows:

vsyst = c*np.log(wave_temp[0]/wave_gal[0])

As alternative to using this keyword, one can pass the wavelengths lam and lam_temp of
both the galaxy and templates spectra. In that case vsyst is computed automatically
and should not be given.

The value assigned to this keyword is crucial for the two-sided fitting. In this case vsyst
can be determined from a previous normal one-sided fit to the galaxy velocity profile. After
that initial fit, vsyst can be defined as the measured velocity at the galaxy center. More
accurately vsyst is the value which has to be subtracted to obtain a nearly anti-symmetric
velocity profile at the two opposite sides of the galaxy nucleus.

IMPORTANT: this value is generally different from the systemic velocity one can get from
the literature. Do not try to use that!

Output Parameters
Stored as attributes of the pPXF class:

.apoly: Vector with the best fitting additive polynomial.

.bestfit: Vector with the best fitting model for the galaxy spectrum. This is a linear combination
of the templates, convolved with the best fitting LOSVD, multiplied by the multiplicative
polynomials and with subsequently added polynomial continuum terms or sky components.

.chi2: The reduced chiˆ2 (namely chiˆ2/DOF) of the fit, where DOF = pp.dof (approximately
DOF ~ pp.goodpixels.size).

IMPORTANT: if Chiˆ2/DOF is not ~1 it means that the errors are not properly estimated,
or that the template is bad and it is not safe to set the clean keyword.

.error: This variable contains a vector of formal uncertainty (1*sigma) for the fitted parameters
in the output vector sol. They are computed from the estimated covariance matrix of the
standard errors in the fitted parameters assuming it is diagonal at the minimum. This
option can be used when speed is essential, to obtain an order of magnitude estimate of the
uncertainties, but we strongly recommend to run bootstrapping simulations to obtain more
reliable errors. In fact, these errors can be severely underestimated in the region where the
penalty effect is most important (sigma < 2*velscale).

17

These errors are meaningless unless Chiˆ2/DOF ~ 1. However if one assumes that the fit is
good, a corrected estimate of the errors is:

error_corr = error*sqrt(chi^2/DOF) = pp.error*sqrt(pp.chi2).

IMPORTANT: when running Monte Carlo simulations to determine the error, the penalty
(bias) should be set to zero, or better to a very small value. See Section 3.4 of Cappellari
& Emsellem (2004) for an explanation.

.gas_bestfit: If gas_component is not None, this attribute returns the best-fitting gas
emission-lines spectrum alone. The best-fitting stellar spectrum alone can be computed as
stars_bestfit = pp.bestfit - pp.gas_bestfit

.gas_bestfit_templates: If gas_component is not None, this attribute returns the in-
dividual best-fitting gas emission-lines templates as columns of an array. Note that
pp.gas_bestfit = pp.gas_bestfit_templates.sum(1)

.gas_flux: Vector with the integrated flux (in counts) of all lines set as True in the input
gas_component keyword. This is the flux of individual gas templates, which may include
multiple lines. This implies that, if a gas template describes a doublet, the flux is that of
both lines. If the Balmer series is input as a single template, this is the flux of the entire
series.

The returned fluxes are not corrected in any way and in particular, no reddening correction
is applied. In other words, the returned .gas_flux should be unchanged, within the errors,
regardless of whether reddening or multiplicative polynomials were fitted by pPXF or not.

IMPORTANT: pPXF makes no assumptions about the input flux units: The returned
.gas_flux has the same units and values one would measure (with lower accuracy) by
summing the pixels values, within the given gas lines, on the continuum-subtracted input
galaxy spectrum. This implies that, if the spectrum is in units of erg/(s cmˆ2 A), the
.gas_flux returned by pPXF should be multiplied by the pixel size in Angstrom at the line
wavelength to obtain the integrated line flux in units of erg/(s cmˆ2).

NOTE: If there is no gas reddening and each input gas templates was normalized to sum =
1, then pp.gas_flux = pp.weights[pp.gas_component].

When a gas template is identically zero within the fitted region, then pp.gas_flux =
pp.gas_flux_error = np.nan. The corresponding components of pp.gas_zero_template
are set to True. These np.nan values are set at the end of the calculation to flag the undefined
values. These flags generally indicate that some of the gas templates passed to pPXF consist
of gas emission lines that fall outside the fitted wavelength range or within a masked spectral
region. These np.nan do not indicate numerical issues with the actual pPXF calculation and
the rest of the pPXF output is reliable.

.gas_flux_error: Formal uncertainty (1*sigma) for the quantity pp.gas_flux, in the same
units as the gas fluxes.

This error is approximate as it ignores the covariance between the gas flux and any non-linear
parameter. Bootstrapping can be used for more accurate errors.

These errors are meaningless unless Chiˆ2/DOF ~ 1. However if one assumes that the fit is
good, a corrected estimate of the errors is:

gas_flux_error_corr = gas_flux_error*sqrt(chi^2/DOF)

18

= pp.gas_flux_error*sqrt(pp.chi2).

.gas_mpoly: vector with the best-fitting gas reddening curve.

.gas_reddening: Best fitting E(B-V) value if the gas_reddening keyword is set. This is
especially useful when the Balmer series is input as a single template with an assumed
theoretically predicted decrement e.g. using emission_lines(..., tie_balmer=True) in
ppxf.ppxf_util to compute the gas templates.

.gas_zero_template: vector of size gas_component.sum() set to True where the gas template
was identically zero within the fitted region. For those gas components pp.gas_flux
= pp.gas_flux_error = np.nan. These flags generally indicate that some of the gas
templates passed to pPXF consist of gas emission lines that fall outside the fitted wavelength
range or within a masked spectral region.

.goodpixels: Integer vector containing the indices of the good pixels in the fit. This vector is a
copy of the input goodpixels if clean = False otherwise it will be updated by removing
the detected outliers.

.matrix: Prediction matrix[n_pixels, degree+n_templates] of the linear system.

pp.matrix[n_pixels, :degree] contains the additive polynomials if degree >= 0.

pp.matrix[n_pixels, degree:] contains the templates convolved by the LOSVD, and
multiplied by the multiplicative polynomials if mdegree > 0.

.mpoly: Best fitting multiplicative polynomial (or reddening curve when reddening is set).

.mpolyweights: This is largely superseded by the .mpoly attribute above.

When mdegree > 0 this contains in output the coefficients of the multiplicative Legendre
polynomials of order 1, 2,... mdegree. The polynomial can be explicitly evaluated as:

from numpy.polynomial import legendre
x = np.linspace(-1, 1, len(galaxy))
mpoly = legendre.legval(x, np.append(1, pp.mpolyweights))

When trig = True the polynomial is evaluated as:

mpoly = pp.trigval(x, np.append(1, pp.mpolyweights))

.phot_bestfit: array_like with shape (n_phot) When phot is given, then this attribute
contains the best fitting fluxes in the photometric bands given as input in phot_galaxy.

.plot: function Call the method function pp.plot() after the call to pp = ppxf(...) to
produce a plot of the best fit. This is an alternative to calling pp = ppxf(..., plot=True).

Use the command pp.plot(gas_clip=True) to scale the plot based on the stellar continuum
alone, while allowing for the gas emission lines to go outside the plotting region. This is
useful to inspect the fit to the stellar continuum, in the presence of strong gas emission
lines. This has effect only if gas_component is not None.

.polyweights: This is largely superseded by the .apoly attribute above.

When degree >= 0 contains the weights of the additive Legendre polynomials of order 0,
1,... degree. The best fitting additive polynomial can be explicitly evaluated as:

from numpy.polynomial import legendre

19

x = np.linspace(-1, 1, len(galaxy))
apoly = legendre.legval(x, pp.polyweights)

When trig=True the polynomial is evaluated as:

apoly = pp.trigval(x, pp.polyweights)

When doing a two-sided fitting (see help for galaxy parameter), the additive polynomials
are allowed to be different for the left and right spectrum. In that case, the output weights
of the additive polynomials alternate between the first (left) spectrum and the second (right)
spectrum.

.reddening: Best fitting E(B-V) value if the reddening keyword is set.

.sol: Vector containing in output the parameters of the kinematics.

• If moments=2 this contains [Vel, Sigma]
• If moments=4 this contains [Vel, Sigma, h3, h4]
• If moments=N this contains [Vel, Sigma, h3,... hN]

When fitting multiple kinematic component, pp.sol contains a list with the solution for
all different components, one after the other, sorted by component: pp.sol = [sol1,
sol2,...].

Vel is the velocity, Sigma is the velocity dispersion, h3 - h6 are the Gauss-Hermite
coefficients. The model parameters are fitted simultaneously.

IMPORTANT: The precise relation between the output pPXF velocity and redshift is Vel =
c*np.log(1 + z). See Section 2.3 of Cappellari (2017) for a detailed explanation.

These are the default safety limits on the fitting parameters (they can be changed using the
bounds keyword):

• Vel is constrained to be +/-2000 km/s from the input guess
• velscale/100 < Sigma < 1000 km/s
• -0.3 < [h3, h4, ...] < 0.3 (extreme value for real galaxies)

In the case of two-sided LOSVD fitting the output values refer to the first input galaxy
spectrum, while the second spectrum will have by construction kinematics parameters [-Vel,
Sigma, -h3, h4, -h5, h6]. If vsyst is nonzero (as required for two-sided fitting), then
the output velocity is measured with respect to vsyst.

.status: Contains the output status of the optimization. Positive values generally represent
success (the meaning of status is defined as in scipy.optimize.least_squares).

.weights: Receives the value of the weights by which each template was multiplied to best
fit the galaxy spectrum. The optimal template can be computed with an array-vector
multiplication:

bestemp = templates @ weights

These .weights do not include the weights of the additive polynomials which are separately
stored in pp.polyweights.

When the sky keyword is used weights[:n_templates] contains the weights for the
templates, while weights[n_templates:] gives the ones for the sky. In that case the best
fitting galaxy template and sky are given by:

20

bestemp = templates @ weights[:n_templates]
bestsky = sky @ weights[n_templates:]

When doing a two-sided fitting (see help for galaxy parameter) together with the sky
keyword, the sky weights are allowed to be different for the left and right spectrum. In
that case the output sky weights alternate between the first (left) spectrum and the second
(right) spectrum.

How to Set the Kinematic Penalty Keyword
The bias keyword is only used if moments > 2, otherwise it is ignored.

The pPXF routine can give sensible quick results with the default bias parameter, however, like in
any penalized/filtered/regularized method, the optimal amount of penalization generally depends
on the problem under study.

The general rule here is that the penalty should leave the line-of-sight velocity-distribution
(LOSVD) virtually unaffected, when it is well sampled and the signal-to-noise ratio (S/N) is
sufficiently high.

EXAMPLE: If you expect a LOSVD with up to a high h4 ~ 0.2 and your adopted penalty
(bias) biases the solution towards a much lower h4 ~ 0.1, even when the measured sigma >
3*velscale and the S/N is high, then you are misusing the pPXF method!

THE RECIPE: The following is a simple practical recipe for a sensible determination of the
penalty in pPXF:

1. Choose a minimum (S/N)_min level for your kinematics extraction and spatially bin your
data so that there are no spectra below (S/N)_min;

2. Perform a fit of your kinematics without penalty (keyword bias=0). The solution will be
noisy and may be affected by spurious solutions, however, this step will allow you to check
the expected mean ranges in the Gauss-Hermite parameters [h3, h4] for the galaxy under
study;

3. Perform a Monte Carlo simulation of your spectra, following e.g. the included
ppxf_example_montecarlo_simulation.py routine. Adopt as S/N in the simulation
the chosen value (S/N)_min and as input [h3, h4] the maximum representative values
measured in the non-penalized pPXF fit of the previous step;

4. Choose as the penalty (bias) the largest value such that, for sigma > 3*velscale, the
mean difference delta between the output [h3, h4] and the input [h3, h4] is well within
(e.g. delta ~ rms/3) the rms scatter of the simulated values (see an example in Fig. 2 of
Emsellem et al. 2004).

Problems with Your First Fit?
Common problems with your first pPXF fit are caused by incorrect wavelength ranges or different
velocity scales between galaxy and templates. To quickly detect these problems try to overplot
the (log rebinned) galaxy and the template just before calling the pPXF procedure.

You can use something like the following Python lines while adjusting the smoothing window and
the pixels shift. If you cannot get a rough match by eye it means something is wrong and it is
unlikely that pPXF (or any other program) will find a good match:

21

http://ui.adsabs.harvard.edu/abs/2004MNRAS.352..721E

import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage

sigma = 2 # Velocity dispersion in pixels
shift = -20 # Velocity shift in pixels
template = np.roll(ndimage.gaussian_filter1d(template, sigma), shift)
plt.plot(galaxy, 'k')
plt.plot(template*np.median(galaxy)/np.median(template), 'r')

22

	Attribution
	Installation
	Usage Examples
	pPXF Purpose
	Calling Sequence
	Input Parameters
	Optional Keywords
	Output Parameters
	How to Set the Kinematic Penalty Keyword
	Problems with Your First Fit?

