
3. THE PHYSICAL STATE OF THE
STELLAR INTERIOR

Fundamental assumptions:

• Although stars evolve, their properties change so

slowly that at any time it is a good approximation

to neglect the rate of change of these properties.

• Stars are spherical and symmetrical about their cen-

tres; all physical quantities depend just on r, the dis-

tance from the centre:

3.1 The Equation of hydrostatic equilibrium (ZG: 16-1;

CO: 10.1)

Fundamental principle 1: stars are self-gravitating

bodies in dynamical equilibrium

→ balance of gravity and internal pressure forces
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Consider a small volume

element at a distance r

from the centre, cross

section � S, length � r.

(Pr+ � r −Pr) � S + GMr/r
2 ( � r � S � r) = 0

dPr

dr
= −GMr � r

r2
(1)

Equation of distribution of mass:

Mr+ � r −Mr = (dMr/dr) � r = 4 � r2 � r � r

dMr

dr
= 4 � r2 � r (2)

Exercise: 3.1 Use dimensional analysis to estimate the

central pressure and central temperature of a star.

– consider a point at r = Rs/2

dPr/dr ∼ −Pc/Rs � r ∼ ¯� = 3Ms/(4 � R3
s )

Mr ∼Ms/2 Pc ∼ (3/8 � )(GM2
s/R

4
s )

(Pc)¯ ∼ 5× 1014Nm−2 or 5× 109 atm

Estimate of central temperature:

Assume stellar material obeys the ideal gas equation

Pr = � r

� mH
kTr

( � = mean molecular weight in proton masses; � ∼ 1/2 for

fully ionized hydrogen) and using equation (1) to obtain

kTc '
GMs � mH

Rs

(Tc)¯ ∼ 2× 107K ¯� ¯ ∼ 1.4× 103 kgm−3 (c.f. (Ts)¯ ∼ 5800 K)

• Although the Sun has a mean density similar to that

of water, the high temperature requires that it should

be gaseous throughout.

• the average kinetic energy of the particles is higher

than the binding energy of atomic hydrogen so the

material will be highly ionized, i.e is a plasma.



3.2 The Dynamical timescale (ZG: P5-4; CO: 10.4): tD

• Time for star to collapse completely if pressure forces

were negligible (δMr̈ = −δMg)

( � � S � r) r̈ = −(GMr/r
2) ( � � S � r)

• Inward displacement of element after time t is given

by

s = (1/2)gt2 = (1/2) (GMr/r
2) t2

• For estimate of tdyn, put s ∼ Rs, r ∼ Rs,Mr ∼Ms; hence

tdyn ∼ (2R3
s/GMs)

1/2 ∼ {3/(2 � G¯� )}1/2

(tdyn)¯ ∼ 2300 s ∼ 40 mins

Stars adjust very quickly to maintain a balance between

pressure and gravitational forces.

General rule of thumb: tdyn ' 1/
√
4G �

3.3 The virial theorem (ZG: P5-2; CO: 2.4)

dPr/dr = −GMr � r/r
2

4 � r3dPr = −(GMr/r)4 � r2 � rdr

4 � [r3Pr]
r=Rs,P=Ps

r=0,P=Pc
− 3

∫ Rs

0
Pr 4 � r2dr = −

∫ Rs

0
(GMr/r)4 � r2 � rdr

∫ Rs

0
3Pr 4 � r2dr =

∫ Rs

0
(GMr/r)4 � r2 � rdr

Thermal energy/unit volume u = nfkT/2 = ( � / � mH)fkT/2

Ratio of specific heats � = cp/cv = (f + 2)/f (f = 3 : � = 5/3)

u = {1/( � − 1)}( � kT/ � mH) = P/( � − 1)

3( � − 1)U + � = 0

U = total thermal energy; � = total gravitational energy.

For a fully ionized, ideal gas � = 5/3 and 2U + � = 0

Total energy of star E = U + �

E = −U = � /2

Note: E is negative and equal to � /2 or −U. A decrease in

E leads to a decrease in � but an increase in U and hence

T. A star, with no hidden energy sources, composed of a

perfect gas contracts and heats up as it radiates energy.

Fundamental principle 2: stars have a negative

‘heat capacity’, they heat up when their total en-

ergy decreases



Important implications of the virial theorem:

• stars become hotter when their total energy decreases

(→ normal stars contract and heat up when there is

no nuclear energy source because of energy losses from

the surface);

• nuclear burning is self-regulating in non-degenerate

cores: e.g. a sudden increase in nuclear burning causes

expansion and cooling of the core: negative feedback

→ stable nuclear burning.

3.4 Sources of stellar energy: (CO: 10.3)

Fundamental principle 3: since stars lose energy

by radiation, stars supported by thermal pressure

require an energy source to avoid collapse

Provided stellar material always behaves as a perfect gas,

thermal energy of star ∼ gravitational energy.

• total energy available ∼ GM2
s/2Rs

• thermal time-scale (Kelvin-Helmholtz timescale, the

timescale on which a star radiates away its thermal

energy)):

tth ∼ GM2
s/(2RsLs)

(tth)¯ ∼ 0.5× 1015 sec ∼ 1.5× 107 years.

• e.g. the Sun radiates L¯ ∼ 4× 1026 W, and from geo-

logical evidence L¯ has not changed significantly over

t ∼ 109 years

The thermal and gravitational energies of the Sun are

not sufficient to cover radiative losses for the total solar

lifetime.

Only nuclear energy can account for the observed lumi-

nosities and lifetimes of stars

• Largest possible mass defect available when H is trans-

muted into Fe: energy released = 0.008 × total mass.

For the Sun (EN)¯ = 0.008M¯c2 ∼ 1045 J

• Nuclear timescale (tN)¯ ∼ (EN)¯/L¯ ∼ 1011 yr

• Energy loss at stellar surface as measured by the stel-

lar luminosity is compensated by energy release from

nuclear reactions throughout the stellar interior.

Ls =
∫ Rs

0

� r � r 4 � r2dr

� r is the nuclear energy released per unit mass per sec

and will depend on Tr, � r and composition

dLr
dr

= 4 � r2 � r � r (3)

for any elementary shell.

• During rapid evolutionary phases, (i.e. t¿ tth)

dLr
dr

= 4 � r2 � r





� r −T
dS

dt



 (3a),

where −TdS/dt is called a gravitational energy term.

SUMMARY III: STELLAR TIMESCALES

• dynamical timescale: tdyn '
1√
4G �

∼ 30min
(

� /1000kgm
−3)−1/2

• thermal timescale (Kelvin-Helmholtz): tKH '
GM2

2RL
∼ 1.5× 107 yr (M/M¯)2 (R/R¯)−1 (L/L¯)−1

• nuclear timescale: tnuc ' Mc/M
︸ ︷︷ ︸

core mass

�

︸︷︷︸

efficiency

(Mc2)/L

∼ 1010 yr (M/M¯)−3



3.5 Energy transport (ZG: P5-10, 16-1, CO: 10.4)

The size of the energy flux is determined by the mech-

anism that provides the energy transport: conduction,

convection or radiation. For all these mechanisms the

temperature gradient determines the flux.

• Conduction does not contribute seriously to energy

transport through the interior

. At high gas density, mean free path for particles

<< mean free path for photons.

. Special case, degenerate matter – very effective

conduction by electrons.

• The thermal radiation field in the interior of a star

consists mainly of X-ray photons in thermal equilib-

rium with particles.

• Stellar material is opaque to X-rays (bound-free ab-

sorption by inner electrons)

• mean free path for X-rays in solar interior ∼ 1 cm.

• Photons reach the surface by a “random walk” process

and as a result of many interactions with matter are

degraded from X-ray to optical frequencies.

• After N steps of size l, the distribution has spread to

'
√
Nl. For a photon to “random walk” a distance Rs,

requires a diffusion time (in steps of size l)

tdiff = N× l

c
' R2

s

lc

For l = 1 cm, Rs ∼ R¯ → tdiff ∼ 5× 103 yr.

Energy transport by radiation:

• Consider a spherical shell of area A = 4 � r2, at radius

r of thickness dr.

• radiation pressure

Prad =
1

3
aT4 (i)

(=momentum flux)

• rate of deposition of momentum in region r→ r + dr

−dPrad

dr
dr 4 � r2 (ii)

• define opacity � [m2/kg], so that fractional intensity

loss in a beam of radiation is given by

dI

I
= − � � dx,

where � is the mass density and

� ≡
∫

� � dx

is called optical depth (note: I = I0 exp(− � ))

. 1/ � � : mean free path

. � À 1: optically thick

. � ¿ 1: optically thin

• rate of momentum absorption in shell L(r)/c � � dr.

Equating this with equation (ii) and using (i):

Lr = −4 � r2
4ac

3 � �

T3 dT

dr
(4a)



Energy transport by convection:

• Convection occurs in liquids and gases when the tem-

perature gradient exceeds some typical value.

• Criterion for stability against convection

(Schwarzschild criterion)

ρ 2

ρ  = ρ
1 1

P1
ρ 1

1P  = P1

rising bubble 

r

r+ dr
P2
ρ
2

2P   = P 2

ambient medium
. consider a bubble with

initial � 1,P1 rising by an

amount dr, where the

ambient pressure and

density are given by

� (r),P(r).

. the bubble expands

adiabatically, i.e

P2 = P1

(

� 2

� 1

)

�

( � = adiabatic exponent)

. assuming the bubble remains in pressure

equilibrium with the ambient medium, i.e.

P2 = P2 = P(r + dr) ' P1 + (dP/dr)dr,

� 2 = � 1




P2

P1





1/ �

' � 1



1 +
1

P

dP

dr
dr





1/ �

' � 1 + � 1

� P

dP

dr
dr

. convective stability if � 2 − � 2 > 0 (bubble will sink

back)

�
� P

dP

dr
− d �

dr
> 0

• For a perfect gas (negligible radiation pressure)

P = � kT/( � mH)

• Provided � does not vary with position (no changes in

ionization or dissociation)

−[1− (1/ � )](T/P)dP/dr > −dT/dr (both negative)

• or magnitude of adiabatic dT/dr > magnitude of ac-

tual dT/dr.

• Alternatively,
P

T

dT

dP
< � − 1

�

• There is no generally accepted theory of convective

energy transport at present. The stability criterion

must be checked at every layer within a stellar model:

dP/dr from equation (1) and dT/dr from equation (4).

The stability criterion can be broken in two ways:

1. Large opacities or very centrally concentrated nu-

clear burning can lead to high (unstable) temper-

ature gradients e.g. in stellar cores.

2. ( � − 1) can be much smaller than 2/3 for a

monatomic gas, e.g. in hydrogen ionization zones.



Influence of convection

(a) Motions are turbulent: too slow to disturb

hydrostatic equilibrium.

(b) Highly efficient energy transport: high ther-

mal energy content of particles in stellar interior.

(c) Turbulent mixing so fast that composition of

convective region homogeneous at all times.

(d) Actual dT/dr only exceeds adiabatic dT/dr by

very slight amount.

Hence to sufficient accuracy (in convective regions)

dT

dr
= � − 1

�

T

P

dP

dr
(4b)

This is not a good approximation close to the surface (in

particular for giants) where the density changes rapidly. Γ
−1

Specific Heats
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