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SUMMARY IV: FUNDAMENTAL PRINCIPLES

• Stars are self-gravitating bodies in dynamical equilib-

rium → balance of gravity and internal pressure forces

(hydrostatic equilibrium);

• stars lose energy by radiation from the surface →

stars supported by thermal pressure require an energy

source to avoid collapse, e.g. nuclear energy, gravita-

tional energy (energy equation);

• the temperature structure is largely determined by

the mechanisms by which energy is transported from

the core to the surface, radiation, convection, conduc-

tion (energy transport equation);

• the central temperature is determined by the charac-

teristic temperature for the appropriate nuclear fusion

reactions (e.g. H-burning: 107K; He-burning: 108K);

• normal stars have a negative ‘heat capacity’ (virial

theorem): they heat up when their total energy de-

creases (→ normal stars contract and heat up when

there is no nuclear energy source);

• nuclear burning is self-regulating in non-degenerate

cores (virial theorem): e.g. a sudden increase in nu-

clear burning causes expansion and cooling of the core:

negative feedback → stable nuclear burning;

• the global structure of a star is determined by the

simultaneous satisfaction of these principles → the lo-

cal properties of a star are determined by the global

structure.

(Mathematically: it requires the simultaneous solu-

tion of a set of coupled, non-linear differential equa-

tions with mixed boundary conditions.)



4 THE EQUATIONS OF STELLAR STRUCTURE

In the absence of convection:

dPr
dr

=
−GMr � r
r2

(1)

dMr

dr
= 4 � r2 � r (2)

dLr
dr

= 4 � r2 � r



 � r −T
dS

dt



 (3)

dTr
dr

=
−3 � rLr � r
16 � acr2T3r

(4a)

4.1 The Mathematical Problem (GZ: 16-2; CO: 10.5)

• Pr, � r, � r are functions of � ,T, chemical composition

• Basic physics can provide expressions for these.

• In total, there are four, coupled, non-linear, partial

differential equations (+ three constitutive relations)

for seven unknowns: P, � ,T,M,L, � , � as functions of r.

• These completely determine the structure of a star of

given composition subject to boundary conditions.

• In general, only numerical solutions can be obtained

(i.e. computer).

• Four (mixed) boundary conditions needed:

. at centre: Mr = 0 and Lr = 0 at r = 0 (exact)

. at surface: Ls = 4 � R2
s� T

4
eff (blackbody relation)

(surface = photosphere, where � ' 1)

P = (2/3)g/ � (atmosphere model)

(sometimes: P(Rs) = 0 [rough], but not T(Rs) = 0)

4.1.1 Uniqueness of solution: the Vogt Russell “Theorem”

(CO: 10.5)

“For a given chemical composition, only a sin-

gle equilibrium configuration exists for each mass;

thus the internal structure of the star is fixed.”

• This “theorem” has not been proven and is not even

rigorously true; there are known exceptions

4.1.2 The equilibrium solution and stellar evolution:

• If there is no bulk motions in the interior of a star (i.e.

no convection), changes of chemical composition are

localised in regions of nuclear burning The structure

equations (1) to (4) can be supplemented by equations

of the type:

� / � t (composition)M = f( � ,T, composition)

• Knowing the composition as a function of M at a time

t0 we can solve (1) to (4) for the structure at t0. Then

(composition)M,t0+ � t = (composition)M,t0+

� / � t (composition)M � t

• Calculate modified structure for new composition and

repeat to discover how star evolves (not valid if stel-

lar properties change so rapidly that time dependent

terms in (1) to (4) cannot be ignored).

4.1.3 Convective regions: (GZ: 16-1; CO: 10.4)

• Equations (1) to (3) unchanged.

• for efficient convection (neutral buoyancy):

P

T

dT

dP
= � − 1

�

(4b)

• Lrad is calculated from equation (4) once the above

have been solved.



4.2 THE EQUATION OF STATE

4.2.1 Perfect gas: (GZ: 16-1: CO: 10.2)

P = NkT = �
� mH

kT

N is the number density of particles; � is the mean par-

ticle mass in units of mH. Define:

X = mass fraction of hydrogen (Sun: 0.70)

Y = mass fraction of helium (Sun: 0.28)

Z = mass fraction of heavier elements (metals) (Sun:

0.02)

• X +Y + Z = 1

• If the material is assumed to be fully ionized:

Element No. of atoms No. of electrons

Hydrogen X � /mH X � /mH

Helium Y � /4mH 2Y � /4mH

Metals [Z � /(AmH)] (1/2)AZ � /(AmH)

• A represents the average atomic weight of heavier el-

ements; each metal atom contributes ∼ A/2 electrons.

• Total number density of particles:

N = (2X + 3Y/4 + Z/2) � /mH

. (1/ � ) = 2X + 3/4Y + 1/2Z

• This is a good approximation to � except in cool, outer

regions.

•When Z is negligible: Y = 1−X; � = 4/(3 + 5X)

• Inclusion of radiation pressure in P:

P = � kT/( � mH) + aT4/3.

(important for massive stars)

4.2.2 Degenerate gas: (GZ: 17-1; CO: 15.3)

• First deviation from perfect gas law in stellar interior

occurs when electrons become degenerate.

• The number density of electrons in phase space is lim-

ited by the Pauli exclusion principle.

ne dpxdpydpz dxdydz ≤ (2/h3)dpxdpydpz dxdydz

• In a completely degenerate gas all cells for momenta

smaller than a threshold momentum p0 are completely

filled (Fermi momentum).

• The number density of electrons within a sphere of

radius p0 in momentum space is (at T = 0):

Ne =
∫ p0

0
(2/h3)4 � p2dp = (2/h3)(4 � /3)p30

• From kinetic theory

Pe = (1/3)
∫ ∞

0
pv(p)n(p)dp

(a) Non-relativistic complete degeneracy:

v(p) = p/me for all p

Pe =(1/3)
∫ p0

0
(p2/me)(2/h

3)4 � p2 dp

= {8 � /(15meh
3)}p50 = {h2/(20me)}(3/ � )2/3N5/3

e .



(b) Relativistic complete degeneracy:

v(p) ∼ c

Pe =(1/3)
∫ p0

0
pc(2/h3)4 � p2 dp

= (8 � c/3h3)p40/4 = (2 � c/3h3)p40

= (hc/8)(3/ � )1/3N4/3
e .

• Also Ne = (X +Y/2 + Z/2) � /mH = (1/2)(1 +X) � /mH.

• For intermediate regions use the full relativistic ex-

pression for v(p).

• For ions we may continue to use the non-degenerate

equation:

• Pions = (1/ � ions)( � kT/mH) where (1/ � ions) = X +Y/4.

Conditions where degeneracy is important:

(a) Non-relativistic – interiors of white dwarfs; degener-

ate cores of red giants.

(b) Relativistic - very high densities only; interiors of

white dwarfs.
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4.3 THE OPACITY (GZ: 10-2; CO: 9.2)

The rate at which energy flows by radiative transfer is

determined by the opacity (cross section per unit mass

[m2/kg])

dT/dr = −3 � L � /(16 � acr2T3) (4)

In degenerate stars a similar equation applies with the

opacity representing resistance to energy transfer by

electron conduction.

Sources of stellar opacity:

1. bound-bound absorption (negligible in interiors)

2. bound-free absorption

3. free-free absorption

4. scattering by free electrons

• usually use a mean opacity averaged over frequency,

Rosseland mean opacity (see textbooks).

Approximate analytical forms for opacity:

High temperature: � = � 1 = 0.020m2 kg−1 (1 +X)

Intermediate temperature: � = � 2 � T
−3.5 (Kramer’s

law)

Low temperature: � = � 3 �

1/2T4

• � 1, � 2, � 3 are constant for stars of given chemical com-

position but all depend on composition.
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