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STRUCTURE OF THE SUN

e The Sun is the only star for which we can measure
internal properties — test of stellar structure theory

e Composition (heavy elements) from meteorites
e Density, internal rotation from helioseismology

e Central conditions from neutrinos

HELIOSEISMOLOGY

e The Sun acts as a resonant cavity, oscillating in mil-
lions of (acoustic, gravity) modes (like a bell)

— can be used to reconstruct the internal density struc-
ture (like earthquakes on Earth)

e oscillation modes are excited by convective eddies
e periods of typical modes: 1.5 min to 20 min
e velocity amplitudes: ~ 0.1m/s

e need to measure Doppler shifts in spectral lines rela-
tive to their width to an accuracy of 1:10°

> possible with good spectrometers and long integra-
tion times (to average out noise)

Results
e density structure, sound speed
e depth of outer convective zone: ~ 0.28 R

e rotation in the core is slow (almost like a solid-body)
— the core must have been spun-down with the enve-
lope (efficient core—envelope coupling)



The Sun‘s Interior Rotation and Strueture
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SOLAR NEUTRINOS

e Neutrinos, generated in solar core, escape from the
Sun and carry away 2 — 6 % of the energy released in
H-burning reactions

e they can be observed in underground experiments
— direct probe of the solar core

e neutrino-emitting reactions (in the pp chains)
"H+'H - D+e" +v
Be+e — "Lit+wv

B — ®Be+e" +v

Ep™ = 0.42 Mev
E2a* — 0.86 Mev
EJ* =14.0 Mev

e The Davis experiment (starting around 1970) has
shown that the neutrino flux is about a factor of 3
lower than predicted — the solar neutrino problem

The Homestake experiment (Davis)

e neutrino detector: underground tank filled with 600
tons of Chlorine (C; Cly : dry-cleaning fluid)

e some neutrinos react with CI1
Ve + 3Cl — 3"Ar + e~ — 0.81 Mev
e rate of absorption ~ 3 x 1073%s™! per 3"Cl atom

e every 2 months each 3’Ar atom is filtered out of the
tank (expected number: 54; observed number: 17)

e caveats
> difficult experiment, only a tiny number of the neu-
trinos can be detected

> the experiment is only sensitive to the most en-
ergetic neutrinos in the ®B reaction (only minor
reaction in the Sun)



The Davis Neutrino Experiment
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Results

Proposed Solutions to the Solar Neutrino Problem

e dozens of solutions have been proposed

1) Astrophysical solutions

> require a reduction in central temperature of about
5% (standard model: 15.6 x 10° K)

> can be achieved if the solar core is mixed (due to
convection, rotational mixing, etc.)

> if there are no nuclear reactions in the centre (inert
core: e.g. central black hole, iron core, degenerate
core)

> if there are additional energy transport mecha-
nisms (e.g. by WIMPS = weakly interacting par-
ticles)

> most of these astrophysical solutions also change
the density structure in the Sun — can now be
ruled out by helioseismology

2) Nuclear physics

> errors in nuclear cross sections (cross sections
sometimes need to be revised by factors up to
~ 100)

> improved experiments have confirmed the nuclear
cross sections for the key nuclear reactions
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3) Particle physics

> all neutrinos generated in the Sun are electron neu-
trinos

> if neutrinos have a small mass (actually mass dif-
ferences), neutrinos may change type on their path
between the centre of the Sun and Earth:
neutrino oscillations, i.e. change from electron neu-
trino to pu or 7 neutrinos, and then cannot be de-
tected by the Davis experiment

> vacuum oscillations: occur in vacuum

> matter oscillations (MSW [Mikheyev-Smirnov--
Wolfenstein| effect): occur only in matter (i.e. as
neutrinos pass through the Sun)

RECENT EXPERIMENTS

e resolution of the neutrino puzzle requires more sensi-
tive detectors that can also detect neutrinos from the
main pp-reaction

1) The Kamiokande experiment
(also super-Kamiokande)

> uses 3000 tons of ultra-pure water (680 tons active
medium) for
v+e — v+e (inelastic scattering)

> about six times more likely for v, than vy, and vr

> observed flux: half the predicted flux (energy de-
pendence of neutrino interactions?)



The Sudbury Neutrino
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2) The Gallium experiments (GALLEX, SAGE)

> uses Gallium to measure low-energy pp neutrinos
directly
ve +1Ga —"'Ge+ e — 0.23 Mev

> results: about 80 +10 SNU vs. predicted 132+ 7
SNU (1 SNU: 103¢ interactions per target atom/s)
3) The Sudbury Neutrino Observatory (SNO)

> located in a deep mine (2070 m underground)
> 1000 tons of pure, heavy water (D20)

> in acrylic plastic vessel with 9456 light sensors/photo-
multiplier tubes

> detect Cerenkov radiation of electrons and photons
from weak interactions and neutrino-electron scat-
tering

> results (June 2001): confirmation of neutrino oscil-
lations (MSW effect)?



