Gamma-Ray Bursts, Collapsars
and Hypernovae

Cosmological gamma-ray bursts are some of the most en-
ergetic events in the Universe, some of which are known to
be related to hypernovae, i.e., very energetic supernova-
like events
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Gamma-Ray Bursts (GRBs)

e discovered by U.S. spy satellites (1967; secret till 1973)

e have remained one of the biggest mysteries in astron-
omy until 1998 (isotropic sky distribution; location:
solar system, Galactic halo, distant Universe?)

e discovery of afterglows in 1998 (X-ray, optical, etc.)
with redshifted absorption lines has resolved the puz-
zle of the location of GRBs — GRBs are the some of
the most energetic events in the Universe

e duration: 1073 to 10%s (large variety of burst shapes)

e bimodal distribution of durations: 0.3s (short-hard),
20s (long-soft) (different classes/viewing angles?)

e GRBs are no standard candles! (isotropic) energies
range from 5 x 10* to 2 x 104" J

e highly relativistic outflows (fireballs): (v = 100),
possibly highly collimated /beamed

e GRBs are produced far from the source (10! —10'?m):
interaction of outflow with surrounding medium
(external or internal shocks) — fireball model

e relativistic energy ~ 10 — 107 Je ' f (e: efficiency,
fn: beaming factor; typical energy 1045 J7)

e event rate/Galaxy: ~ 107" yr ! (3 x 10 J/eE)
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e corrected for beaming

but: depends on beaming model: uniform beam or struc-
tured beam (i.e. where Lorentz factor varies with
angle)

(107ergs =1J, 1M, c? =2 x 1047 ])
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Fig. 8. The geometry corrected gamma-ray energy (i.e. F, ~ E, is007/2, where E, is is the
total energy emitted in gamma-rays assuming isotropic radiation, and 0, is the jet opening angle . . .
inferred from afterglow lightcurves) is found to be a constant in many bursts, referring to a [ ) hypernova (Very energetlc Supernova aSSOClated W]th
standard energy reservoir of long GRBs?Y. Shown is the distribution of E. with the latest data . . .
(from Ref.256). formation of a rapidly rotating black hole)

— jet penetrates stellar envelope — GRB along jet
axis (large beaming)



Gamma-Ray Bursts: Afterglows
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Properties to be explained:

e time variability: 1073s (emitting region ~ 10°m)
— relativistic fireball

e Problem: most photons have energies > 0.5 MeV
— optically thick to pair production yv — e e
— rapid photon downgrading of (to < 0.5MeV) —
conversion into kinetic energy — thermal spectrum

e need very clean environment (no pollution with
baryon) — e* — v fireball models

e need to reconvert kinetic energy into non-thermal
emission (when fireball becomes optically thin)

Relativistic fireball models

e need high Lorentz factor I' to
> get relativistic beaming: 6y, ~ 1/ (Q ~ 1/4?)

> diminish pair production (relative angle at which
photons collide decreases — increases pair produc-
tion threshold)

> best estimates: T' ~ 10? (estimates have come down
in recent years)

e problem: simple relativistic fireball model produces
modified blackbody spectrum, efficiently converts en-
ergy into kinetic energy

e solution:

> reconvert kinetic energy into random energy via
shocks after the flow has become optically thin
(mainly synchrotron radiation)

> internal shocks in relativistic flow (faster portion
of the flow catch up with slower portions)

— probably responsible for a lot of the fine structure
in the bursts (but also from variability in central
engine!)

> external shock when the fireball runs into the ex-
ternal medium

— can produce multiple peaks, long smooth bursts
e fireball models can reproduce the main features of ob-

served bursts, irrespective of the detailed physics of
the central engine



e Note: recent work has mainly concentrated on GBRs
with afterglows; these are exclusively long-duration
bursts — possibility that short-duration bursts are as-
sociated with compact mergers, long-duration bursts
with hypernovae

Phases
e the central engine (t ~ 1073s)
e the burst phase (t ~ 107! — 102%5s)
e the afterglow (t ~10s — 00)
The central engine
¢ need to extract energy from collapse

> rest-mass energy from disc: 42 % (max. rotating
BH; 6 %, non-rotating BH)

> BH spin energy: up to 29% (Blandford, Zna-
jek mechanism: extraction of spin energy through
threading the horizon of a spinning black hole sur-
rounded by an accretion disc with magnetic fields)

e all models tend to have a disc (accretion torus):
Mg ~ 1072 - 1M,

e maximum extractable energy

> from torus: 1 — 10 x 10%¢J (My/M..)

> from BZ mechanism: 5 x 10%6J f(a) (Mpy/M.,)
(f(a) =1 — ([q + V1 — a?]/2)"/2 < 0.29 a : angular mo-
mentum parameter)

e production of relativistic jet

> vw — e e along rotation axis (low baryon loading);
probably not efficient enough

> more likely: MHD jet (Poynting jet)

Black Hole n-Torus Formation Scenarios
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Hypernovae, Collapsars and GRBs Hypernova (SN 1998bw, SN 2002ap, SN 1997ef) and

(normal) Type Ic (SN 1994I) Lightcurves (Nomoto)
e a “new” explosion type?
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e a more energetic supernova with a range of explosion sy
energies: 5 — 50 x 1044 | .\u
(Mazzali, Nomoto, Maeda) & L
7 @ %, SN1998bw a
e classification criterion: few broad lines — high kinetic I . SN2002ap ' o
energy — high explosion energy | % N i
e asymmetric explosions? = ; . ’
e some are associated with long-duration gamma-ray 1l . *'* ‘ s, T
bursts (GRBs, SN 98bw, SN 03dh) *
L v SN1997ef
e possibly associated with the formation of a black hole — 4-| &
from a rapidly rotating compact core (Woosley) Wil o oo o ‘i g7 % v i
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> requires rapidly rotating :
helium (or CO) star L
H

11 May 1998 |

e presently all hypernovae have been classified as SNe
Ic (i.e., no H, He), but only 1 in 100 Ib/Ic SNe are hy-
pernovae (Podsiadlowski, Mazzali, Nomoto ... 2004)

e HNe/GRBs are rare! (10 5yr1)
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Gamma-Ray Bursts

Explosive Nucleosynthesisfor 16 Msun Helium Star
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Asymmetric Hypernova Ejecta (Maeda)

e blue circles: Ni, red squares: O

2x10°%

1.5x10%

Y,
{

C; 2x1010

2x10'0 —2410'0 2x10'0 —2410'0
sity Lorentz factor

Vz [em/s]
10°

[ ] [E—
4 -500 -212 075 362 650 1.00 844 1587 2331 3074

5x 108

> Fic. 1.— Contour maps of the logarithm of the rest-mass density after 3.87 s and 5.24 s (left two panels), and of the Lorentz factor

. (right panel) after 5.24s. X and Y axis measure distance in centimeters. Dashed and solid arcs mark the stellar surface and the
4 outer edge of the exponential atmosphere, respectively. The other solid line encloses matter whose radial velocity > 0.3c, and whose
specific internal energy density > 5 x 10%ergg™*.

Collapsar Model for GRBs
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Summary and Outlook

e hypernovae exist, some of which cause GRBs

e collapsar models look promising: jet can (probably)
penetrate He core

e possibility of jet-driven supernovae
e unanswered questions:
What are the progenitors?
> have to be fairly rare, if they make up a significant
fraction of luminous GRBs (107 — 10 5yr 1)

> consistent with the rate of hypernovae
> excludes simple (single?) type of progenitor (i.e.
massive star)

> note: all hypernovae are SNe Ic, i.e. have lost both
their hydrogen and helium envelopes

> progenitors two merged massive supergiants with
He+CO cores?

> tidally locked CO star in a very close binary
(Porb < 5hr?; e.g. Cyg X-37)7

> What causes the short-duration bursts?
NS+NS/NS+BH mergers?



