The Origin of the Elements

Literature:

e H. Reeves, Online lectures on Primordial
Nucleosynthesis,
http://nedwww.ipac.caltech.edu/level5/Sept01/

Reeves/Reeves2.html

e Principles of Stellar Evolution and Nucleosynthesis,
Donald Clayton (University of Chicago Press),
classical standard graduate text

e Supernovae and Nucleosynthesis, David Arnett
(Princeton University Press)

1. Big Bang Nucleosynthesis
I1. Stellar Nucleosynthesis

II1. Explosive Nucleosynthesis
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e heavier elements are more difficult to form because of
the larger Coulomb barrier, i.e. require higher ener-
gies (temperatures) during nuclear-burning phases in
stars

e iron peak: most tightly bound nuclei

e the origin of light elements? (Li, Be, B are less tightly
bound than He, C)

e neutron-rich elements beyond the iron peak require
neutron captures
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e the odd-even effect: elements with odd Z are rarer

e magic numbers: (from nuclear shell structure) ele-
ments with Z, N = 2 8,20, 28,50,82,126 are more sta-
ble — doubly magic nuclei are particularly stable: e.g.
He (Z=N=2), O (Z=N=8), Ca (Z=N=20), Ni
(Z=N=28)

Big Bang Nucleosynthesis
Neutrino Decoupling
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e initially at T > 1MeV, all weak interactions occur in
statistical equilibrium

v+n<=p+e

v+ps—n+e;

n=p+e+v

— the neutron-proton ratio is determined by statis-

tical equilibrium,

i.e.

the Boltzmann distribution

n/p = exp(—AM/KkT), where AM = 1.293 MeV.

e the n/p ratio is determined by the temperature at
which neutrinos decouple

> expansion timescale: t, o (Gp)~1/2 oc T2,
(since p o< T? in the radiation-dominated phase)

> weak reaction timescale: tyea o< T7°.
— neutrinos decouple at T ~ 10K ~ 0.86MeV

— n/p ~0.223



e the deuterium reaction p +n = 2D + v remains in equi-
librium till the temperature has dropped to about
0.1 MeV (10°K), reached after about 4 minutes

> during this period, the n’s undergo 3 decay with a
half life of 617 s
— n/p drops to ~ 0.164

The Phase of Primordial Nucleosynthesis (T < 0.1 MeV)
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e primordial reactions:

p+tn — D+4y

D+p — *He+~

D+n — 3H++~
3He +*He — “‘He+2p

e there are no stable nuclides with mass 5 or 8 — limits
buildup of heavier elements

e some light elements form through reactions like

‘He+3%H — "Li+~
‘He +3He — "Be+~
™Be+e — Li+v

e the final abundance ratios depend on

> the n/p ratio determined by the decoupling tem-
perature

> the competition of 3 decays and the rate of n+p
reactions, which depends on the the nucleon to
photon ratio n (the n+ p rate depends on the nu-
cleon/baryon density)

> at low nucleon density (n): neutrons 3 decay
> at high nucleon density (the realistic case): most
neutrons are incorporated into He
o number of He nuclei: 1/2n (n: number of initial
neutrons; 2 neutrons/He nucleus)

o number of H nuclei: p —n (p: number of initial
protons)

o helium mass fraction:
4%1/2n 2n 2n/p

:4*1/2n+(p—n) T p+n 1+n/p
(for n/p =0.164)

=0.28




Stellar Nucleosynthesis

e the production of deuterium and hence all other light > Hydrostatic burning during

nuclides depends strongly on the baryon density the core evolution of the star
. . . . builds up most elements up
> at high n, deuterium is efficiently destroyed by p or to Fe at ever higher

n captures (to produce nuclides of mass number 3)
temperatures

> astronomical observations fix n in the standard
model to 3 — 15 x 1071% (assumes n/p ratio is fixed
by standard particle physics; Universe is homoge-
neous)

> schematically: 4 H — He,
3He — C, 2C — Mg,
20 — S, Si, Si — Fe

> onton-like presupernova
structure

—  baryon mass fraction: Q ~ 0.01 — 0.02
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He 1025 > core collapses and elements in core are locked up, rest
E ' is ejected into the ISM (in particular O)
————————————— 0.22

> also stellar wind ejection during AGB/supergiant
phases

Final Structure of 8 M. Helium Core (Nomoto)
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Silicon Burning and Explosive Nucleosynthesis
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PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS
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Neutron number

e after oxygen burning: mainly S, St

eat T ~ 2 x 10°K, elements start to photodisintegrate
and eject light particles, in particular p’s (v,p), n’s

(7,n) and a’s (v, a) that can react with other nuclei

e the least tightly bound nuclei are stripped more easily

e all reactions occur in both directions (i.e. forward and

reverse reaction) — abundance pattern approaches
nuclear statistical equilibrium (NSE)

e there is a net excess of a capture reactions which build
up alpha-rich elements (a-process)

e BSi+a—32S+a—3%Ar+a — 4°Ca
+2a — BTi+a — °2Cr + a — "%Fe

e builds up the most stable elements **Fe or °Fe (de-
pends on neutron excess)

e how far the “flow” proceeds depends on the tempera-
ture (which determines the flow rate) and the duration
of the phase

SYNTHESIS OF THE HEAVY ELEMENTS 533
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Ezxplosive Burning (e.g. during a supernova)
e carbon burning close to hydrostatic equilibrium

e but: oxzygen and silicon burning do not necessarily
estabilish statistical equilibrium

e at high densities: close to NSE

e at low densities (after expansion): incomplete burn-
ing, abundance pattern freezes out — intermediate-
mass elements

e reproduces the solar abundance pattern reasonably
well (by nuclear physics standards)

fl ' l ' T =

Solar-system natural abundances
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Supernova Nucleosynthesis

e different supernova types produce, different abun-
dance patterns

> core-collapse supernovae: most Fe is locked up in
the core (at most ~ 0.1 M can be ejected)
> large ejection of oxygen

> thermonuclear explosions: dominant producers of
Ni (which decays into Fe; ~ 0.6 M)

> different timescales for core collapse supernovae
(~10"yr) and thermonuclear explosions (up to
~ 10%yr)
— oxygen/iron ratio evolves with time
— observational constraint on supernova explosions?
e complication: hypernovae eject both Fe and O and a

lot of a-rich elements (Ca, Ti), but are probably not
as common at early times (?)



Production of Heavy Nuclei (A > 60)

® tgecay K teapture? S-process
e produced by endothermic reactions (slow neutron-capture process)

SYNTHESIS OF THE HEAVY ELEMENTS > B decay, s-process follows the “valley of 3 stability”
NG 1 o tdecay > teapture: T-PTOCESS
) . - (rapid neutron-capture process)
> (Z,A+1) can capture further neutrons and produce
T - elements (far) away from the valley of 3 stability
sonly s only

~
\%

eventually these elements 8 decay and produce sta-
ble neutron-rich isotopes
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e consider neutron-capture reactions (on Fe-peak seed é
IlllClei) o 190 st /p('r) = 10,000 e-7/0.17
(Z,A)+n — (Z,A+1)+~ 3
> if (Z,A+1) is stable, it waits until it captures an- 10 Sm Dy

other neutron
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Astrophysical Sites for the s- and r-process

e s-process requires relatively low neutron densities
(n < 10** m—3)

e r-process requires relatively high neutron densities
(n 2 10%m™3)
e s-process
> possible neutron sources (during stellar He burn-
ing) 13C(a,n)1%0 or 2Ne(a,n)?*’Mg
> first reaction requires '3C which is relatively
rare, but produced during hydrogen burning via
2C(p,7)13N(e"v)3C (CN cycle)
— requires simultaneous hydrogen/helium burning

or injection of freshly produced '3C into He-burning
layers

> promising site: thermally pulsing AGB stars (with
alternating hydrogen and helium burning)

— s-stars, barium stars
> 22Ne + a only occurs at very high temperatures
(e.g. in the cores of massive stars)

® r-process

> requires explosive burning

> e.g. in supernova explosion behind the supernova
shock (probably not, conditions are only suitable
for too short a time)

> neutron star/neutron star or neutron star/black
hole mergers accompanied with very high neutron
densities and the formation of neutron-rich nuclei



The p process:

e the origin of proton-rich elements is not well under-
stood

e need e.g.
> (A Z)+p— (A+1,Z+1)+y
> (A,Z)+v— (A—-1,Z)+n
e possible site: Thorne-Zytk:ow objects (red super-
giants with neutron cores) where protons are injected

into the burning region at very high temperature
(T ~ 10°K)

Production of light elements

e by spallation of intermediate nuclei (e.g. O, N, C) by
cosmic rays

{p, a} +{C,N, 0} — SLi, "Li, "Be, °Be, °Be, 1B, 'B

HEl SYNTHESIS IN STAKS
T COSMIC RAY SPALLATION
B BIG BANG SYNTHESIS

o @

PROTONS

o 1 2 3 4 5 6 T 8 9% 1
NEUTRONS

e origin of solar “Li unknown, big bang nucleosynthe-
sis and cosmic-ray spallation cannot produce the ob-
served solar abundance

— explosive H/He burning in giants?

The Chemical Lifecycle of Stars

NEW STARS




