

Orion Nebula

- Anglo-Australian Observatory

STAR FORMATION (ZG: 15.3; CO: 12)

Star-Forming Regions

a) Massive stars

- born in $O B$ associations in warm molecular clouds
- produce brilliant HII regions
- shape their environment
\triangleright photoionization
\triangleright stellar winds
\triangleright supernovae
\rightarrow induce further (low-mass) star formation?
b) Low-mass stars
- born in cold, dark molecular clouds $(\mathrm{T} \simeq 10 \mathrm{~K})$
- Bok globules
- near massive stars?
- recent: most low-mass stars appear to be born in cluster-like environments
- but: most low-mass stars are not found in clusters \rightarrow embedded clusters do not survive

Relationship between massive and low-mass star formation?
\triangleright massive stars trigger low-mass star formation?
\triangleright massive stars terminate low-mass star formation?

S 106

Bok globules

The Trapezium Cluster
(IR)

Dusty Disks in Orion (seen as dark silhouettes)

Protostar Structure

The Jeans Mass

- cool, molecular cores $\left(\mathrm{H}_{2}\right)$ can collapse when their mass exceeds the Jeans Mass
\triangleright no thermal pressure support if $\mathrm{P}_{\mathrm{c}}=\rho /\left(\mu \mathrm{m}_{\mathrm{H}}\right) \mathrm{kT}<\mathrm{GM}^{2} /\left(4 \pi \mathrm{R}^{4}\right)$
\triangleright or $\mathrm{M}>\mathrm{M}_{\mathrm{J}} \simeq 6 \mathrm{M}_{\odot}\left(\frac{\mathrm{T}}{10 \mathrm{~K}}\right)^{3 / 2}\left(\frac{\mathrm{n}_{\mathrm{H}_{2}}}{10^{10} \mathrm{~m}^{-3}}\right)^{-1 / 2}$
What triggers star formation?
- observed molecular clouds often have masses \gg Jeans mass
- but: no evidence for large-scale collapse
\rightarrow support required
\triangleright cannot be thermal (Jeans mass! $\mathbf{v}_{\text {th }} \ll \mathbf{v}_{\text {virial }}$)
\triangleright supersonic turbulence: possible, but: rapid shock dissipation
\triangleright magnetic fields: requires $\rho \mathrm{v}_{\text {virial }}^{2} \sim \mathrm{~B}^{2} / 2 \mu_{0} \rightarrow$ $\mathrm{B} \sim 1-10 \mathrm{nT}$ (o.k. consistent with observations)
- stars can form in regions that lose magnetic support
- collisions of cores (compression reduces Jeans mass)
- compression by nearby supernovae

Stellar Collapse

- inside-out isothermal collapse (i.e. efficient radiation of energy) from $\sim 10^{6} R_{\odot}$ to $\sim 5 R_{\odot}$ (note this decreases the Jeans mass and possibly allows further fragmentation of the core)
- timescale: $\mathrm{t}_{\mathrm{dyn}} \sim 1 / \sqrt{4 \mathrm{G} \rho} \sim 10^{5}-10^{6} \mathrm{yr}$
- collapse stops when material becomes optically thick and can no longer remain isothermal (protostar)
- central accretion rate: $\dot{\mathrm{M}}$
\triangleright hydrostatic equilibrium of an isothermal sphere: $\mathrm{c}_{\mathrm{s}}^{2}=\frac{\mathrm{kT}}{\mu \mathrm{m}_{\mathrm{H}}}=\frac{\mathrm{GM}(\mathrm{r})}{\mathrm{r}}$,
where c_{s} is the sound speed of the material, $M(r)$ the mass enclosed in radius r.
$\triangleright \mathbf{c}_{\mathrm{s}}=$ constant implies $\mathrm{M}(\mathbf{r}) \propto \mathbf{r}$
\rightarrow for the density $\rho(r)=\frac{\mathrm{M}_{0}}{4 \pi \mathrm{r}^{2} \mathrm{R}_{0}}=\frac{\mathrm{c}_{\mathrm{s}}^{2}}{4 \pi \mathrm{r}^{2} \mathrm{G},}$
where M_{0} and R_{0} are the total mass and total radius of the collapsing core.
\triangleright at radius r : mass-inflow rate $\dot{\mathrm{M}}$ is given by $\dot{M}=4 \pi \mathrm{r}^{2} \rho \mathrm{c}_{\mathrm{s}}$ (inflow velocity $=$ sound speed)
\triangleright combining these equations, one obtains for the central accretion rate
$\dot{\mathrm{M}}=\frac{\mathrm{c}_{\mathrm{s}}^{3}}{\mathrm{G}}=2 \times 10^{-6} \mathrm{M}_{\odot} \mathrm{yr}^{-1}\left(\frac{\mathrm{~T}}{10 \mathrm{~K}}\right)^{3 / 2}$,
where $\mu=2$ (molecular hydrogen) and
$\mathrm{c}_{\mathrm{s}}=0.2 \mathrm{~km} \mathrm{~s}^{-1}\left(\frac{\mathrm{~T}}{10 \mathrm{~K}}\right)^{1 / 2}$.
\triangleright note: $\dot{\mathrm{M}}$ depends strongly on T , which in turn depends on the cooling mechanisms (CO molecules, dust, H_{2}, etc.) and is dependent on the environment and metallicity.
- the angular-momentum problem
\triangleright each molecular core has a small amount of angular momentum (due to the velocity shear caused by the Galactic rotation)
\triangleright characteristic $\Delta \mathrm{v} / \Delta \mathrm{R} \sim 0.3 \mathrm{~km} / \mathrm{s} / \mathrm{ly}$
\rightarrow characteristic, specific angular momentum

$$
\mathrm{j} \sim\left(\Delta \mathrm{v} / \Delta \mathrm{R} \mathrm{R}_{\text {cloud }}\right) \mathrm{R}_{\text {cloud }} \sim 3 \times 10^{16} \mathrm{~m}^{2} \mathrm{~s}^{-1}
$$

\triangleright cores cannot collapse directly
\rightarrow formation of an accretion disk
\triangleright characteristic disk size from angular-momentum conservation $\mathbf{j}=\mathrm{rv}_{\perp}=\mathrm{rv}_{\text {Kepler }}=\sqrt{\mathbf{G M r}}$
$\rightarrow \mathrm{r}_{\text {min }}=\mathrm{j}^{2} / \mathrm{GM} \sim 10^{4} \mathrm{R}_{\odot} \simeq 50 \mathrm{AU}$

- Solution: Formation of binary systems and planetary systems which store the angular momentum (Jupiter: 99% of angular momentum in solar system)
\rightarrow most stars should have planetary systems and/or stellar companions
\rightarrow stars are initially rotating rapidly (spin-down for stars like the Sun by magnetic braking)
- inflow/outflow: $\sim 1 / 3$ of material accreted is ejected from the accreting protostar \rightarrow bipolar jets
- the magnetic field problem
\triangleright using magnetic flux conservation $\mathrm{B}($ star $)=\mathrm{B}($ cloud $)\left(\mathrm{R}_{\text {cloud }} / \mathrm{R}_{\text {star }}\right)^{2} \sim 10^{3}-10^{4} \mathrm{~T}(!)$, many order larger than observed
\triangleright efficient loss of magnetic field, perhaps related to bipolar jets

Pre-Main-Sequence Evolution

Pre-main-sequence evolution

- Old picture: stars are born with large radii ($\sim 100 \mathrm{R}_{\odot}$) and slowly contract to the main sequence
\triangleright energy source: gravitational energy
\triangleright contraction stops when the central temperature reaches $10^{7} \mathrm{~K}$ and H -burning starts (main sequence)
\triangleright note: D already burns at $\mathrm{T}_{\mathrm{c}} \sim 10^{6} \mathrm{~K} \rightarrow$ temporarily halts contraction
- Modern picture: stars are born with small radii
($\sim 5 R_{\odot}$) and small masses
\rightarrow first appearance in the H-R diagram on the stellar birthline (where accretion timescale is comparable to Kelvin-Helmholtz timescale: $\mathrm{t}_{\dot{\mathrm{M}}} \equiv \mathrm{M} / \dot{\mathrm{M}}$ $\left.\sim \mathrm{t}_{\mathrm{KH}}=\mathrm{GM}^{2} /(\mathbf{2 R L})\right)$
\triangleright continued accretion as embedded protostars $/ T$ Tauri stars until the mass is exhausted or accretion stops because of dynamical interactions with other cores/stars

Dynamical Star Formation

- stars generally do not seem to form in isolation, but in dense clusters
- simulation (Bonnell): $10^{3} \mathrm{M}_{\odot}$ cloud with radius 0.5 pc
\rightarrow collapse and fragmentation lead to the formation of ~ 400 stars in $\sim 0.5 \times 10^{6} \mathrm{yr}$ with broad mass spectrum (but no magnetic fields considered in setting the initial conditions!)

- protostars form in collapsing cores ($R \sim 10^{6} R_{\odot}$) and accrete from their cores at $\dot{\mathrm{M}} \sim 2 \times 10^{-6} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ till the envelopes are disturbed by a collision with another core/star
\triangleright collision time: $\mathrm{t}_{\text {coll }} \simeq 1 / \sigma \mathrm{nv}$
\triangleright where the collision cross section is given by the size of the core: $\sigma=\pi *\left(10^{6} \mathbf{R}_{\odot}\right)^{2}$,
\triangleright the number density of colliding objects by $\mathrm{n} \sim 10^{3} /\left[(4 \pi / 3) \times(0.5 \mathrm{pc})^{3}\right]$ and
\triangleright the characteristic velocity by the dynamics of the cloud $\mathrm{v} \sim \sqrt{\mathrm{GM} / \mathrm{R} \simeq 3 \mathrm{~km} \mathrm{~s}^{-1} \text {. } . ~ . ~ . ~}$
$\rightarrow \mathrm{t}_{\text {coll }} \simeq 10^{5} \mathrm{yr} \rightarrow \mathrm{M}_{\text {star }} \sim \dot{\mathrm{M}} \times \mathrm{t}_{\text {coll }} \sim 10 \mathrm{M}_{\odot}$
\rightarrow a collisional origin of the initial mass function?

The First Stars

- differences at zero metallicity:
\triangleright no dust, no $\mathrm{CO} \rightarrow$ higher T of star-forming cloud
\rightarrow larger Jeans mass \rightarrow form very massive stars only?
- at $\mathbf{Z}=0$: very different stellar evolution (no CNO cycle) \rightarrow different supernovae? Claim: pair-instability supernova: complete disruption of star in an energetic supernova (sometimes, also referred to as hypernova, not to be confused with GRB-related hypernova)
- but: observed nucleosynthesis from Pop III stars is not consistent with pair-instability supernovae
- formation of intermediate-mass black holes?
- Problem: it is not clear whether Pop III stars really should have existed as a significant population

