
THIRD-YEAR ASTROPHYSICS

Problem Set: Stellar Structure and Evolution

(Dr Ph. Podsiadlowski, Michaelmas Term 2006)

1. Measuring Stellar Parameters.

Sirius is a visual binary with a period of 49.94 yr. Its measured trigonometric parallax
is 0.377” and, assuming that the plane of the orbit is in the plane of the sky, the true,
deprojected angular extent of the semimajor axis of the binary is 7.62”. The ratio of the
distances of Sirius A and Sirius B from the centre of mass is aA/aB = 0.466.

a) Find the mass of each member of the system.

b) The absolute bolometric magnitude of Sirius A is 1.33, and Sirius B has an absolute
bolometric magnitude of 8.57. Determine their luminosities. Express your answers
in terms of solar luminosities.

c) The effective temperature of Sirius B is estimated to be approximately 27,000K.
Estimate its radius and compare your answer to the radii of the Sun and Earth.

[Based on Problem 7.4 in Carroll & Ostlie, Modern Astrophysics]

2. The Central Pressure.

By integrating the equation of hydrostatic equilibrium in the form

dPr

dMr
= −

GMr

4π r4
,

where Mr denotes the mass enclosed at radius r and Pr is the pressure at this radius (mass
coordinate), show that a rigorous lower limit for the central pressure, Pc, can be obtained
as

Pc >
GM2

8π R4
,

where M and R are the total mass and radius of the star, respectively. Estimate the
minimum central pressure for the Sun (1 M� = 2 × 1030 kg and 1 R� = 7 × 108 m).

What is the dynamical timescale of a star? Compare the dynamical timescale of the
Sun with the timescale for hydrogen burning. Assume that the Sun remains on the main
sequence at a constant luminosity of 3.9 × 1026 W and that hydrogen is converted into
helium in the innermost 10 per cent of the mass of the Sun.
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3. The Schwarzschild Criterion for Convection.

Derive the Schwarzschild criterion for convective instability. Using this criterion, explain
briefly why stars on the upper main sequence have convective cores and stars on the lower
main sequence have convective envelopes.

The material in the envelope of a star has a ratio of specific heat capacities γ = 4
3
,

and the star is sufficiently centrally condensed that the mass in the envelope is negligible
compared to the core mass, M . The envelope is convectively unstable in such a way that
the Schwarzschild criterion is just marginally satisfied. Assuming that the gas obeys the
ideal gas law, show that the temperature within the envelope varies with radius r as

T =
GMµmH

4k

(

1

r
−

1

rs

)

+ Ts,

where µ is the mean molecular weight of the stellar material, mH the mass of the hydrogen
atom, k the Boltzmann constant, G the gravitational constant, rs the surface radius and
Ts the surface temperature of the star.

4. The Virial Theorem.

Starting from the equation of hydrostatic equilibrium, show that the relation between the
total thermal energy, U , and the total gravitational energy, Ω, of a star is given by

3(γ − 1) U + Ω = 0

where γ is a mean adiabatic exponent of the stellar material (i.e. the ratio of specific heats
for an ideal gas).

For a fully, ionized, ideal gas, γ = 5/3. Explain why this implies that stars effectively
have a negative heat capacity.

Use this fact to explain

(a) why nuclear burning in stars like the Sun is stable (i.e. does not lead to a nuclear
runaway);

(b) the basic principles governing the evolution of stars in phases when nuclear burning
is not important (from the pre-main-sequence phase to the supernova stage).

For stars supported mainly by radiation pressure, γ → 4/3. Show that this implies
that their total energy goes to zero. Discuss the implication of this result in terms of the
stability of such stars.

5. Mass-Luminosity Relations.

Using the condition of hydrostatic equilibrium, show that for a star which has an equation
of state given by the ideal gas law, its central temperature, Tc, can be estimated as

kTc '
GM µmH

R
,
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where M is the mass of the star, R its radius and µ the mean molecular weight of the
stellar material [µ ' 0.6 for a star like the Sun]. Estimate Tc for the Sun and comment
on what the result implies for the energy production in the centre of the Sun.

Use this result and the equation of radiative transfer to show that the mass–luminosity
relation for low- and intermediate-mass stars can be written as

L ∝
µ4M3

〈κ〉
,

where L is the star’s luminosity and 〈κ〉 is a characteristic average opacity of the stellar
material. For intermediate-mass stars, the opacity is dominated by Thomson scattering

and is approximately constant, κ = κTh (hence L scales with M3). For low-mass stars,
the opacity can be approximated by Kramer’s law, κ = κ0 ρ T−3.5. Obtain the scaling of
the luminosity with mass for this case.

6. The Coulomb Barrier.

Estimate the height of the Coulomb barrier between two protons and compare this with
the mean thermal energy of a proton at a temperature T ≈ 107 K. Explain how ther-
monuclear reactions can take place in stellar interiors at such temperatures. Outline the
main reactions involved in the conversion of hydrogen into helium in a low-mass star such
as the Sun.

The thermonuclear rate at which protons are destroyed by the proton-proton reaction
at stellar temperatures is given approximately by

Rpp = 1.1 × 1015 ρ2 X2
H T−2/3 exp(−3381 (T/K)−1/3) m−3 s−1,

where ρ is the density of stellar material and XH is the mass fraction of hydrogen. Estimate
the lifetime (in years) of protons against the p-p reaction in material where T = 1.5×107 K,
ρ = 105 kgm−3 and XH = 0.5. Comment on your result.

7. The CN Cycle in the Sun [Harder].

The CN-cycle consists of the following reaction network

(λi ≡ 〈σ v〉 at T = 1.5 × 107 K)
12C + p → 13N + γ → 13C + e+ + ν λ12 4.8 × 10−46 m3 s−1

13C + p → 14N + γ λ13 1.6 × 10−45 m3 s−1

14N + p → 15O + γ → 15N + e+ + ν λ14 2.0 × 10−48 m3 s−1

15N + p → 12C + α λ15 4.9 × 10−44 m3 s−1

a) Write down the differential equations which govern the abundance changes for 12C,
13C, 14N, 15N (assume that the inverse beta decays occur instantaneously).
[Hint: One of the equations can be written as dn12/dt = −n12 np λ12 + n15 np λ15,
where n12 is the number density of 12C, etc.]
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b) Assume that the CN-cycle is in equilibrium in the core of the Sun (Tcore ' 1.5 ×
107 K). Taking the initial mass fractions of the CN nuclei to have been X0

12 =
4 × 10−3, X0

13 = X0
14 = X0

15 = 0, determine the present equilibrium mass fractions
of X12, X13, X14, and X15 of these nuclear species.
[Hint: The total number density of CN elements is conserved.]

c) Estimate the time it takes for the establishment of equilibrium among the CN nuclei
in the core of the Sun. Use your estimate to determine whether the CN nuclei already
achieved their equilibrium values in the Sun’s core. (Note: ρX ' 5 × 104 kgm−3 in
the Sun’s core.)
[Hint: What reaction determines the time required to achieve equilibrium?]

d) In the Sun, ∼ 90 % of the nuclear energy is produced via the PPI chain, ∼ 9 % via
the PPII and PPIII chains, and only ∼ 1 % via the CN cycle. Use this information
to estimate the flux of PP neutrinos, 13N neutrinos and 15O neutrinos received at
Earth. (For simplicity, assume that the available energy released per helium nucleus
formed is 26MeV for all energy generation channels).

8. Degenerate Matter.

Show that an electrically neutral gas, consisting of positive ions and fully relativistic
and completely degenerate electrons, where the positive ions contribute negligibly to the
pressure, obeys a polytropic equation of state of the form

P = K ρ(n+1)/n,

where ρ is the mass density. Show that the polytropic index n = 3 and derive the value
of K.

The mass of a polytrope of index 3 is given approximately by

M = 8π

(

(n + 1) K

4πG

)3/2

.

Derive the value of the mass, M , of a white dwarf containing no hydrogen which obeys a
fully-relativistic, completely-degenerate equation of state. Why is this an upper limit for
a stable white dwarf? What is the likely final evolutionary state of stars more massive
than this?
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9. Hertzsprung-Russell Diagrams and Age Determinations.
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The figure shows a schematic Hertzsprung-Russell (H-R) diagram typical of a globular
cluster.

a) Account for the distribution of stars shown in the figure. Explain, in particular, the
significance of the turning points X and Y , and discuss the likely structure of stars
in each of the regions A, B, C and D.

b) Make a rough estimate of the age of the cluster given that mH = 1.0078 a.m.u. and
mHe = 4.0026 a.m.u.

c) Sketch evolutionary tracks on the H-R diagram to illustrate the further evolution of
stars in region D.

10. The Eddington Limit.

a) Consider a fluid element at the surface of a star. Show that this element experiences
an outward force due to the momentum deposited in it by radiation. By balancing
this force with the gravitational force (or otherwise), show that there is a maximum
luminosity for a star of mass M , known as the Eddington limit,

LEdd =
4πGMc

κ
.

For stars like the Sun, the mass–luminosity relation is approximately given by L '
L� (M/M�)4. Argue how the existence of the Eddington limit implies a maximum
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mass for stars in hydrostatic equilibrium. Discuss what happens when a star as a
result of its internal evolution reaches this maximum luminosity?

b) In X-ray binaries and active galactic nuclei (AGN), it is thought that most of the
observed luminosity, L, is caused by the accretion of matter onto a compact object (a
neutron star or black hole) and the conversion of gravitational potential energy into
radiation (i.e. L = (GMṀ )/R, where M is the mass of the accreting object, R the
inner radius of the accretion flow and Ṁ is the mass accretion rate, Ṁ ≡ dM/dt).
Determine the maximum possible accretion rate in M� yr−1 that does not violate the
Eddington limit (assuming spherical accretion) for a neutron star (with M = 1.4 M�

and R = 10 km) and a supermassive black hole (with M = 108 M� and an inner
accretion radius of R = 9 km(M/ M�)) [take κ to be 0.034m2 kg−1, the value for
pure Thomson scattering in a solar-type plasma]. Discuss how the Eddington limit
might be violated in nature.

c) [Harder:] Assuming that a black hole continues to accrete at its Eddington limit,
estimate the timescale on which the black-hole mass grows. How much can a black
hole with an initial mass of 100 M� grow in 109 yr? Discuss this result in view
of the fact that supermassive black holes as massive as 1010 M� already seem to
have existed when the age of the Universe was 109 yr. [Hint: you need do derive a
differential equation for the mass of the black hole and solve it.]

11. Binary Break-up, Runaway Stars and Supernova Kicks.

Runaway stars are O and B stars which: (i) have large space velocities (up to 200 km/s,
compared to 10 or 20 km/s for most stars of this spectral type); and (ii) are always single,
whereas most O and B stars are in binary systems. One possible explanation is that they
were formed as a member of a binary system, but that the more massive star (of mass
m1) reached the end of its life, exploded as a supernova and ejected most of its mass;
as a result the less massive star (of mass m2) became unbound, left the binary with its
original orbital velocity and now appears as a runaway star.

Suppose that the two stars were initially in a circular orbit and that the more mas-
sive star instantaneously ejects a mass ∆m in the supernova explosion. Assume that the
ejection is spherically symmetric in the rest frame of the star. Show that the remnant be-
comes unbound after the supernova (i.e. show that the total energy of the post-supernova
system is positive) if ∆m ≥ (m1 + m2)/2.

[Harder:] Observations of young neutron stars (pulsars) have recently shown that super-
nova explosions are not perfectly symmetric and that the neutron star receives a recoil
velocity (“kick”) as a result of the supernova with a typical value of 250 km/s. Explain
(e.g. using a suitable diagram or considering a special case) how, in this case, a binary
system can remain bound even if ∆m ≥ (m1 + m2)/2 (you may assume that the recoil
occurs in a random direction in the frame of the exploding star).
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