
The Structure and Evolution of Stars

Recommended Background Reading

• Short Option S26 - Stars and Galaxies, Dr Andrew Bunker
http://www.physics.ox.ac.uk/users/bunker/s26StarsGalaxies.htm

• and/or Concepts in Thermal Physics, Chapters 35/36, Stars, White
Dwarfs, Blundell & Blundell
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FUNDAMENTAL PRINCIPLES

• Stars are self-gravitating bodies in dynamical equilibrium → balance of
gravity and internal pressure forces (hydrostatic equilibrium);

• stars lose energy by radiation from the surface → stars supported by ther-
mal pressure require an energy source to avoid collapse, e.g. nuclear energy,

gravitational energy (energy equation);

• the temperature structure is largely determined by the mechanisms by

which energy is transported from the core to the surface, radiation, convec-

tion, conduction (energy transport equation);

• the central temperature is determined by the characteristic temperature

for the appropriate nuclear fusion reactions (e.g. H-burning: 107 K; He-
burning: 108K);

• normal stars have a negative ‘heat capacity’ (virial theorem): they heat up
when their total energy decreases (→ normal stars contract and heat up

when there is no nuclear energy source);

• nuclear burning is self-regulating in non-degenerate cores (virial theorem):

e.g. a sudden increase in nuclear burning causes expansion and cooling of

the core: negative feedback → stable nuclear burning;

• the global structure of a star is determined by the simultaneous satisfaction

of these principles → the local properties of a star are determined by the
global structure.

(Mathematically: it requires the simultaneous solution of a set of coupled,

non-linear differential equations with mixed boundary conditions.)



Equation of Stellar Structure

Equation of Hydrostatic Equilibrium:

dP

dr
= −GMrρ

r2
, (1)

Equation of Mass Conservation:

dMr

dr
= 4πr2ρ, (2)

Energy Conservation (Nuclear Plus Gravitational Energy):

dLr

dr
= 4πr2ρ

(

εr − T
dS

dt

)

, (3)

Energy Transport (Radiative Diffusion Equation):

Lr = −4πr2
4ac

3κρ
T 3 dT

dr
, (4)

Energy Transport by Convection, Convective Stability:

dT

dr
=

γ − 1

γ

T

P

dP

dr
. (5)

These equations have to be supplemented by constitutive relations, the equation
of state P (ρ, T ), the opacity κ(ρ, T ) and the energy generation rates εr(ρ, T,Xi),

and 4 boundary conditions (two at the surface: L = 4πR2σT 4
eff and P = 2/3g/κ;

and two at the centre: M(r) = 0 and L(r) = 0) to produce a total of 7
equations for 7 unknown variables (P , ρ, T , M(r), L(r), κ, εr) as a function of

the independent variable r.

In these equations, Mr, is the mass enclosed in a sphere of radius r, Lr the

luminosity (energy/time) flowing through a sphere of radius r; P , T , ρ and S,
the pressure, temperature, density and entropy of the material, γ the adiabatic

exponent.

For material obeying the ideal gas equation P = (ρ/µmH) kT , one can estimate
the central temperature, Tc, of a self-gravitating object, using eq. 1, as

kTc ≃
GMµmH

R
, (6)

where M and R are the mass and the radius of the object (for the Sun: (Tc)⊙ ≃
2× 107K).

(1M⊙ = 1.99× 1030 kg; 1R⊙ = 6.96× 108m; 1L⊙ = 3.86× 1026 W.)



The Virial Theorem

Multiplying the equation of hydrostatic equilibrium

dP

dr
= −GMrρ

r2

by 4πr3dr and integrating the resulting equation from the centre to the surface, one obtains
after integrating the l.h.s. by parts

4π
[

r3P
]r=R,P=Ps≃0

r=0,P=Pc

− 3
∫ R

0
P 4πr2 dr = −

∫ R

0

GMr dMr

r
︷ ︸︸ ︷

GMr

r
4πr2ρ dr
︸ ︷︷ ︸

dMr

.

The first term (the boundary term) vanishes both at the center (exactly) and at the surface
(approximately), while the last term just gives the total gravitational potential energy, Ω, of
the star. Using the relationship between the internal energy (per unit volume) and the pressure
for an ideal gas with adiabatic exponent γ,

u =
P

γ − 1
,

the integral on the left becomes

⇒
∫ R

0
Pr 4πr

2 dr = (γ − 1)
∫ R

0
u 4πr2 dr

︸ ︷︷ ︸

U

,

were U is the total thermal energy of the star. Combining these equations, one obtains the
desired result, the virial theorem:

Ω+ 3(γ − 1)U = 0. (7)

For γ = 5/3, Ω = −2U , and the total energy, E = Ω+ U , can be written as

E = −U ∼ −3

2
N 〈kT 〉

(in a qualitative sense). The fact that E ∝ −〈T 〉 implies that, if a star loses energy (e.g. by
radiation from the surface), E becomes more negative and the average temperature increases,
i.e. a star losing energy heats up, which in a thermodynamical sense corresponds to a negative
heat capacity. This can easily be understood from the fact that, according to the virial theorem,
half of the gravitational potential energy released if the star contracts is converted into thermal
energy, while the other half is lost from the star. An entirely analogous example is the decay
of the orbit of a satellite, where the velocity (and kinetic energy) of the satellite increases as
the orbit decays (due to the virial theorem in classical mechanics).

The virial theorem is one of the most important theorems for understanding the structure and
evolution of stars.

The Stability of Nuclear Burning
Consider the core of a star burning nuclear fuel at a particular equilibrium rate, ǫ. Assume
that this burning rate is perturbed by some amount ∆ǫ. This increases the energy production
in the core and causes an expansion of the core, but that expansion, according to the virial
theorem, reduces U and hence T (∆Ω = −2∆U , i.e. cools the core). Since the burning rate is
strongly temperature dependent, this will reduce the burning rate, i.e. provide a strong negative
feedback, making nuclear burning in non-degenerate stars stable.

Comment: This negative feedback does not work if the matter is very degenerate, when the
pressure is independent of the temperature. In this case, the ignition of nuclear fuel does not
cause an expansion of the core; since the release of nuclear energy then raises the temperature,
this will further increase the nuclear burning rate (i.e. now provide a positive feedback); this
leads to a thermonuclear runaway which may lead to the complete disruption of the star, as in
certain supernovae, or at least a hydrodynamical flash, as in the case of the helium flash.

The Virial Theorem as a Driving Force of Stellar Evolution
In phases where there is no nuclear burning, the total energy of a star necessarily decreases
because energy is radiatated away from the surface. Since E = 1/2Ω, Ω must decrease (be-
come more negative), which means that the star contracts (the energy source in this phase
is “gravitational energy”). According to the virial theorem, half of the gravitational potential
energy released in the contraction is converted into thermal energy, i.e. heats the star. This will
continue till the core of the star reaches a temperature that is high enough for particular nuclear
reactions to start. The lifecycle of a star is governed by the alternation of such contraction
and nuclear burning phases, starting on the pre-main-sequence where a star contracts till its
centre reaches the temperature for hydrogen burning (∼ 107 K). After the core has exhausted
its hydrogen, it starts to contract again either until it becomes degenerate or until the central
temperature reaches the characteristic temperature for helium burning (∼ 108 K). Dependent
on the mass of the star, these successive contraction and burning phases may continue until the
core is completely composed of iron. Since iron has the highest binding energy/baryon, no more
nuclear energy can be released and the core has to contract/collapse, producing a core-collapse
supernova.

In the case where γ → 4/3, the virial theorem states that Ω = −U ⇒ E = Ω+ U ≈ 0, i.e.
the total energy approaches 0, which means that such a star will be strongly affected by small
perturbations. Generally, objects become dynamically unstable when γ = 4/3, which can lead
either to the collapse or the complete disruption of the object (depending on the perturbation).
In the most massive stars, γ approaches 4/3, which makes them very susceptible to mass loss.



Energy transport

The size of the energy flux is determined by the mechanism that provides the energy trans-
port: conduction, convection or radiation. For all these mechanisms the temperature gradient
determines the flux.

• Conduction does not contribute seriously to energy transport through the interior

⊲ At high gas density, mean free path for particles << mean free path for photons.

⊲ Special case, degenerate matter – very effective conduction by electrons.

• The thermal radiation field in the interior of a star consists mainly of X-ray photons in
thermal equilibrium with particles.

• Stellar material is opaque to X-rays (bound-free absorption by inner electrons)

• mean free path for X-rays in solar interior ∼ 1 cm.

• Photons reach the surface by a “random walk” process and as a result of many interactions
with matter are degraded from X-ray to optical frequencies.

• After N steps of size l, the distribution has spread to ≃
√
N l. For a photon to “random

walk” a distance Rs, requires a diffusion time (in steps of size l)

tdiff = N × l

c
≃ R2

s

lc
(8)

For l = 1 cm, Rs ∼ R⊙ → tdiff ∼ 5× 103 yr.

Energy transport by convection:

• Convection occurs in liquids and gases when the temperature gradient exceeds some
typical value.

• Criterion for stability against convection
(Schwarzschild criterion)

• convective stability: a fluid element is stable against convection if, after a small displace-
ment, material in the fluid element becomes denser than the ambient medium → fluid

elements sinks back:
ρ

γP

dP

dr
− dρ

dr
> 0

Equation of State

Ideal Gas:

P =
N

V
kT =

ρ

µmH

kT, (9)

where µ is the mean particle mass in units of mH, i.e.

1

µ
= 2X +

3

4
Y +

1

2
Z,

where X is the mass fraction of hydrogen (X⊙ ≃ 0.7), Y the mass fraction of helium Y⊙ ≃ 0.28)
and Z the mass fraction of heavier elements, referred to as metals (Z⊙ ≃ 0.02).

Radiation Pressure:

P =
1

3
aT 4. (10)

Electron Degeneracy (T = 0K):

P = K1

(

ρ

µemH

)5/3

, (11)

(non-relativistic degeneracy)

P = K2

(

ρ

µemH

)4/3

. (12)

(relativistic degeneracy)

Opacity

Thomson (Electron) Scattering:

κ = 0.020m2 kg−1 (1 +X), (13)

Kramer’s Opacity:
κ ∝ ρ T−3.5, (14)

Low-Temperature Opacity:
κ ∝ ρ1/2 T 4. (15)



NUCLEAR REACTIONS

• Binding energy of nucleus with Z protons and N neutrons is:

Q(Z,N) = [ZMp +NMn −M(Z,N)]
︸ ︷︷ ︸

mass defect

c2. (16)

• Energy release:

4H→4He 6.3× 1014 Jkg−1 = 0.007 c2 (ε = 0.007)

56H→56Fe 7.6× 1014 Jkg−1 = 0.0084 c2 (ε = 0.0084)

• H burning already releases most of the available nuclear binding energy.

Nuclear reaction rates:

1 + 2 → 1,2 + Energy

Hydrogen Burning (T ≃ 107 K)
PPI chain:

1. 1H + 1H → 2D + e+ + ν + 1.44MeV

2. 2D + 1H → 3He + γ + 5.49MeV

3. 3He + 3He → 4He + 1H + 1H + 12.85MeV

• for each conversion of 4H →4 He, reactions (1) and (2) have to occur twice, reaction (3)
once

• the neutrino in (1) carries away 0.26MeV leaving 26.2MeV to contribute to the luminosity

• reaction (1) is a weak interaction → bottleneck of the reaction chain

• Typical reaction times for T = 2 × 107 K are

(1) 14 × 109 yr

(2) 6 s

(3) 106 yr

⊲ (these depend also on ρ,X1 and X2).

⊲ Deuterium is burned up very rapidly.

• (very approximate)
εPP ∝ ρX2

H T 4. (17)

THE CNO CYCLE (T < 108 K)

• Carbon, nitrogen and oxygen serve as catalysts for the conversion of H to He

12C+ 1H → 13N+ γ

13N → 13C+ e+ + ν

13C+ 1H → 14N+ γ

14N+ 1H → 15O+ γ

15O → 15N+ e+ + ν

15N+ 1H → 12C+ 4He

• The seed nuclei are believed to be predominantly 12C and 16O: these are the main products
of He burning, a later stage of nucleosynthesis.

• (very approximate)
εCNO ∝ ρXHXCNO T 20. (18)

Helium Burning (T ≃ 108 K)

Triple α reaction: 4He + 4He + 4He → 12C + γ

• (very approximate)
ε3α ∝ X3

He ρ
2 T 30. (19)



White Dwarfs (WDs)

• CO white dwarfs are the remnants of low-/intermediate-mass stars (M ∼<
7M⊙) that lose their envelopes as asymptotic giants (ejecting a planetary

nebula in the process)

• they are completely supported by electron-degeneracy pressure (Pauli ex-

clusion principle)

Mass–Radius Relation for White Dwarfs (non-relativistic):

R ∝ 1

me
(µemH)

5/3M−1/3, (20)

note the inverse mass–radius relationship

• as electrons become relativistic (with increasing mass), WDs can no longer
be supported by electron degeneracy → maximum mass for WDs

Chandrasekhar Mass for White Dwarfs:

MCh = 1.457

(
2

µe

)2

M⊙. (21)

Stellar Timescales

Dynamical Timescale:

tdyn ≃
1√
4Gρ

, (22)

∼ 30min
(

ρ/1000 kg m−3
)−1/2

,

Thermal (Kelvin-Helmholtz) Timescale:

tKH ≃ GM 2

2RL
, (23)

∼ 1.5× 107 yr (M/M⊙)
2 (R/R⊙)

−1 (L/L⊙)
−1 ,

Nuclear Timescale:
tnuc ≃ Mc/M η (Mc2)/L, (24)

∼ 1010 yr (M/M⊙)
−3 ,

(Radiative) Diffusion Timescale:

tdiff = N × l

c
≃ R2

s

lc
. (25)

Derived Relations

Mass–Luminosity Relation (for stars ∼ 1M⊙):

L ≃ L⊙

(
M

M⊙

)4

, (26)

Mass–MS Lifetime Relation (for stars ∼ 1M⊙):

TMS ≃ 1010 yr

(

M

M⊙

)−3

, (27)

Mass–Radius Relation for White Dwarfs (non-relativistic):

R ∝ 1

me
(µemH)

5/3M−1/3, (28)

Chandrasekhar Mass for White Dwarfs:

MCh = 1.457

(

2

µe

)2

M⊙, (29)

Schwarzschild Radius (Event Horizon) for Black Holes:

RS =
2GM

c2
≃ 3 km

(

M

M⊙

)

. (30)

Miscellaneous Equations

Distance Modulus:

(m−M)V = 5 log (D/10pc), (31)

Absolute V Magnitude:

MV = −2.5 log L/L⊙ + 4.72 +B.C.+ AV , (32)

Salpeter Initial Mass Function (IMF):

f(M) dM ∝ M−2.35 dM, (33)

Black-Body Relation:
L = 4π R2

s σT
4
eff , (34)

Kepler’s Law:

a3
(

2π

P

)2

= G(M1 +M2). (35)



Evolution in the Hertzsprung-Russell (H-R) Diagram
The evolution of low-mass stars can be qualitatively discussed using the H-R diagram of a
globular cluster (log luminosity versus log effective temperature; note that the temperature
scale is inverted). In this case, one can assume that all stars have approximately the same
age. Since the evolutionary timescale scales roughly like M−3, stars of slightly different masses
correspond to stars in slightly different evolutionary phases. Hence the H-R diagram, despite
the fact that it represents a snapshot at a given time, illustrates all the evolutionary phases a
star near the turn-off mass (see below) will pass through.

• Region A represents the main sequence in the cluster. All stars in this region are in the
core hydrogen-burning phase, the longest evolutionary phase of a star. Stars at lower
luminosity along the main sequence have lower masses (where roughly M ∝ L4).

• Turning Point X: stars near the turning point have (almost) completely consumed the
hydrogen in the core and are about to develop first an isothermal, then an electron-
degenerate core and are about to leave the main sequence (moving toward lower tem-
peratures, i.e. region B). Note that there are a few stars on the extension of the main
sequence beyond the turning point. These are called blue stragglers and are slightly more
massive stars that have not yet evolved off the main sequence. They most likely represent
the products of the interaction with a companion star or are the result of a direct collision
and merger with another star in the cluster (a common occurrence in globular clusters).

• Regions B and C: Once stars have left the main sequence, they become bigger and more
luminous and become subgiants (region B) and ultimately giants (region C). In the giant
phase, they evolve at almost constant effective temperature (on so-called Hayashi tracks;
there are no hydrostatic equilibrium solutions at lower temperatures). In this phase, stars
have a degenerate, very compact core of ∼ 0.01R⊙ and are surrounded by a convective
envelope which fills most of the volume of the star (of R ∼ 20 − 200R⊙). Hydrogen
burning occurs in a shell just outside the core. In region C, the mass of the degenerate
hydrogen-exhausted core grows from a mass of around 0.1M⊙ to a mass of ∼ 0.48M⊙.

• Turning Point Y:When the star reaches the critical mass of about 0.48M⊙, helium ignites
in the centre of the star. Since the core is degenerate, helium ignition is quite explosive
leading to a rapid adjustment of the whole structure of the star (so-called helium flash).
However, the flash is not sufficiently explosive to completely disrupt the star (like in
a supernova). Instead the star re-adjusts and quickly settles on the horizontal branch
(region D). Therefore, the helium flash marks a temporary peak in the luminosity of the
star, defining the tip of the red-giant branch.

• Region D: After re-establishing hydrostatic and thermal equilibrium, the star spends a
significant fraction of its life on the horizontal branch, where it burns helium in the centre
(at a temperature ∼ 108 K), surrounded by a hydrogen-burning shell (the latter is often
the dominant nuclear-burning source). After having consumed all the helium in the core,
the star again becomes a giant, where the track asymptotically approaches the first giant
branch. In this asymptotic giant phase, the star has a degenerate carbon/oxygen core
surrounded by a helium-rich shell and a hydrogen-rich envelope. The nuclear energy
source is hydrogen and helium burning in thin shells surrounding the degenerate core. At
some point the star will lose all of its remaining envelope, uncovering the degenerate core
which then cools down and becomes a white dwarf (with a size of ∼ 0.01R⊙).

The energy released in the fusion of 4 protons to one alpha particle is equal to the rest mass
energy released in the reaction, i.e. ∆E = (4mH −mHe) c

2. Defining an efficiency, η, for this
nuclear reaction from

∆E = η∆MH c2, (36)

where ∆MH is the hydrogen rest mass consumed, the efficiency can be estimated from

η =
4mH −mHe

4mH

≃ 0.007,

using mH = 1.0078 a.m.u and mHe = 4.0026 a.m.u. Assuming that a star exhausts hydrogen
in the innermost 10% of its mass on the main sequence and taking an initial hydrogen mass
fraction X = 0.7, the total nuclear energy produced on the main sequence can be estimated as

EMS = η ×X × 0.1 ×M c2

On the other hand, the mass–luminosity relation for solar-type stars is approximately given by

L = 1L⊙

(

M

M⊙

)4

.

Dividing EMS by L and eliminating M in favour of L using the L–M relation, then leads to an
estimate of the main-sequence lifetime as function of the final luminosity on the main sequence,
i.e. the turnoff luminosity, LTO,

TMS ≃ 1010 yr

(

LTO

L⊙

)−3/4

. (37)

In this particular cluster, the turnoff luminosity is around 1L⊙, and hence a rough estimate
of the age would be 1010 yr (i.e. the same as the main-sequence lifetime of a 1M⊙ star). Note
that this estimate ignores metallicity effects (lower-metallicity stars have higher luminosity and
shorter main-sequence lifetimes).
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