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Chapter 1

Introduction

In this example, we will calibrate and reduce data taken with the Short Wavelength
Integral Field spectrograph (SWIFT) in the 235mas scale (seeing mode). The data were
all taken on one night (5th May 2012). The science target is an early-type galaxy in the
Coma cluster; the science goal is to determine the internal kinematics (bulk motion of
the stars) from the doppler shifts of the calcium triplet lines at around 0.85µm.

Data reduction in this case refers to the removal of instrumental effects. Thus the
output of this example are 3D data cubes: two spatial dimensions and one spectral. The
removal of telluric absorption, the calibration of fluxes and the combination of multiple
exposures is not the principal subject of this document, although some useful advice is
given that the end in Further Processing (§13)
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Chapter 2

Preliminaries

To work through this example, you need a large tar file called SwiftWorkedExam-
ple.tgz (this should have been made available to you). Starting in a (bash/tcsh) com-
mand prompt, untar the contents of this file; it should unpack into a new directory called
WorkedExample.

> tar xvfz SwiftWorkedExample.tgz

Then change directory in to WorkedExample and do a directory listing.

> cd WorkedExample

> ls

You should see the following list of files

master003.fits master008.fits master013.fits slave003.fits slave008.fits slave013.fits

master004.fits master009.fits master014.fits slave004.fits slave009.fits slave014.fits

master005.fits master010.fits master074.fits slave005.fits slave010.fits slave074.fits

master006.fits master011.fits master077.fits slave006.fits slave011.fits slave077.fits

master007.fits master012.fits master078.fits slave007.fits slave012.fits slave078.fits

Files from the master chip (and spectrograph) are prefixed master, while those from
the slave are prefixed slave. The three digit number following this is the exposure number.
Most of these files are calibrations: exposures 9 to 11 are the (coarse) vertical line frames;
exposures 3 to 5 are the arc line frames; exposures 6 to 8 are the halogen lamp frames
(note that ideally 5 exposures would be used); exposures 12 to 14 are the horizontal line
frames. The three science exposures are 74, 77 and 78, observing with the object-sky-
object sequence.
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Chapter 3

Prepping

The first stage in the data reduction process involves removing the bias level, trimming
the overscan and averaging multiple calibration frames (science frames are not averaged).
Collectively, this is referred to as prepping.

Start by loading the Swift pipeline in IRAF (installation details can be found in the
pipeline manual).

ecl> swift

The prompt should now read

swift>

Now unlearn the swiftredMS task.

unlearn swiftredMS

and then edit the parameter file for the same task

epar swiftredMS

Enter the exposure numbers for the science frames, the VLs, the Arcs, the halogen
lamps and the HLs. After you’ve done that, the first few parameters should look like
the following:

sci_inpu= 074,078

prefix_s= -

vl_frame= 009,010,011

al_frame= 003,004,005

(lamp_fr= 006,007,008)

(hl_fram= 012,013,014)

Note that exposure numbers are given in 3 digit format and separated by commas.
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Confirm the scale of the observations (all 235mas) and that you want to prep the
data. The relevant parameters should look like the following:

(scale = 0.235)

(S_PREP = yes)

(S_EXVL = no)

(S_ARCCA= no)

(S_FI = no)

(S_HL = no)

(S_CALCU= no)

(S_BPS = no)

(S_SFLEX= no)

(S_SCICU= no)

(S_MSMER= no)

Next you should verify that you will prep the science, VL, HL, arc and lamp files. The
relevant parameters should look like the following:

(p_flat = yes)

(p_vtrac= yes)

(p_arc = yes)

(p_sci = yes)

(p_htrac= yes)

Note that if you weren’t providing HL or halogen lamp frames (i.e. you didn’t want to
flat field, illumination correct or correct the warp in the field of view), the p htrace
and p flat parameters above could be set to no. You should now check that the other
parameters relevant to the prepping stage are set correctly. They should be as follows:

(do_b = yes)

(do_trim= yes)

(master_= 1.)

(master_= 0.97)

(slave_a= 1.)

(slave_a= 0.97)

(msgainr= 1.)

(masterb= swift$mBPM2.dat)

(slavebp= swift$sBPM2.dat)

With that done, you can run the pipeline! Either epar in to the param file and use :go,
or do the following:

swift> swiftredMS (mode=’h’)

The pipeline should finish and exit cleanly with the following:
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ALL PREPPING COMPLETE!

***************************************************

* Reduction Complete! *

***************************************************

Of course the reduction isn’t complete; just the prepping.

5



Chapter 4

Extracting vertical lines

In order to reconstruct a cube, we need to calibrate the position of the individual slitlets
as a function of wavelength. This is done with the vertical line (VL) frames. Switch off
the prepping stage and turn on the exvl stage.

(S_PREP = no)

(S_EXVL = yes)

Now check that the extraction parameters are correct. The cut low and cut high params
are the most important; they define the amount to extract left and right of the central
line (refer to the SWIFT reduction manual). If you’re planning to reduce frames taken
in the 80mas or 16mas scales, you may need to edit these, as well as the vl b sa and
vl widt (refer to the data reduction manual for further details). For now, they should
look as follows:

(vl_b_sa= )

(vl_widt= 3)

(cut_low= -45.1)

(cut_hig= 45.1)

The addition of 0.1 to the cut low and cut high parameters is just a get-around for a
bug in a pall, which occasionally rounds 45.0 to 44.
Now run the pipeline again and trace the slitlets in the master and slave chips (refer to
the reduction manual for further details).

swift> swiftredMS (mode=’h’)

You will be then asked:

Edit apertures for [vertical line frame]? (yes):

You should answer yes to this. A window will pop up which should look something like
Fig. 4.1 which shows a cut through all the vertical lines. For example, in the 235mas
scale with the coarse vertical lines, each slitlet should have 7 vertical lines running along
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Figure 4.1: An example of the coarse vertical line frame in the 235mas spaxel scale
being labelled with extraction apertures (centred on the middle (of 7) traces). Note that
apertures (or slitlets) are strictly numbered from left to right in chronological order.

the wavelength axis, grouped in a two, then a three, then another two (the first line
may be just off the edge of some slitlets). For other scales, using the coarse or fine
vertical lines, this pattern changes. You now need to mark the central trace in each of
the slitlets (i.e. in the 235mas scale with the coarse vertical lines, this is the middle line
in the grouping of three); at this point you may find it easier to zoom in using the w
and e keys. To do this, move the mouse (and the red cross hairs) over the middle trace
in the first (far left) slitlet and press m (for mark). A white line should appear above
the trace showing the width of the slitlet and the number of the aperture (or in this
case, slitlet). You need to repeat this another 22 times, moving from the left to the right
in strict order (see Fig. 4.1). Finally you should be left with 22 marked apertures to
trace and extract (as in Fig. 4.2). You can delete traces and remark them if you make a
mistake, but the ordering is strictly with aperture number ascending from left to right
as shown in Fig. 4.2.

Once you have marked the apertures, quit by pressing q in the plotting window.
After that, you will be asked:

Trace apertures for [vertical line frame]? (yes):

You must reply yes to this question; failure to do so will result in failure to reduce any
data. You will then be asked:

Fit traced positions for [vertical line frame] interactively? (yes):
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Figure 4.2: A coarse vertical line frame observed in the 235mas spaxel scale. All the 22
traces have been marked and are shown above the relevant areas.

At this point, it’s best to reply yes although if you’re in a hurry you might risk trusting
the automated tracing (it’s not bad) and reply no; if you choose the latter option, be
sure to create the cubes of the calibration data (by setting S CALCUBES to yes) and
inspect the cube created by the vertical line frame (in something like QFitsView, an
external application) to make sure all the vertical lines are aligned and... vertical.

If you choose to trace the lines interactively, you will be asked:

Fit curve to aperture 1 of [vertical line frame] interactively? (yes):

To which you should of course reply yes. You will then see something along the lines of
the trace shown in Fig. 4.3. Note that the white band at the bottom shows the sample
which is being fitted. Press ? to learn more about how you can change this fit. Try to
fit only the regions where the trace was stable: you can clearly see that at short and
long wavelengths the scatter increases dramatically (due to a PSF problem at short and
long wavelengths - this data was taken before 2010) and these regions should not be fit
by the polynomial (as is the case in Fig. 4.3). Furthermore, keep the order of the fit low
(around 3-5) so a reliable extrapolation can be made into the poor PSF regions.

Once you’re happy with the fit, press q to quit: you will then be asked if you want to
fit the trace for aperture 2 interactively... if you do, reply yes. This process will repeat
for all 22 slitlets. At the end you will be asked:

Extract apertures for [vertical line frame] ? (yes):
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Figure 4.3: The swiftredMS routine follows the maxima of the selected vertical line. At
the very short and long wavelengths, it can sometimes have difficulty due to problems
with the SWIFT PSF in these regions, particularly if the data was taken before 2010;
thus is is best to fit the low scatter regions in the centre (where the PSF is good) and
use a low order polynomial to extrapolate into the affected regions.
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to which you must reply yes. The routine then extracts 22 2D specra from the vertical
line frame, following the traces you just fitted and correcting for the curvature (via linear
interpolation).

You just calibrated the vertical lines in the master spectrograph! But you now need
to calibrate them in the slave spectrograph. So repeat the process, first marking the
apertures (slit lets), then tracing and extracting them.

After calibrating the vertical lines, the rest is normally automatic: it bags up the 22
2D slitlets into a single MEF (mutli-extension fits) file with suffix .strip.fits for both the
master and slave spectrographs.

Again, if all has gone well, you’ll end up with

***************************************************

* Reduction Complete! *

***************************************************
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Chapter 5

Wavelength calibration

The spectra need to be wavelength calibrated using the arc frames. Turn off the exvl
stage and turn on the arccal stage:

(S_EXVL = no)

(S_ARCCA= yes)

Figure 5.1: The three key SWIFT arc lines to identify manually

You may want to check that other relevant parameters are correctly set.

(line_li= swift$ArNe.dat)
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(xorder = 5)

(yorder = 4)

(nlost = 10)

(lam0 = 0.63)

(dlam = 1.0E-4)

(nlam = 4112)

(loglam = no)

(trans_i= linear)

When you’re happy, run the pipeline.

swift> swiftredMS (mode=’h’)

In this worked example, you will probably need to confirm the automatic solutions for
master slitlets 1 & 3, slave slitlet 18 and manually find the solutions for master slitlet 8
and slave slitlets 4, 6 & 13.

There is a trick to manual identifications; you don’t need to identify all the lines,
just 3 at 0.6402um, 0.7635um and 0.9123um. Then hit l, f, q a few times to let the
automatic finding algorithm do the rest. You should then get a good fit (as described
in the data reduction manual). Again, when the pipeline is finished, it displays

***************************************************

* Reduction Complete! *

***************************************************
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Chapter 6

Flat fielding and illumination
correction

Now we need to create a flat field frame from the halogen lamp exposures. We can
also make an illumination frame from the same exposures. To do this, turn off the arc
calibration stage and turn on S FI.

(S_ARCCA= no)

(S_FI = yes)

Then run the pipeline.

swift> swiftredMS (mode=’h’)

Note that one can split the flat field and illumination problem into four parts: 1) pixel-
to-pixel variations AKA flat field variations, (e.g. quantum efficiency differences between
pixels), 2) detector illumination variations (e.g. dust on the detector surface), 3) field-
of-view illumination variations (e.g dust, hairs or cracks on the optical surfaces) and 4)
spectral illumination variations (quantum efficiency variation with wavelength as well as
illumination of a single spaxel by different points on the sky as a function of wavelength).
I have chosen to group 1) & 2) into “flat field correction” and 3) & 4) into “illumination
correction”.

After processing the data, you should find the files masterFLAT.fits and slave-
FLAT.fits; these are the flat fields for the two detectors. You can open them in ds9
and inspect them; they should have values around 1. There are also two cubes created:
masterILLUM.fits and slaveILLUM.fits. These are the illumination cubes; you can in-
spect them in QFitsView and see how the illumination changes across the field of view
and with wavelength. Again, when the pipeline is finished, it displays

***************************************************

* Reduction Complete! *

***************************************************
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Chapter 7

Horizontal line correction

SWIFT has a slightly warped field of view. Across the majority of the detector, horizon-
tal lines will be observed as horizontal; but at the top and bottom (along the longest di-
mension), horizontal lines appear slightly tilted: there is some asymmetric shear present.
For most science cases, where the object lies near the middle of the detector, this shear is
not a problem and is not noticeable. However, if the science target fills the field of view
(e.g. a nearby planet observed with the 80mas or 16mas scales) or if you wish to mosaic
several SWIFT pointings, you will probably need to correct the data cubes for the shear
effect. See Fig. 7.1 for an illustration of the asymmetric shear across the SWIFT field
of view (master & slave combined).

Start by turning off the flat field stage, and turning on the horizontal line calibration.

(S_FI = no)

(S_HL = yes)

Then run the pipeline.

swift> swiftredMS (mode=’h’)

Note that, as for the vertical line stage, if you’re using the 80mas or 16mas scales with
the coarse horizontal lines, you may need to edit vl b sa and vl widt (refer to the data
reduction manual for further details). The default settings are fine for the 235mas scale
and the coarse horizontal lines.

This routine requires some user input. It starts asking you to identify the horizontal
lines; this is where the relative positions of the lines (in terms of arc seconds) are defined.
Ideally, it would identify the lines automatically, but in practice it requires some help
from you. Like the vertical lines, in the 235mas scale, the coarse lines appear in a pair,
followed by a triple, followed by a pair. Again, as for the vertical lines, identify the
middle line in the triple by pressing m; now type in the position of this line, which is
defined to be 0.0 – the centre of the detector. Next, identify (mark) the furthest line to
the right. Depending on which scale you’re using, you need to specify the position of this
line in arc seconds from the central line. For the 235mas scale and the coarse horizontal
lines, this line is 4.5185 arcsec away; if you type 4.5 and hit enter, IRAF will do the
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Figure 7.1: The location of the horizontal lines in the 235mas SWIFT FoV.

Figure 7.2: An example of the horizontal lines marked and identified in the 235mas scale.
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Figure 7.3: Typical residuals from a polynomial fit to the horizontal lines (correcting
the asymmetric shear) in the 235mas scale; note one point with a residual of 0.2 pixels
has been deleted from the fit.

rest. With two lines identified (as in Fig. 7.2), you can usually automatically identify the
rest; press l. Hopefully now, all the lines show yellow pointers above them; if not, you
should manually identify them (the coordinate file for the 235mas scale is in the SWIFT
IRAF package directory, swift$HL235.dat). Now press f to fit a linear function to
these points. Then hit q twice to exit. The next stage automatically identifies all those
lines left and right of the middle, and then fits the (x, y) pixel locations in the collapsed
image to (x′, y′) arc second locations in the sky; you are asked if you want to do this
interactively

Fit HL.image.raw interactively (yes):

There is no need to do this interactively, unless you want to check that everything is
working well. If you do enter yes, then you will see something like Fig. 7.3. You can
delete points and refit; hit ? to learn more, or investigate the fitcoords IRAF routine.
The residuals of the fit should be <∼ 0.1 pixels; you can see in Fig. 7.3 that we deleted
a point with a residual of 0.2 pixels, although the effect on the fit was marginal.

You now have to repeat a similar process for the vertical lines; this is because you
just used the horizontal lines to define the horizontal plate scale and you now need to
do the same using the vertical lines. Note that the vertical lines are not in the same
sky locations as the horizontal lines! SWIFT has a roughly 2:1 aspect ratio in the field
of view, so the vertical lines are spaced twice as far apart as the horizontal lines. See
Figs. 7.4, 7.5 and 7.6 for analogies to Figs. 7.1, 7.2 and 7.3. Note that the vertical
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Figure 7.4: The location of the vertical lines in the 235mas SWIFT FoV.

line to the right in Fig. 7.4 has position 9.037 (not 4.5185 as it was for the HL) in the
235mas scale (see swift$VL235.dat). After running this stage, you should inspect
HL.cube.fits and VL.cube.fits in QFitsView and check that the lines remain fixed
across all wavelengths. When complete, the pipeline returns

***************************************************

* Reduction Complete! *

***************************************************
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Figure 7.5: An example of the vertical lines marked and identified in the 235mas scale.

Figure 7.6: Typical residuals from a polynomial fit to the vertical lines in the 235mas
scale.
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Chapter 8

Checking the calibrations

It’s always a good idea to check that your calibration frames look like what you expect
them to. Although this stage is far from essential, it’s strongly recommended; a lot
can go wrong with IFU data. So turn off the horizontal line correction and turn on
S CALCU.

(S_HL = no) Calibrate horizontal trace correction? (yes/no)

(S_CALCU= yes) Make cubes of the calib data (arc/trace)? (y/n)

Then run the pipeline.

swift> swiftredMS (mode=’h’)

Now you’ll have to watch the pipeline make cubes of the calibrations; be patient (tea?).
Eventually it will show you a reduced and then re-collapsed 2D image of the (master &
slave) arc frame and ask

Please inspect the ARC frame in buffer #1 of DS9

Is this transform acceptable? (y/n)

The object of showing you the reduced ARC frame is to make sure the arc lines are all
exactly horizontal (a single row represents a single wavelength). In ds9, zoom in at the
top and bottom of the image to check. Note that you may see the PSF degrade slightly;
this isn’t the same as the wavelength solution being wrong. One example of a “thing to
watch out for” is shown in Fig. 8.1; notice how the arc lines warp upwards at the end
of some slitlets. In this case, the wavelength calibration is wrong and may need to be
repeated with more interaction from the user (individually inspecting the identification
of arc lines and polynomial fits across each slitlet; in this case, the parameters interfi,
reidans & interac may be useful). If you’re happy with how the arc frame looks (i.e. it
looks like Fig. 8.2), reply yes. The pipeline will then create a cube of the vertical line
data and display a wavelength collapsed image in ds9. Again, it will ask if it looks OK.
You should check that the lines in the top and bottom halves (slave and master) are
aligned; no offset should be visible. If there is, something has gone wrong. Once you’re
happy (it looks like Fig. 8.3), reply yes.
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Figure 8.1: An example of what can go wrong with the automatic wavelength calibration:
here we see that the first few slitlets aren’t quite right; we’re going to need to repeat
the S ARCCAL process being very careful with the reidentify stages. It’s always a good
idea to inspect the transformed arc frame, even if things appeared to work fine from the
written output (as in this case).
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Figure 8.2: An example of what a reduced and then flattened arc frame should look like;
no discontinuities and no warps.
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Figure 8.3: An example of what a reduced vertical line frame (collapsed across all wave-
lengths) should look like; no discontinuities and no warps.

And that’s the end of this stage (and the formal instrument calibrations). If you did
find something wrong above and replied no, the pipeline just stops; it’s up to you to
seek a solution to the problem.
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Chapter 9

Correcting for bad pixels and
cosmics

You’re now ready to start reducing the science frames. The first step is to (optionally)
mark all known bad pixels and find cosmic rays. So turn off S calcu and turn on S BPS.
Note that you also need to change the prefix to select prepped science frames (using the
∧p option); if you try to reduced unprepped frames, you’ll end up with nonsense (or
more likely an error). The swiftredMS parameters should look like the following

prefix_s= ^p

(S_CALCU= no)

(S_BPS = yes)

If you want to find cosmics and treat them as bad pixels, you’ll also need to change the
do laco parameter to yes.

Note that there are a variety of cosmic ray strike types and one type (low energy
electrons) leaves a round ‘blob’ or ‘spot’ on the detector (see Don Groom’s excellent
description in ‘Cosmic Rays and Other Nonsense in Astronomical CCD Imagers’). The
La Cosmic (van Dokkum 2001) routine, which we use here, isn’t very good at finding
these spots (it’s excellent at finding everything else). If your science frames are of faint
targets (e.g. 15mins on a Coma cluster galaxy as done here), you can threshold them for
bright pixels: these will undoubtably be spots or remaining cosmics. To do this, set the
do thre parameter to yes. You can change the level at which the pixels are thresholded
at, with the thresho parameter, but I think the default is pretty good. WARNING:
if you’re observing a bright target (star, planet, nearby galaxy) where the counts are
likely to be greater than the threshold value, then using this option will clip the bright
parts of your exposure, likely rendering the reduced version useless. There is probably
no reason to threshold (or even cosmic ray correct) very short exposures such as telluric
or flux standard stars.

For the purpose of this worked example, it’s safe to use the threshold, and the
parameters should be set as follows

(do_laco= yes)
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Figure 9.1: A histogram of pixel values for a single slitlet, produced after application of
the La Cosmic routine. Note the small number of pixels with values > 1000; these are
the ‘spot’ strikes, likely from low energy electrons, which La Cosmic finds hard to detect
but which we can threshold out.

(do_thre= yes)

(thresho= 1000.)

Now you’re ready to run the pipeline.

swift> swiftredMS (mode=’h’)

Cosmic ray detection takes around 15 mins per exposure. In this case, there are three
exposures; best go get some lunch. If you’re reducing a whole night’s data, you’d best
leave the cosmic ray stage running overnight. If you are thresholding the data for muon
strikes, the pipeline displays a histogram of the pixel values of each slitlet. This is
another check: the main distribution of pixel values should fall short of the threshold
value (1000); only a few peaks should be present beyond this, which are the spot strikes
you’re cleaning (see Fig. 9.1) One thing to note: La Cosmic is very good at detecting
cosmic rays, but it’s not as infallible when it comes to replacing the affected pixels. When
you come to combine your data frames, it’s best to reject the bad pixels and cosmics.

When you’ve finished detecting cosmics, you’ll find a set of new fits files in the
working directory, prefixed with ∧bp; these are the bad pixel, prepped versions of the
original input files. If you use cat files, you’ll find they have two extentions: a SCIence
extension and a Bad Pixel Mask extension (which also includes cosmics).

ecl> catfits bp*
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Figure 9.2: A typical bad pixels mask, which also includes cosmic rays.

EXT# FITSNAME FILENAME EXTVE DIMENS BITPI OBJECT

0 bpmaster074.f 8

1 IMAGE SCI 4112x2040 -32 GMP3084

2 IMAGE BPM 4112x2040 -32 Bad pixel ima

0 bpmaster078.f 8

1 IMAGE SCI 4112x2040 -32 GMP3084

2 IMAGE BPM 4112x2040 -32 Bad pixel ima

0 bpslave074.fi 8

1 IMAGE SCI 4112x2040 -32 GMP3084

2 IMAGE BPM 4112x2040 -32 Bad pixel ima

0 bpslave078.fi 8

1 IMAGE SCI 4112x2040 -32 GMP3084

2 IMAGE BPM 4112x2040 -32 Bad pixel ima

If you display one of the BPMs, you’ll probably find a few cosmics, as in Fig. 9.2.
When complete, the pipeline returns

***************************************************

* Reduction Complete! *

***************************************************
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Chapter 10

Spatial flexure

Pre 2010, SWIFT used to show considerable flexure, both spatially and spectrally. How-
ever, this has now been significantly reduced and we don’t really find any need to correct
for the spatial element anymore; its manifests as a shift or wrapping of the cube around
the longest dimension. If you really think there is considerable spatial flexure in your
data (which may cause a problem in the illumination correction), then keep reading.
Else, skip to the next section.

This procedure attempts to remove the spatial component of the flexure in SWIFT.
When the telescope moves across the sky, stresses in the instrument create flexure of
components and cause the image on the detector to move by a few pixels; this motion can
be in the spectral direction or in the spatial direction with the end result that subsequent
exposures (lasting > 5 mins) may not align with each other on the detector. This causes
problems for sky subtraction, illumination correction and (blind) spatial alignment. The
first of these is solved in the next section (wavelength calibrating using sky lines). To
combat the last two, here we attempt to cross-correlate a signal from the science exposure
(created from sky lines) with one from the arc exposure (created from arc lines which
were taken while the telescope is pointing at zenith, like all calibrations). By doing so,
we can estimate the shift in the spatial direction and subsequently correct for it with
a nearest neighbour interpolation, avoiding smoothing the data (although the user can
specify the type of interpolation with interp, nearest neighbour is recommended for the
aforementioned reason).

The first stage in the process is to isolate a signal (emission lines) in alternating

Figure 10.1: An example of a suitable arc sec is shown in green: see how a bright arc
emission line has been isolated in alternating (odd) slitlets.
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Figure 10.2: Like Fig. 10.1, we highlight a region which isolates emission lines in alter-
nate slitlets; however, this time, the emission lines are sky lines. Note it is difficult to
clearlyisolate a single skyline in alternate slitlets, but isolation of a group of bright lines
is feasible. The bright vertical line passing through the slitlets is the object spectrum.

slitlets; by then summing over the spectral direction, we get a 1D image of the slitlet
edges in both the arc and the science frame (which resemble histograms where alternate
bins have alternate high and low levels).

This routine now has the ability to automatically select a box in the raw frames
which brackets a single emission line, like in Fig. 10.1 by using sw sellinereg. Set arc sec
and sky sec to auto if you want to use this ability (recommended, because it adjusts
the boxes for every input image using the wavelength calibrations). But make sure you
set arclam and skylam to sensible values, or leave them at the defaults. You also need
to give lam0, dlam and nlam and sflip.

Prior to summing over the spectral dimension, it may help to fit and remove any
object spectrum in the science slitlets: this is achieved with rmobject which fits a low
order polynomial along each column in the spectral direction and subtracts it; emission
lines are not subtracted because those pixels are rejected in the fitting phase.

We then supersample (by a factor of 10) the two 1D slit images and cross-correlate
them. Prior to this stage, cosmic ray hits have not been removed and so can cause
difficulty in the cross-correlation. For this reason we allow the 1D slit images to be
median filtered prior to supersampling; this aids in removing cosmics and forcing the
edges of the slitlets to be sharp; the width of the box filter can be changed with xwin.
The reason for supersampling is that the cross-correlation peak can then be read to
subpixel accuracy.

Finally, we look at the cross-correlation peak (there is more than one, but we isolate
ourselves to look for shifts smaller than max shift). Rather than fitting a Gaussian, we
just locate the maximum value and use the location of this maximum to calculate the
relative shift between the frames; the science frame is then shifted to match the arc
frame (and therefore all other calibration frames that were taken at zenith).

So if you want to make use of this recipe, turn off the BPS stage and turn on the
SFLEX stage.

(S_BPS = no)

(S_SFLEX= yes)

Now you’re ready to run the pipeline.

swift> swiftredMS (mode=’h’)

After a bit of processing, you’ll have some more files, prefixed with sbp (shifted, bad
pixel corrected, prepped frames).
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Chapter 11

Making science cubes

This is it; the time you’ve been waiting for. After this stage, you’ll get your first glimpse
at the reduced science cubes. Start by making sure the S BPS and S SFLEX stages are
turned off, and the S SCICU and S MSMER stages are both turned on.

(S_BPS = no)

(S_SFLEX= no)

(S_SCICU= yes)

(S_MSMER= yes)

The S SCICU stage makes master and slave cubes from each spectrograph, while the
S MSMER combines the two cubes from the master and slave spectrographs, correcting
for differences in illumination and gain. There’s no need to run them separately, but
you can do if you wish.

There are a few other parameters you should check before running the pipeline. Most
obviously, you need to think about prefix sci. Which files do you want to make cubes
from? Clearly you need to use prepped frames, so at the very least, you should set
prefix sci to ∧p. If you’ve bad pixel and cosmic detected & corrected the input frames
with S BPS, then you should pass these files by setting prefix sci to ∧bp. If you’ve also
corrected for spatial flexure using S SFLEX, you should set prefix sci to ∧sbp. Get the
idea?

Take a look at the following parameters

(do_flat= yes)

(do_illu= yes)

(do_skyl= yes)

(do_hl = yes)

These all affect the reduction of science cubes. The first asks if you want to flat field the
data; we do here because we calibrated the flats earlier, but it’s not essential if you want
a quick look at the data. The second asks if you want to illumination correct the data;
again, we do because we created the calibrations (from the halogen lamp frames); but
it’s not necessary for just a quick look at the data. You should now think about spectral
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flexure. If your exposures show clear sky lines (e.g. >5mins in the 235mas scale), then
you can wavelength calibrate on them using the do skyl parameter. This adds an extra
interpolation, but if you need to subtract sky lines (using the ABBA or OSO sequence)
then this stage is important, otherwise you won’t obtain an accurate sky subtraction.
Finally, the last parameter asks whether to correct for the asymmetric shear using the
horizontal line calibration. This really is optional; it adds an extra interpolation and
isn’t often required if your science object doesn’t extend to the edges of the field of view.

For this worked example, we set the parameters as follows

prefix_s= ^bp

(do_flat= yes)

(do_illu= yes)

(do_skyl= yes)

(do_hl = yes)

Now you’re ready to run the pipeline.

swift> swiftredMS (mode=’h’)

Occasionally the automated wavelength calibration on the skylines can fail. When
it does so, it asks you to manually identify the sky lines. Although the wavelengths
are given in the data reduction manual, if you press l, I bet nearly all the lines will
be automatically identified, leaving you to delete a few rouge identifications and then
iterate the fit and detection with l, f, q. This problem occurs in the worked example,
for slitlet 20 of slave074.fits. You’re prompted with:

AUTOIDENTIFY: NOAO/IRAF V2.16 rcwh@ryanlaptop.local Fri 15:21:06 17-May-2013

Spectrum # Found Midpoint Dispersion RMS

bpslave074.ftstrip_20[*,46] No solution found

bpslave074.ftstrip_20[*,46]: Examine identifications interactively? (yes):

If you hit enter, you see a sky spectrum with no skylines identified! But don’t give up,
just press l. You should see something like Fig. 11.1. Phew! Then f to fit the lines.
Quit with q, then iterate with l, f, q to make sure no other lines are picked up.
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Figure 11.1: An example of a polynomial fit to the skylines.
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Chapter 12

Putting it all together

OK, so you’ve got reduced science cubes. But do you have to go through all those stages
if you want to reduce more cubes form the same night or run? No! All you have to
do is prep them and reduce them; you can even do that in a single step. Just turn on
the prepping stage, make sure the pipeline knows that it’s going to get raw frames with
prefix sci set to -, then turn off prepping of all frames apart from the science frames,
then turn on the cube creation and the cube merging stages. You can turn on the bad
pixel and cosmic stages too if you like. So you could repeat the entire reduction of the
science frames, from scratch, using a single pass of the pipeline, with the following setup.

swiftredMS.sci_input = "074,078"

swiftredMS.prefix_sci = "-"

swiftredMS.vl_frame = ""

swiftredMS.al_frame = ""

swiftredMS.lamp_frame = ""

swiftredMS.hl_frame = ""

swiftredMS.vlname = "VL"

swiftredMS.alname = "ARC"

swiftredMS.lampname = "LAMP"

swiftredMS.flatname = "FLAT"

swiftredMS.illumname = "ILLUM"

swiftredMS.hlname = "HL"

swiftredMS.scale = 0.235

swiftredMS.S_PREP = yes

swiftredMS.S_EXVL = no

swiftredMS.S_ARCCAL = no

swiftredMS.S_FI = no

swiftredMS.S_HL = no

swiftredMS.S_CALCUBES = no

swiftredMS.S_BPS = yes

swiftredMS.S_SFLEX = no

swiftredMS.S_SCICUBE = yes
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swiftredMS.S_MSMERGE = yes

swiftredMS.p_flat = no

swiftredMS.p_vtrace = no

swiftredMS.p_arc = no

swiftredMS.p_sci = yes

swiftredMS.p_htrace = no

swiftredMS.do_b = yes

swiftredMS.do_trim = yes

swiftredMS.do_flat = yes

swiftredMS.do_illum = yes

swiftredMS.do_lacos = yes

swiftredMS.do_thresh = yes

swiftredMS.do_skylines = yes

swiftredMS.do_hl = yes
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Chapter 13

Further Processing

Officially, that’s the data reduction over. We’ve removed all of the instrument artefacts
(as best as we can). But in practice, there will be other steps to processing the data,
which many people still refer to as data reduction. Here’s a bit of help with them.

13.1 Sky subtraction

Well you’ll probably want to subtract off the sky and combine frames into a single
frame. If you observed in ABBA mode, you can just subtract off neighbouring frames.
Similarly, for OBJ-SKY-OBJ. But you’ll also want to combine the bad pixel masks.
What about variance frames? There is an additional routine called doABBA which is
designed to help with these issues. It will subtract pairs of exposures and propagate the
bad pixels. Furthermore, it will create a first order estimate of the variance of each pixel,
assuming Poisson statistics (VAR(X)=X), but ignoring the fact that we’ve corrected for
illumination variations. For the science frames in this worked example, here is how we
set it up.

doABBA.sciA = "074"

doABBA.sciB = "078"

doABBA.OSO = no

doABBA.var = yes

doABBA.skyscale = no

doABBA.inter = no

doABBA.verbose = yes

doABBA.SCIlist = "SCIlist.txt"

doABBA.VARlist = "VARlist.txt"

doABBA.BPMlist = "BPMlist.txt"

You can see that we’ve paired the A and B frames. If we had a sky frame (e.g. frame
number 077), we could use the following instead

doABBA.sciA = "074,078"
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doABBA.sciB = "077,077"

doABBA.OSO = yes

doABBA.var = yes

doABBA.skyscale = no

Note that we activated the OSO flag above, so that the pipeline doesn’t make B-A
frames (SKY-OBJ frames in this case) as it would if the observations used the ABBA
sequence. Notice also that this routine has parameters for SCIlist, VARlist and BPMlist.
We’ll get to how these are used next.

13.2 Combining cubes

To combine all the data into a single cube, you’re best off using a python script called
cube combine.py, initially developed by Azin Khan (summer student at Oxford in 2012).
You’ll need the offsets of the cubes; to calculate these, measure the position of the galaxy
in each collapsed cube. QFitsView does this if you press g when hovering the mouse
over the galaxy). Next, subtract these coordinates off the midpoint of the SWIFT field
of view (45,22). These are then the (pixel) offsets required to shift the galaxy to the
centre of the FOV and you should write them in a text file, one pair of offsets per line.
For example, from ms074.sci.cube.fits, I measured a position of (19.55, 26.37) and from
ms078.sci.cube.fits I measured a position of (63.5, 23.7). Thus the offsets.txt file should
read

25.45 -4.37

-18.5 -1.7

Fortunately, doABBA creates the other input files for you: SCIlist.txt, BPMlist.txt and
VARlist.txt. these are just text files with one file per line, listing the science (A-B)
exposures, the combined bad pixel frames and the first order variance frames. So long
as you have Scisoft (or similar) installed (for the required python modules), you can use
the following command from the (bash/tcsh) command line to combine the two (A-B,
B-A) frames:

python [/path/]cube_combine.py SCIlist.txt offsets.txt BPMlist.txt 0.1 combined.fits quality.fits

If you want to know more on the input and output options, just call it without
commands.

python [/path/]cube_combine.py

Now if you view the file combined.fits, you’ll see the final output with one positive in
the middle and two (redundant) negatives either side, as is normal when reducing data
taken with the ABBA sequence. Obviously, only the central region is useful for science
purposes.
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Figure 13.1: An example of the final, combined data cube seen in QFitsView.

13.3 Correcting for DAR

The atmosphere distorts the path of the light depending on it’s wavelength. This means
that the position of the object appears to move in the IFU FOV with wavelength. You
can estimate and correct for this effect knowing the wavelength, airmass and position
angle. Fraser Clarke and Kieran O’Brien have developed a python code to do just this.
It’s designed to work on individual SWIFT exposures. Naturally, it adds an interpolation
to the data processing. You might need to easy install or pip the progressbar module.

python [/path/]swift_DAR.py ms074.sci.cube.fits DARms074.sci.cube.fits

If you want to know more on the input and output options, just call it without commands.

python [/path/]IFS/swift_DAR.py

13.4 Extracting 1D spectra

You likely want to extract a spectrum from a data cube. You can do this in QFitsView for
various aperture sizes (fixed size, fixed position), or you can use the sw exspec routine
(fixed aperture, fitting position with wavelength). The latter uses apphot to perform
aperture photometry on each wavelength channel and uses the telluric absorption lines
to tweak the wavelength solution (to combat flexure). Unfortunately, depending on your
IRAF version, this task may or may not work for you. With Scisoft IRAF, this task
may not work; with STSci IRAF, this task probably will work.
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The basic idea is that we collapse the cube into an image, identify the source (if
more than one peak is found, the user is asked to identify the one of interest by typing
the the number of the identification, checking by x,y coordinates), and then centroid
and extract a fixed aperture spectrum at each wavelength. There is an option to rescale
the aperture with wavelength; this rescaling follows the scaling of the diffraction limited
PSF, not the seeing scaling with wavelength (λ−1/5). As such, it’s designed for AO
assisted data; seeing limited data should use a fixed aperture.

You can also view and save the derived centroids as a function of wavelength. This
is to check for (and potentially correct) for differential atmospheric refraction.

You can also choose to “fix” all the bad pixels before extracting the spectrum; this
is quite useful as LACosmic isn’t great at replacing them, so it’s better to do that here
before extracting the spectrum.

input = combined.fits Give input 3D fits cube

(outsci = spec.fits) Give name for output 2D fits science spectrum

(outerr = specerr.fits) Give name for output 2D fits error spectrum

(outxcoo= ) Give fits file name for aperture x-axis position

(outycoo= ) Give fits file name for aperture y-axis position

(dofixpi= no) Fix pixels before extracting spectrum (uses ’BPM

(telwcal= no) Re-calibrate wavelength solution based on telluric lines

(bpmval = 0) Value in mask representing bad pixels

(cshow = yes) Show the x and y coordinate traces? (yes/no)

(apertur= 5.) Give radial aperture size in spaxels

(apresca= no) Rescale aperture with wavelength (like diffractiion limit)

(z1 = 0.) Give minimum value to display

(z2 = 65000.) Give maximum value to display

(ctype = median) Give type of cube collapse (mean or median)

(verbose= yes) Print verbose output? (y/n)

13.5 Telluric Correction

This is best accomplished by extracting a 1D spectrum from your science target, ex-
tracting a 1D spectrum from your telluric standard, and then using the IRAF telluric
routine to tweak the wavelength and depth of the telluric features. Then you can use
imstack and blkrep to create a 3D cube of the telluric spectrum and divide your object
cube(s) by it. A few regular SWIFT users (myself included) have taken to observing
A0V (i.e. Vega) type stars because they’re bright, easy to find near your science target,
and models are readily available to divide out the underlying stellar spectrum, leaving
the just telluric features. This works to around the 1% level, which is good enough in
most cases. We have an IDL routine to optimise the fitting (and removal) of the A0V
spectrum, email us (rcwh@astro.ox.ac.uk) if you’d like to use this code.

36


