SWIFT Data Reduction with IRAF

Ryan Houghton

Outline

- The SWIFT Instrument
- IFU slicer principals
- Data reduction principles/steps
 - Raw frames
 - Prepping
 - -VL
 - ARC
 - FLAT/ILLUM
 - Bad pixels & cosmic rays
 - Cube creation
- Post-processing
 - Telluric correction
 - Flux calibration
 - Aligning & coadding

SWIFT

- Short Wavelength Integral Field specTograph
- 0.63um 1.04um
 - 20"x10" FoV with 0.235" spaces (seeing mode)
 - 7x3.5" FoV with 0.080" spaxels (80mas AO mode)
 - 2"x1" FoV with 0.01 paxels (16mas XAO mode)
- Dual 4k × 2k L&N CCDs
 - 250 μm thick, fully depleted
 - enhanced red quantum efficiency
 - negligible fringing

IFU slicer principals

IFU slicer principles

- SWIFT has two detectors:
 - Master
 - Slave
- You need to reduce them both!
- Each detector takes a different half of the field

Basic Principles: (single) raw frame

Basic Principles: Prepping

- Subtracts bias from individual amplifiers
- Cuts out regions exposed to light (real pixels)
- Stiches regions together to make contiguous field (detector plane)
- Plus: Sneaky static bad pixel correction

Basic Principles: VL

- We need to cut out the slitlets
- Standard Calibration is the vertical line frame
 - Vertical line mask in focal plane illuminated by halogen (flat field) lamp
 - Sometimes called the north-south test
- We need to trace these lines and extract the data
- For both master and slave!

Basic Principles: VL

Basic Principles: VL

Basic Principles: ARCs

- We need to wavelength calibrate each slitlet
- Standard Calibration is the ARC LAMP frame
 - Detector illuminated with Neon and Argon lamps
- We need to:
 - Identify lines
 - trace lines
 - Fit a (polynomial) surface
 - Resample the data onto a regular (wavelength) grid
- For both master and slave!

Basic Principles: ARCs

Basic Principles: ARCs

Basic Principles: FLATs & ILLUMs

- Definition of flat-field and illumination frames varies
- Need to correct for *pixel-to-pixel* quantum efficiency variations
 - Corrected by a FLAT FIELD
- Standard Calibration is the HALOGEN frame
 - Detector illuminated with Halogen lamp
- We need to:
 - Fit and divide out the continuum
 - With a polynomial
 - For each 'spaxel'
 - Create a fame to correct for this (FLAT)
- For both master and slave!

Basic Principles: FLATs & ILLUMs

- Need to correct for differences in flux arriving on the detector, caused by the instrument
 - Corrected by an ILLUMINATION frame/cube
- Standard Calibration is the HALOGEN frame
 - Detector illuminated with halogen lamp
- Alternatives: dome flats, twilight flats or moon flats
- We need to:
 - Calculate the average spectrum of the lamp (or twilight sky)
 - Measure the response of each 'spaxel' (the ratio)
 - Create a frame to correct for this (ILLUM)
- For both master and slave!

Basic Stages: Bad pixels & cosmics

- Some pixels are bad, or have been struck by cosmic rays
 - Require highlighting
 - Either correct, or no longer use
- We use LACOSMIC (van Dokkum 2001) to find & correct cosmics
 - Also follow how they spread (interpolation)
 - Can choose to ignore those pixels later on

Basic Principles: cube creation

- After
 - vertical line indentification
 - wavelength calibration
- And optionally
 - flat-fielding
 - illumination correction
 - Bad pixel identification / correction
- We use the vertical line calibration to extract slitlets
- Stacking slitlets on top of each other creates a cube

Basic Principles: cube creation

Post-processing: Telluric correction

Corrects for atmospheric absorption

Post-processing: Telluric correction

- You should have observed a telluric standard during the run!
- There are pipeline routines to extract a spectrum from a cube
- It's you're decision how best to use this
 - I do the following:
 - use the same routine to extract a spectrum of my galaxy
 - use the IRAF telluric routine to match them
 - create a cube of the resulting best fit telluric spectrum
 - Divide my science data through by this cube

Post-processing: Flux calibration

- You should have observed a flux standard during your run!
- There is a pipeline routine to extract a spectrum from a cube, but it uses an aperture
 - You'll need to calculate the aperture correction (as a function of wavelength)
- May be better to fit a Moffat/Gaussian to each wavelength channel to extract a spectrum
- You can then ratio this to the known spectrum of the star

Post-Processing: Aligning & coadding

- If the science object is seen in a single exposure:
 - Fit a Gaussian in QFitsView (median image)
 - Calculate offset
 - Use python script to combine cubes
 - Cannot currently combine cubes at different PA
- If science object not visible
 - Could try using telescope offsets
 - If in seeing mode, the guider offsets may be more accurate