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Basic Requirements

Understanding the evolution of a star, its previous and future
evolution requires knowledge of:

• Mass (M),

• Radius (R) and

• Luminosity (L).

These are usually expressed relative to the solar mass M�,
the solar radius R� and solar luminosity L� respectively.

In addition, relative abundances of all chemical elements in
the photosphere are needed.



Effective Temperature and Angular Radius
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Effective Temperature and Surface Gravity Scaling
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Kepler’s Third Law
van den Bos WH, 1961 MNASSA 20 138
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Earth-Sun Distance Measurement
Metz D, 2009 Science & Education 18 581

young Horrocks sadly passed away at the age of 22. In 1874, more than 200 years
after his death, a memorial was placed in a most revered location in Westminster
Abbey, directly opposite the great Newton.

4 Halley’s proposal

Horrocks and later, James Gregory in his Optica Promota, suggested that the transit
of Venus could be used to investigate the Sun’s parallax. However, it was left to
Edmund Halley to propose the details of the method. Halley was the first person to
observe a complete transit of a planet across the face of the Sun. He had observed a
transit of Mercury from St. Helena in 1677 and noted that the duration of the transit
could be measured quite accurately.

Halley began by arguing qualitatively that the distance from the Sun to the Earth
is much larger than previously computed by Kepler, Riccioli, and Hevelius among
others. He first notes that the diameters of Venus and Mercury as observed during a
transit are much less than they were thought to be. Arguing that the Earth’s radius
should subtend an angle from the Sun, which is smaller than Jupiter’s and larger than
Mercury’s he concludes that the distance from the Earth to the Sun is about 14,000
Earth radii. He further argues that if the Sun’s parallax is thus 15† then the diameter
of the Moon would be larger than the diameter of Mercury and Halley claims that
this would yield ‘‘a secondary planet larger than a primary one, which seems
repugnant to the regular proportion and symmetry of the mundane system’’ (Halley
1716, p. 454). Consequently, he arrives at an estimated value of 12.5¢¢ of parallax
such that the Moon is smaller than Mercury and the Earth is larger than Venus.

Halley’s quantitative method is relatively simple to explain but increasingly more
complex to compute. Referring to Fig. 4, let me begin by assuming everything is
stationary, in a straight line, that vv¢ lie on the diameter of the Sun, and we have
Venus (V) directly between the Earth (E) and the Sun (S).

An observer at location e on the surface of the Earth will observe the shadow of
Venus at location v on the Sun. A second observer a location e¢ will observe the
shadow of Venus at v¢. The lines of sight ev and e¢v¢ cross at V and form similar
triangles. Although the distance between the Earth and the Sun is unknown the
proportions of the solar system are well known from Kepler’s third law. Thus, we
know that the distance eV is to the distance Vv in a proportion of about 7 to 18 and
the distance vv¢ is in this same proportion compared to ee¢. Knowing the distance ee¢
(as measured on Earth) we can easily calculate the distance vv¢. Further, a simple
calculation tells us the part of the Sun’s diameter that vv¢ forms and thus we know
the real diameter of the Sun. From the diameter of the Sun it is easy to calculate the
distance to the Earth using a ‘‘shadow cone’’.
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Fig. 4 Halley’s method for
computing the astronomical
unit

William Wales and the 1769 transit of Venus 585
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Parallax Stellar Distance Measurement
van Belle GT, 2009 New Astronomy Reviews 53 336

Bessel was wholly self-educated from textbooks. Later in his ca-
reer, Bessel was the first to measure stellar parallax, determining
the value for 61 Cyg to be p = 0.3136 ± 0.020200 (Bessel, 1838),4

winning a close competition with Friedrich Georg Wilhelm Struve
and Thomas Henderson, who measured the parallaxes of Vega and
Alpha Centauri in the same year, respectively. Bessel’s work has been
noted as ‘‘signaling the official end to the dispute over Copernican-
ism”. The article by Fricke (1985) is very informative of the meticu-
lous work of Bessel in these notable achievements.

In order to enforce the brevity of this section (and the accuracy
of its title), our final stop in this whirlwind tour will be the ESA
space mission Hipparcos. Hipparcos overcame a flawed launch
and an incorrect orbit (Kovalevsky and Froeschle, 1993) to achieve
full recovery of mission objectives, including the Hipparcos catalog,
containing !120,000 stars with 2–4 mas accuracy (Perryman et al.,
1997), and the Tycho catalog, with !1 million stars with 20–
30 mas accuracy (Høg et al., 1997).

3. Science with astrometry

Of the data products that enable science with astrometry, the
most basic and intuitively accessible in terms of everyday experi-
ence is distance. It is a fundamentally enabling parameter, one of
paramount importance in limiting the understanding the astro-
physical objects we view, and one that is directly determined for
an exceedingly small cadre of targets.

Before we explore the implications of knowing distance in fur-
ther detail, let us briefly examine the most straightforward tech-
nique for obtaining distance to an object – the determination of
astronomical parallax. The parallactic effect, simply put, is the
apparent shift in position of a nearby object relative to a distant
background, due to the actual shift in position of the observer.
The geometry of this situation as it applies to astronomy is seen
in Fig. 1.

As the Earth orbits the Sun, it shifts in position by 2 astronom-
ical units (AUs). Since the AU is thought to be well-determined,5

precise measurement of the size of the parallactic motion that the
target star appears to sweep through as the Earth orbits should in
principle allow determination of the distance through simple
geometry. The shape of this motion will be related to the star’s po-
sition relative to the plane of the earth’s motion (more circular at
more extreme declinations; more ellipsoidal at lower declinations
and finally linear at a declination of zero). This is, of course, com-
plicated in practice by a number of considerations.

First of all, the measurement of the parallactic angle must be
done relative to some reference point. A common approach obtain-
ing angular fiducials is to use background reference stars. If these
stars are infinitely distant, the parallactic angle as it would be ob-
tained from the two sub-frames of Fig. 1 readily provide the de-
sired angular measure. However, since the background stars are
in fact not infinitely distant, they themselves march through some
(albeit smaller) parallactic motion, for which the target parallax
measurement must be corrected.

If the stars (target or background) being observed are moving
through space, this will add constant term offsets to the angles
being measured as well. The apparent motion of objects on the
plane of the sky (‘proper motion’) can be measured but is fre-
quently of a magnitude to require multi-year measurements to
do so accurately. An extreme example is seen in Fig. 2. Insufficient
time baselines can increase the measurement error on the proper
motion values, which in turn propagate into the derived parallax
values. Certain kinds of proper motion, if inadequately measured,
can bias the parallax measurements. Proper motion is itself an
astrophysically interesting observable from the standpoint of top-
ics such as galactic dynamics and star formation.

Stars can also have unseen companions that affect their appar-
ent position upon the sky. In 1844 Bessel deduced from changes in
the proper motion of Sirius that it had an unseen companion,
which was confirmed by direct detection in 1862 by telescope-ma-
ker Alvan Clark. In the case of planetary companions about target
stars, this can lead to desired detections of such objects; when
the unknown secondaries are about background reference stars,
this can lead to unexpected errors in parallax measurements.

As one digs deeper into astrometric accuracy, from errors mea-
sured in arcseconds to milliarcseconds to microarcseonds, addi-
tional terms need to be considered in cleanly determining the
astrometric observables of position, distance, and proper motion.
These include (but are not limited to):

Fig. 1. An illustration of the parallactic effect: as the Earth orbits the sun, the nearby star (‘‘parallax star”) appears to shift its position relative to more distant background
star(s).

4 In agreement with the modern value reported by Hipparcos of p = 0.28718 ±
0.0015100 (Perryman et al., 1997).

5 Currently defined as 149,597,870,691 ± 6 m; the limitations on this value in fact
trace back to imprecise knowledge of the value of the gravitational constant G
(International Bureau of Weights and Measures, 2006).

G.T. van Belle / New Astronomy Reviews 53 (2009) 336–343 337



Stellar Magnitudes and Colours - I



Stellar Magnitudes and Colours - II
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Absolute Magnitude
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Bolometric Correction
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Stellar Type - Temperature Classification - I



Stellar Type - Temperature Classification - II



Spectral Type - Luminosity Classification



Eclipsing Binaries - I
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Eclipsing Binaries - II
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Radial Pulsation - I

//

r0

??

R

Consider spherical shell of thickness dr0 with equilbrium

distance r0 from centre of star of radius R.

P0 - equilibrium pressure at r0.

ρ0 - equilibrium density at r0.

Mr0 - mass confined within r0.

dMr0 - mass confined within dr0.

Mr0 = 4π

∫ r0
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ρ0 r0
2 dr0 dMr0 = 4πρ0 r0
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In hydrostatic equilibrium, pressure gradient balances gravity:
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Radial Pulsation - II

Compress star and release; it then oscillates (or pulsates) lead-
ing to a time-dependent radial shift of mass shells within the
star:

∆r

r0
= x(t) or r(t) = r0 [1 + x(t)] and dr = [1 + x(t)] dr0

where x(t) is a time-dependent perturbation. If the shells
conserve their mass (Mr = Mr0)

ρr2dr = ρ0r0
2dr0,

and do not exchange energy, the pulsation is adiabatic:

P = P0

(
ρ

ρ0

)γ



Radial Pulsation - III

Then for x(t)� 1

ρ = ρ0 [1 + x(t)]−3 ' ρ0 [1− 3x(t)] ,

P = P0 [1 + x(t)]−3γ ' P0 [1− 3γx(t)]

and
1

r2
' 1

r0
2
[1− 2x(t)] .

Hydrostatic equilibrium no longer applies; shell acceleration
needs to be included in the equation of motion (EOM):
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Radial Pulsation - IV

Left Hand Side of EOM:
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Radial Pulsation - V

EOM becomes:

G
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The boundary condition is that r = r0(1 − x(t)) = R and Mr0 = M
at the stellar surface giving:

d 2x

dt2
+ (3γ − 4)

3Gρ̄

4π
x = 0, with ρ̄ =

M

(4π/3)R3

For pulsation period Π, the solution is:

x = x0 exp(iωt) with ω2 = 4π2/Π2 = (3γ − 4)
3Gρ̄

4π
.



Radial Pulsation - Period-Luminosity Relation

• Period – Mean Density Relation: Π ∼
√

1/ρ̄ ∼ R3/2M−1/2

• Pulsation period Π has weak dependence on stellar mass (M) but strong depen-
dence on stellar radius R.

• Absolute Magnitudes MV,I,J,H,K ∼ 5 log10R

• Predicted Period – Luminosity Relation MV,I,J,H,K ∼ (10/3) log10 Π which is in
good agreement with observation.

• Absolute magnitudes of radial pulsators (Cepheids and RR Lyrae stars) are directly
measureable from their periods which then yield distances.



Stellar Masses, Radii & Luminosities

Spectrum log10(M/M�) log10(R/R�) log10(L/L�)

I III V I III V I III V

B0 +1.70 +1.23 +1.30 +1.20 +0.88 +5.50 +4.10

A0 +1.20 +0.55 +1.60 +0.80 +0.42 +4.40 +1.90

F0 +1.10 +0.25 +1.80 +0.13 +3.90 +0.80

G0 +1.00 +0.40 +0.03 +2.00 +0.80 +0.02 +3.80 +1.50 +0.10

K0 +1.10 +0.60 −0.09 +2.30 +1.20 −0.07 +4.00 +2.00 −0.40
M0 +1.20 +0.80 −0.32 +2.70 −0.20 +4.50 +2.60 −1.20



Hertzsprung-Russell Diagram
Sowell JR et al. 2007 AJ 134 1089



Colour-Magnitude Diagram for the Globular Cluster M13
Sandage A 1970 ApJ 162 841
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Lecture 1: Summary

Essential points covered in first lecture:

• Distances of nearby stars may be measured by parallax once scale
of the Solar System has been established.

• Stellar radii and masses may be determined through the study
of eclipsing binary stars.

• Stars may be classfied spectroscopically; those with the same
spectra have the same masses, radii and luminosities and this
may be used to extend the distance scale.

• Radially pulsating stars such as Cepheids and RR Lyraes serve
as distance indicators, once their pulsation periods are known,
through the period-luminosity-relation.

• Distributions of stars in colour-magnitude diagrams needs to be
explained by stellar evolution theory and models.

Stellar evolution depends on initial photospheric abundances and their
determination from spectra are to be discussed in the next two lectures.
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