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This series of ten lectures introduces stellar astrophysics and discusses

stellar evolution.
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Basic Requirements

Understanding the evolution of a star, its previous and future
evolution requires knowledge of:

• Mass (M),

• Radius (R) and

• Luminosity (L).

These are usually expressed relative to the solar mass M�,
the solar radius R� and solar luminosity L� respectively.

In addition, relative abundances of all chemical elements in
the photosphere are needed.
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Introduction, Basic Relations and Stellar Distances
Basic Requirements

While mass, radius, luminosity and photospheric abundances characterise
a star’s evolutionary state, the mass-loss rate is another critical
parameter in the case of massive, binary and giant stars. The neutrino
flux where it can be observed, as in the case of the Sun, gives vital
information about conditions in the stellar core. Further insight into the
internal structure may be obtained from the study of pulsations in cases
where a star pulsates.

This first lecture will give a brief overview of stellar mass, radius, and

luminosity determinations. The second lecture will give an equally brief

summary of how abundances are determined.
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Effective Temperature and Angular Radius

Define Fλ to be a monochromatic flux per unit area, per unit wavelength
interval emergent from the stellar surface; integrating this quantity over
all wavelengths gives an integrated flux per unit area which is identical to
that of a black body whose temperature is Teff as specified in the first
equation, where σ is Stefan’s constant. The quantity Teff is defined to be
the stellar effective temperature.

If d is the stellar distance and fλ the corresponding monochromatic flux

observed at the top of the Earth’s atmosphere then the second equation

gives L (energy generated by the star per second) in terms of R or d .

The third equation then gives the squared stellar angular radius α2. If α

can be measured by interferometry or lunar occultation, Fλ follows once

fλ has been observed. Alternatively, Fλ may be predicted using a model

of the stellar atmosphere and α then follows. A correction for interstellar

reddening is usually needed.
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Effective Temperature and Surface Gravity
Scaling

Surface gravity (g) and Teff may be determined from observations and

these scaling relations relating them to L, M and R are therefore

extremely important. Teff is the most important parameter which is

immediately apparent from an inspection of stellar energy distributions or

spectra; it determines (roughly) the wavelength at which the maximum

flux density occurs and the slope of the energy distribution at any

arbitrary wavelength. In addition, Teff is related to the ionisation

fraction, the fraction of each species associated into molecules and level

populations. Pressure in stellar atmospheres is closely related to g and

the density of perturbers (electrons and neutral hydrogen atoms being

the most important) which produce line broadening.



Kepler’s Third Law
van den Bos WH, 1961 MNASSA 20 138
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Kepler’s Third Law

As may be noted from an earlier slide, stellar luminosity can only be
derived from a monochromatic flux density measured at the top of the
Earth’s atmosphere if the stellar distance is known. Crucial to the
determination of stellar distances is a knowledge of the scale of the Solar
System. Relative distances of planets from the Sun may be deduced from
Kepler’s Third Law.

Take barycentric distances of various planets (a) relative to that for the

Earth (a = 1) and compute a3. Expressing the orbital periods P of the

same planets in years (i.e. P = 1 for the Earth) and compare P2 with a3;

the two are found to be almost equal, which is Kepler’s Third Law. Thus

by observing orbital periods of the planets we can fix relative distances in

the Solar System but not its absolute scale.



Earth-Sun Distance Measurement
Metz D, 2009 Science & Education 18 581

young Horrocks sadly passed away at the age of 22. In 1874, more than 200 years
after his death, a memorial was placed in a most revered location in Westminster
Abbey, directly opposite the great Newton.

4 Halley’s proposal

Horrocks and later, James Gregory in his Optica Promota, suggested that the transit
of Venus could be used to investigate the Sun’s parallax. However, it was left to
Edmund Halley to propose the details of the method. Halley was the first person to
observe a complete transit of a planet across the face of the Sun. He had observed a
transit of Mercury from St. Helena in 1677 and noted that the duration of the transit
could be measured quite accurately.

Halley began by arguing qualitatively that the distance from the Sun to the Earth
is much larger than previously computed by Kepler, Riccioli, and Hevelius among
others. He first notes that the diameters of Venus and Mercury as observed during a
transit are much less than they were thought to be. Arguing that the Earth’s radius
should subtend an angle from the Sun, which is smaller than Jupiter’s and larger than
Mercury’s he concludes that the distance from the Earth to the Sun is about 14,000
Earth radii. He further argues that if the Sun’s parallax is thus 15† then the diameter
of the Moon would be larger than the diameter of Mercury and Halley claims that
this would yield ‘‘a secondary planet larger than a primary one, which seems
repugnant to the regular proportion and symmetry of the mundane system’’ (Halley
1716, p. 454). Consequently, he arrives at an estimated value of 12.5¢¢ of parallax
such that the Moon is smaller than Mercury and the Earth is larger than Venus.

Halley’s quantitative method is relatively simple to explain but increasingly more
complex to compute. Referring to Fig. 4, let me begin by assuming everything is
stationary, in a straight line, that vv¢ lie on the diameter of the Sun, and we have
Venus (V) directly between the Earth (E) and the Sun (S).

An observer at location e on the surface of the Earth will observe the shadow of
Venus at location v on the Sun. A second observer a location e¢ will observe the
shadow of Venus at v¢. The lines of sight ev and e¢v¢ cross at V and form similar
triangles. Although the distance between the Earth and the Sun is unknown the
proportions of the solar system are well known from Kepler’s third law. Thus, we
know that the distance eV is to the distance Vv in a proportion of about 7 to 18 and
the distance vv¢ is in this same proportion compared to ee¢. Knowing the distance ee¢
(as measured on Earth) we can easily calculate the distance vv¢. Further, a simple
calculation tells us the part of the Sun’s diameter that vv¢ forms and thus we know
the real diameter of the Sun. From the diameter of the Sun it is easy to calculate the
distance to the Earth using a ‘‘shadow cone’’.

e 
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b 
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‘ a d 
c

S 
V 

E 

Fig. 4 Halley’s method for
computing the astronomical
unit

William Wales and the 1769 transit of Venus 585
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Halley’s method for determining the Earth-Sun distance, or Astronomical

Unit (AU), relies on two observers on the Earth’s surface (at e and e
′

who observe Venus to transit across the solar disk along trajectories ab

and cd respectively. From Kepler’s Third Law, EV /VS = 7/18 and since

the triangles are similar VV
′

= 18× ee
′
/7. Knowing VV

′
gives the

Sun’s radius (R�) and therefore the AU since the angle subtended by the

Sun’s disk, as seen by an observer on Earth, has already been measured.

However, the Earth and Venus both orbit the Sun and the Earth and Sun

both rotate. Moreover, it was unlikely that two eighteenth century

observers at e and e
′

could make simultaneous observations. Halley

therefore proposed that the trajectories ab and cd both be timed so that

they could be subsequently reconstructed to allow a VV
′

determination.



Parallax Stellar Distance Measurement
van Belle GT, 2009 New Astronomy Reviews 53 336

Bessel was wholly self-educated from textbooks. Later in his ca-
reer, Bessel was the first to measure stellar parallax, determining
the value for 61 Cyg to be p = 0.3136 ± 0.020200 (Bessel, 1838),4

winning a close competition with Friedrich Georg Wilhelm Struve
and Thomas Henderson, who measured the parallaxes of Vega and
Alpha Centauri in the same year, respectively. Bessel’s work has been
noted as ‘‘signaling the official end to the dispute over Copernican-
ism”. The article by Fricke (1985) is very informative of the meticu-
lous work of Bessel in these notable achievements.

In order to enforce the brevity of this section (and the accuracy
of its title), our final stop in this whirlwind tour will be the ESA
space mission Hipparcos. Hipparcos overcame a flawed launch
and an incorrect orbit (Kovalevsky and Froeschle, 1993) to achieve
full recovery of mission objectives, including the Hipparcos catalog,
containing !120,000 stars with 2–4 mas accuracy (Perryman et al.,
1997), and the Tycho catalog, with !1 million stars with 20–
30 mas accuracy (Høg et al., 1997).

3. Science with astrometry

Of the data products that enable science with astrometry, the
most basic and intuitively accessible in terms of everyday experi-
ence is distance. It is a fundamentally enabling parameter, one of
paramount importance in limiting the understanding the astro-
physical objects we view, and one that is directly determined for
an exceedingly small cadre of targets.

Before we explore the implications of knowing distance in fur-
ther detail, let us briefly examine the most straightforward tech-
nique for obtaining distance to an object – the determination of
astronomical parallax. The parallactic effect, simply put, is the
apparent shift in position of a nearby object relative to a distant
background, due to the actual shift in position of the observer.
The geometry of this situation as it applies to astronomy is seen
in Fig. 1.

As the Earth orbits the Sun, it shifts in position by 2 astronom-
ical units (AUs). Since the AU is thought to be well-determined,5

precise measurement of the size of the parallactic motion that the
target star appears to sweep through as the Earth orbits should in
principle allow determination of the distance through simple
geometry. The shape of this motion will be related to the star’s po-
sition relative to the plane of the earth’s motion (more circular at
more extreme declinations; more ellipsoidal at lower declinations
and finally linear at a declination of zero). This is, of course, com-
plicated in practice by a number of considerations.

First of all, the measurement of the parallactic angle must be
done relative to some reference point. A common approach obtain-
ing angular fiducials is to use background reference stars. If these
stars are infinitely distant, the parallactic angle as it would be ob-
tained from the two sub-frames of Fig. 1 readily provide the de-
sired angular measure. However, since the background stars are
in fact not infinitely distant, they themselves march through some
(albeit smaller) parallactic motion, for which the target parallax
measurement must be corrected.

If the stars (target or background) being observed are moving
through space, this will add constant term offsets to the angles
being measured as well. The apparent motion of objects on the
plane of the sky (‘proper motion’) can be measured but is fre-
quently of a magnitude to require multi-year measurements to
do so accurately. An extreme example is seen in Fig. 2. Insufficient
time baselines can increase the measurement error on the proper
motion values, which in turn propagate into the derived parallax
values. Certain kinds of proper motion, if inadequately measured,
can bias the parallax measurements. Proper motion is itself an
astrophysically interesting observable from the standpoint of top-
ics such as galactic dynamics and star formation.

Stars can also have unseen companions that affect their appar-
ent position upon the sky. In 1844 Bessel deduced from changes in
the proper motion of Sirius that it had an unseen companion,
which was confirmed by direct detection in 1862 by telescope-ma-
ker Alvan Clark. In the case of planetary companions about target
stars, this can lead to desired detections of such objects; when
the unknown secondaries are about background reference stars,
this can lead to unexpected errors in parallax measurements.

As one digs deeper into astrometric accuracy, from errors mea-
sured in arcseconds to milliarcseconds to microarcseonds, addi-
tional terms need to be considered in cleanly determining the
astrometric observables of position, distance, and proper motion.
These include (but are not limited to):

Fig. 1. An illustration of the parallactic effect: as the Earth orbits the sun, the nearby star (‘‘parallax star”) appears to shift its position relative to more distant background
star(s).

4 In agreement with the modern value reported by Hipparcos of p = 0.28718 ±
0.0015100 (Perryman et al., 1997).

5 Currently defined as 149,597,870,691 ± 6 m; the limitations on this value in fact
trace back to imprecise knowledge of the value of the gravitational constant G
(International Bureau of Weights and Measures, 2006).

G.T. van Belle / New Astronomy Reviews 53 (2009) 336–343 337
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The apparent position of a nearby star changes slightly, with respect to
more distant background stars, when observed six months later. The
position change relative to the background stars gives the angle
subtended by the Earth’s orbit diameter at the nearby star. Knowing the
diameter of the Earth’s orbit then yields the distance of the nearby star.
Of course, proper motion complicates the measurement and needs to be
taken into account by repeating the observations over several years.

A hypothetical star at which the diameter of the Earth’s orbit subtends

an angle of 1 arcsecond is said to be at a distance of 1 parsec (pc). From

the ground it is possible to measure distances to 50 pc by parallax; the

Hipparcos mission extended this to 500 pc. Parallaxes for many more

distant stars are anticipated over the next few years from the GAIA

satellite launched at the end of 2013.
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Stellar Magnitudes and Colours - I

Stellar magnitudes (“brightness”) and colours provide additional

information as the former is related to the luminosity and the latter to

temperature. The diagram shows scaled energy distributions for

HD 116608 (a hot star – blue line) and BD +63◦00137 (a cool star – red

line). It is customary to collect light from stars through filters; the

transmission functions for two such filters (labelled “B” and “V”) are

superimposed on the stellar energy distributions in the diagram. Clearly

the hot star will give rise to a stronger signal in the B-filter than in the

V-filter; for the star, the reverse is the case. As explained in the next

slide, the quantity (B − V ) is expressed in magnitudes and characterises

the stellar colour (and therefore the stellar temperature)
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m2 −m1 = −2.5 log10(F2/F1)

V = V0 − 2.5 log10




∫ ∞

0

FλSλ(V ) dλ

∫ ∞

0

Sλ(V ) dλ




λeff =




∫ ∞

0

λFλSλ(V ) dλ

∫ ∞

0

FλSλ(V ) dλ




1



Stellar Magnitudes and Colours - II

m2 −m1 = −2.5 log10(F2/F1)

V = V0 − 2.5 log10




∫ ∞

0

FλSλ(V ) dλ

∫ ∞

0

Sλ(V ) dλ




λeff =




∫ ∞

0

λFλSλ(V ) dλ

∫ ∞

0

FλSλ(V ) dλ




1

2
0
1
6
-0
2
-2
0

Stellar Evolution
Fundamental Stellar Parameters

Magnitudes, Colours and Spectral Classification
Stellar Magnitudes and Colours - II

The first equation gives the magnitude difference (m2 −m1) which
corresponds to two observed fluxes or flux densities, the later being fluxes
per unit wavelength interval, F1 and F2; the numerically larger magnitude
corresponds to the lower flux or flux density for historical reasons. F1 and
F2 may arise from the same star observed through different filters in
which case it is a colour measurment for that star; for different stars
observed through the same filter, it is a differential magnitude.

If Sλ(V ) is the wavelength-dependent transmission of the Johnson

V-Band filter corrected for wavelength dependencies in the detector,

transmission of the Earth’s atmosphere and interstellar medium, then the

second equation defines the Johnson V-Band magnitude. Here V0 is a

constant chosen so V = 0 when Fλ is the flux density of Vega as

observed at the top of the Earth’s atmosphere. In the second equation
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the flux density is convolved with the effective filter transmission and
therefore needs to be normalised through division by the “area” of that
effective filter transmission function. Replacing Sλ(V ) by Sλ(B), V by B
and V0 by B0 gives the corresponding Johnson B-Magnitude. Forming
the difference (B − V ) gives commonly used stellar colour index.

Filter observations are sometimes used to measure a monochromatic

stellar flux. The effective wavelength (λeff) is a mean wavelength across

the filter, weighted by the wavelength-dependent stellar flux density and

effective filter transmission functions, as given by the third equation.
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We have seen how the monochromatic flux per unit area (or integrated

over a surface) scales with the inverse square of the distance. As stars

have different luminosities, it is not only different distances that

contribute to observed magnitudes. A standard distance, selected to be

10 pc, at which to compare magnitudes is needed; the magnitude that a

star would have if it were at this distance is the absolute magnitude.

Equations presented in the slide show how a relation is obtained for

relating absolute magnitude MV to the observed magnitude mV and

distance d in pc.
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In general, only a fraction of the stellar flux is emitted at wavelengths to

which the human eye is sensitive or which are encompassed within the

V-filter pass-band. It is therefore standard practise to use what is termed

a Bolometric Correction which when added to mV (the V-filter

magnitude), gives a bolometric magnitude (mbol) which is the magnitude

the star would have if all flux were included in the magnitude calculation.

For the Sun, most flux emerges in the V-band and the Bolometric

Correction is small. Most flux from hot stars emerges in the ultraviolet

and bolometric corrections can be several magnitudes. Similarly for cool

stars where most flux emerges in the infrared.
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This slide compares energy distributions of the hotter stars evolving on

the Main Sequence. Note the increasing proportion of flux emerging in

the ultraviolet as Teff increases from A9 V to O5 V. Also see how the

strength of the Balmer lines is a maximum at A1 V; hydrogen becomes

increasingly ionised at higher Teff while at lower Teff populating the

upper levels of the hydrogen atom becomes increasingly less probable.

Helium also becomes increasingly ionised as Teff increases but has a

higher ionisation potential. He I lines have maximum strength at B2

while He II lines are strongest at O5 V.
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Here the energy distributions of the cooler stars evolving on the Main

Sequence are compared. Balmer lines become increasingly weak as Teff is

reduced and eventually disappear. Metal lines begin to appear because,

with hydrogen neutral, there are essentially no free electrons and

therefore no electron scattering opacity. Moreover, metals have a lower

ionisation potential than hydrogen and become increasingly neutral as

Teff falls. Neutral metal and hydrogen atoms become increasingly

associated into molecules in the coolest stars and eventually absorption

bands due to polyatomic molecules dominate the stellar spectra.



Spectral Type - Luminosity Classification
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The slide shows how spectra change with decreasing surface gravity at a

fixed Teff . Not only does the width of the lines decrease as atmospheric

pressure decreases from B8 V→ B8 I but the number of Balmer lines

that may be counted on the long wavelength side of the Balmer jump

increases. A lower atmospheric pressure leads to fewer and more distant

electron collisions with radiating atoms and hence reduced pressure

broadening. Another consequence of reduced atmospheric pressure is that

higher lying levels remain bound and hence Balmer lines corresponding to

electron jumps from the n = 2 level to these higher lying levels are seen

in the spectra.
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Stars in a binary system whose orbital plane lies in the line-of-sight will

eclipse each other. Supposing the simplest case of circular orbits, the

centripetal force is provided by the gravitational attraction. Radial

velocity curves of both stars will be sinusoidal and in anti-phase; these

can be measured if the magnitudes of the two stars is not too different.

Knowing the period and orbital speeds which can be measured from the

radial velocity curves (once corrected for a systemic velocity), the radii of

the orbits and stellar masses can be obtained.
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A schematic light curve is shown where the “contact points” 1, 2, 3 and

4 are marked along with the primary (P) and secondary (S) eclipses.

Radii of the two stars follow from a knowledge of their orbital speeds and

the times taken between first and fourth contacts, and between second

and third contacts. In both cases Teff may be determined with the usual

spectroscopic methods. Luminosities for both stars in the binary would

then follow. As can be seen, eclipsing binary stars allow a confident

determination of fundamental stellar parameters (mass, radius and

luminosity) for various spectral types. A spectrum of a field star can then

give a luminosity, which in turn provides a distance and so enables the

distance scale to be extended to well beyond what may be achieved with

the parallax method.



Radial Pulsation - I
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The hydrostatic equilibrium equation is introduced along with the

framework in which radial pulsations are discussed in the context of small

perturbations to radial shells.



Radial Pulsation - II

Compress star and release; it then oscillates (or pulsates) lead-
ing to a time-dependent radial shift of mass shells within the
star:

∆r

r0
= x(t) or r(t) = r0 [1 + x(t)] and dr = [1 + x(t)] dr0

where x(t) is a time-dependent perturbation. If the shells
conserve their mass (Mr = Mr0)

ρr2dr = ρ0r0
2dr0,

and do not exchange energy, the pulsation is adiabatic:

P = P0
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The time-dependent perturbation in radius is introduced as a

consequence of “compressing a star and releasing it”. The perturbation

introduced (x(t)) is a fractional radius change in units of the equilbrium

shell radius (r0). If concentric spherical shells which make up the star

move up and down together, no mass will be exchanged between them.

Each shell conserves its mass and if energy is not exchanged between

shells, the pulsation will be adiabatic and the adiabatic gas pressure –

density relation may be adopted.



Radial Pulsation - III

Then for x(t)� 1

ρ = ρ0 [1 + x(t)]−3 ' ρ0 [1− 3x(t)] ,

P = P0 [1 + x(t)]−3γ ' P0 [1− 3γx(t)]

and
1

r2
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r0
2
[1− 2x(t)] .

Hydrostatic equilibrium no longer applies; shell acceleration
needs to be included in the equation of motion (EOM):

dP
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= −GMr
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dt2
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Perturbations in terms of equilibrium values then follow for density,

pressure and inverse squared shell radius. Because x(t)� 1, the

Binomial Theorem may be applied and terms in x(t)2 and higher orders

may be neglected, leaving simple linear relations in each case. Once the

star has been perturbed out of its equilibrium structure, hydrostatic

equilibrium no longer exists. The Equation of Hydrostatic Equilibrium

needs replacing with an equation of motion in which the pressure

gradient is balanced by the gravitational restoring force on the shell and

the force causing its acceleration.
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The time-dependent and perturbed pressure gradient on the left-hand

side of the equation of motion is expressed in terms of the equilibrium

pressure gradient and shell displacement (x(t)) in units of the equilibrium

shell radius. The same is done for the gravitational restoring on the shell

which is also expressed in terms of the equilibrium values and shell

displacement in units of the equilibrium shell radius. The second term on

the right-hand side of the equation of motion is the force accelerating the

shell; this is expressed in terms of the equilibrium shell density, the

equilibrium shell radius, x(t) and the second derivative of x(t) with

respect to time.



Radial Pulsation - V

EOM becomes:
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The boundary condition is that r = r0(1 − x(t)) = R and Mr0 = M
at the stellar surface giving:

d 2x

dt2
+ (3γ − 4)

3Gρ̄

4π
x = 0, with ρ̄ =

M

(4π/3)R3

For pulsation period Π, the solution is:

x = x0 exp(iωt) with ω2 = 4π2/Π2 = (3γ − 4)
3Gρ̄

4π
.
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On simplfying the resulting equation of motion, we end up with a

second-order differential equation in x(t) which has no first-order term;

this is the equation of simple harmonic motion which has the well-known

sinusoidal motion as a solution. The period of oscillation is proportional

to the square root of the mean density, which is the period mean density

relationship.



Radial Pulsation - Period-Luminosity Relation

• Period – Mean Density Relation: Π ∼
√

1/ρ̄ ∼ R3/2M−1/2

• Pulsation period Π has weak dependence on stellar mass (M) but strong depen-
dence on stellar radius R.

• Absolute Magnitudes MV,I,J,H,K ∼ 5 log10R

• Predicted Period – Luminosity Relation MV,I,J,H,K ∼ (10/3) log10 Π which is in
good agreement with observation.

• Absolute magnitudes of radial pulsators (Cepheids and RR Lyrae stars) are directly
measureable from their periods which then yield distances.
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Ignoring the weak dependence of the radial pulsation period on stellar

mass, it follows that log10 Π ∼ 3/2 log10 R. Moreover

MV ∼ 2.5 log10 L ∼ 5 log10 R and so MV ∼ 10/3 log10 Π.



Stellar Masses, Radii & Luminosities

Spectrum log10(M/M�) log10(R/R�) log10(L/L�)

I III V I III V I III V

B0 +1.70 +1.23 +1.30 +1.20 +0.88 +5.50 +4.10

A0 +1.20 +0.55 +1.60 +0.80 +0.42 +4.40 +1.90

F0 +1.10 +0.25 +1.80 +0.13 +3.90 +0.80

G0 +1.00 +0.40 +0.03 +2.00 +0.80 +0.02 +3.80 +1.50 +0.10

K0 +1.10 +0.60 −0.09 +2.30 +1.20 −0.07 +4.00 +2.00 −0.40
M0 +1.20 +0.80 −0.32 +2.70 −0.20 +4.50 +2.60 −1.20
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Stellar masses, radii and luminosities presented in the table are

approximate and should not be deemed to be a calibration against

spectral type. The idea is to illustrate changes in mass, radius and

luminosity between luminosity class V (Main Sequence), luminosity class

III (Giant) and luminosity class I (Supergiant) within a spectral class.

Also worthy of note is the variation in mass, radius and luminosity within

(for example) luminosity class V.
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Explain distribution of stars on the Main Sequence and Red Giant

Branches. Argue that stars therefore spend most of their lives on the

Main Sequence and models of stellar evolution must explain this. Point

out the locations of hot subdwarfs and white dwarfs, indicating that there

are not many of these and that they are therefore short-lived stages

stellar evolution.



Colour-Magnitude Diagram for the Globular Cluster M13
Sandage A 1970 ApJ 162 841
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A colour-magnitude diagram for M3 where Sandage’s photoelectric

photometry is shown as large filled circles. Open triangles are points from

an earlier photographic study, Crosses are possible blue stragglers and

small dots are from a study of the Main Sequence by Katem and

Sandage. Note that all stars are understood to be of the same age and so

the Main Sequence turnoff colour (from which a mass may be inferred

from evolution models) is an age indicator.



Lecture 1: Summary

Essential points covered in first lecture:

• Distances of nearby stars may be measured by parallax once scale
of the Solar System has been established.

• Stellar radii and masses may be determined through the study
of eclipsing binary stars.

• Stars may be classfied spectroscopically; those with the same
spectra have the same masses, radii and luminosities and this
may be used to extend the distance scale.

• Radially pulsating stars such as Cepheids and RR Lyraes serve
as distance indicators, once their pulsation periods are known,
through the period-luminosity-relation.

• Distributions of stars in colour-magnitude diagrams needs to be
explained by stellar evolution theory and models.

Stellar evolution depends on initial photospheric abundances and their
determination from spectra are to be discussed in the next two lectures.
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While mass, radius, luminosity and photospheric abundances characterise
a star’s evolutionary state, the mass-loss rate is another critical
parameter in the case of massive, binary and giant stars. The neutrino
flux where it can be observed, as in the case of the Sun, gives vital
information about conditions in the stellar core. Further insight into the
internal structure may be obtained from the study of pulsations in cases
where a star pulsates.

This first lecture gives a brief overview of stellar mass, radius, and

luminosity determinations. The second and third lectures will give an

equallycbrief summary of how abundances are determined.
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