Fundamental Stellar Parameters

Radiative Transfer

Specific Intensity, Radiative Flux and Stellar Luminosity
Observed Flux, Emission and Absorption of Radiation

Radiative Transfer Equation, Solution and Boundary Conditions
Diffusion Approximation and Radiative Equilibrium

Stellar Atmospheres
Equations of Stellar Structure

Nuclear Reactions in Stellar Interiors
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Radiative Transfer Introduction

Relative abundances of chemical elements are adjusted until synth

1 agree with observation; requirements are:

Accurate laboratory determinations of atomic and molecular data,

ratios.

Temperature, gas pressure and electron pressure dependence on
geometric or optical depth in the stellar atmosphere.

Broadening theory for lines used in abundance determinations.

Radiation transfer theory to calculate the wavelength-dependent
emergent flux

Dependent on radiative transfer; the subject of this lecture.
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Specific Intensity

normal

dE, = 1,cos0dAcos0dQdydt
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Specific Intensity Invariance

Emitter

dE, = I,(cos0) dA(cos @) d) dv dt
= 1,/(cos @) dA'(cos @) dY dv dt

projected area  dA’(cos @) dA(cos )
0= = Ay = ———

?

distance? d? d?
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Spherical Coordinates

dA

dA = (rdf)(rsinf do)

dQ2 = sin 0 df d¢

Let p = cos 6
dp = —sin6 do
dQ = —dude

T sin 0 dp




Radiative Flux

Energy flowin;

g through element of
per unit area is the monochromatic ph

E/ _ ﬂ_Fqu
:% (cos B) cos 8 d
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dA in unit time, per unit frequency interval
al flux F:
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= FI/Jr
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Stellar Luminosity

y flowing thr
unit area is the total pl

cal flux Fraq:

o
Fraa = / F,dv
0
In general, no incident flux a
(‘I‘ = R, 0):

> outer boundary of

a

tmosphere

element of area dA in unit time, per



Observed Flux - |

To Observer

For telescope aperture area dA” at distance d:

dA//
dQ = —
dz
Contribution of dA to energy received by observer at frequency v
in interval dv, in time dt (note dA = Ry?sin 0 df de):

dE, = I,(cos @) cosO dAdQ2dv di
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Observed Flux - Il

cos 0) cos 0 dA dQY dv dt
d 4/’

I,(cos @ sin 6 df do dv dt

wver the half-sphere facing the observer

R“ dv (lf/ / 1,(cosB) cos O sin 0 df dp
0
(1;—1”

Monochromatic flux received by observer in unit time
unit area per unit f

e, per
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Specific Intensity Moments




Energy Density & Radiation Pressure

Energy Density:

d momentum (= E/ c) 1

dt

1 47 .
/ I, cos?0 dS2
> Jo
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Absorption of Radiation

dl, = —k, 1, ds

K, @ absorption coefficient [cnfl]

I, +dI,
>

Microscopically: k, = nao,

Over a distance s:

S d],, S
/ = —/ Ky, ds = —T,, dr, = K, ds
o I, 0

L,(0) exp(—7,)

By convention, 7, = 0 at top of atmosphere and increases inwards.

«4O0>» «F>» «E» «E)>»



Optical Depth

Optical thickness of a layer determines the specific intensity fraction passing through it.

elfr, =1, I,(s)=
e We can see through an atmosphere to the point where 7, ~ 1.
e Optically thick(thin) medium: 7,>(<)1.

e 7, =1 has a geometrical interpretation in terms of the mean free path of photon:

v ds

e Photons travel on average for a distance § before
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Radiative Acceleration

nal energy absorbed :
dE," = dI," cosO dAdQ dt dv

=r, 1, cos@dAdQdt dv ds
ropic, total energy

.
JO

7 Ky 7{ 1, cos0dQdv dAdsdt
B

sorbed is:

‘ Ky, F,dvdAdsdt

f photon momentum (E/c)/dt
C tion (graq):
o0
/ Ky F, dv

dAdtds = grag dm

/ Ky F, dv dm = pdAds
2 0
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Emission of Radiation

dA cosf

dV = dA cosfds

Energy radiated into d2 by d A cos 8 due to emission pro

dE, = dI,° dA cos 0 dQ dv dt
=¢,dAdQ

os O dv dt ds
1V dQ) dv dt

nt and has
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Equation of Radiative Transfer

Combine emission and absorption

dE,)" = dI," dA cos0dQ)dt dv = —k, I, cos 0 dAd2dt dv ds

dE, = dI, dA cos 0 dQdt dv =€, cos @ dAdQdt dv ds

dE,"+dE, = (dI," + dI,°) dA cos 0 dQ2dv dt
= (—ky I, +€,)dA cosOdQdv dtds
Writing
dl, = (dI" +dI,*)
gives the differential equation (the equation of radiative transfer)

dl,
ds
describing the flow of radiation through matter.

=—r, I, +e




Equation of Radiative Transfer - Plane Parallel

lines of constant p, T'

dr = cosfds = pds
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Equation of Radiative Transfer - Spherical

lines of constant p, T

Angle 6 between ray
and radial direction is
not constant,

L7050
v

L <)

d _dro doo

s dsor  dson
dr =cosfds = pds dl =cosf
ds

—rdf =sinfds ﬁ:—sme’

ds r
9 _omd a0
a0 00 op T Ou

d ad +Sir129 17}
e _,Z 7
as For r o
0 1—u®0
o T T oa

AL (p,r) 1= p? AL (p,r)
Iz o + " o ki L,(p1, 1) + €,




Optical Depth & Source Function

.
—kydr =dT, T, = 7/ Ky dx
o

Optical depth increasing towards interior.
For a plane-parallel atmosphere

" di,(p, x)

p —rkp(x) I, (1, ) + €,
gives

7, =0 p LU:/(N«, )

dr, = L/</J,, Tv) - SY/(TU)

where

S, = €,/ky is the SourceFunction.

R R,

v Fy

LTSN
Tds T As 5

Since photon mean free path is A7, =1, S, corresponds to intensity emitted over this distance.

S, =¢€,/k,~¢€,5




Radiative Transfer Equation — Formal Solution

For a plane-parallel atmosphere:

dl,
Mar, =

d,
dr,

I, -5,

e—m/u I =1, 677”/“ _ S,, chyf/u

d S, e m/n
—(I, Lrﬂ//u) __r-

dr, o

Integrate between 71 (outside) to 7 (inside, 71 < 79):

1

1

1
T2 dt
L) = Lm0 [T,y eom S
- p

In general, S, depends on I, and an actual solution is challenging.




Radiative Transfer Equation — Boundary Conditions

For incoming radiation ¢ < 0 and inward radiation from outside is usually
neglected: (1, = 0,0 < 0) =0

Im (Tw, 1) / Sy(t)

For outgoing radiation g > 0 and we have either
e a finite slab or shell for which 7, (Tyax, ) = I, (1) or

e a semi-infinite (planar or spherical) case where lim I,(7,, u) e /" =0
Ty—00

The second applies in the case of stellar atmospheres and so

Uut —(t—7 1
1M1, / Si( i —
v

For the case where 7, = 0, the above equation gives the emergent intensity:




Source Function — Simple Cases — |

e In Local Thermodynamic Equilibrium, photons are absorbed and re-emitted at
the local temperature (T') (Kirchhoff’s Law)
. &
S, =—=B/T).
Ky
e For coherent isotropic scattering, absorption is characterised by the scattering
coefficient o,,, analogous to k,:

dl, = —o,1I,ds dE,™ = ?{

6*dQ  dE,™ = 7{ 0, I, dS).

Ar A

At each v, dE,™ = dEU"bS:




Source Function — Simple Cases — ||

o Mixed case:
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Diffusion Approximation — |

At large optical depths (1, > 1) and photons are local so that S, — B,.
Expanding as a power series about 7,

S,(t) = B,(t) = i W(t —7)"/nl

n
n=0 dT”

Photons are local and therefore (t — 7,) ~ 0, justifying the retention of only
the first order term (Diffusion Approximation):
dBI/
B,(t) = B,(1,) + 7 (t—m1,)
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Diffusion Approximation — Il

— Ty

—
1z

dt = pdu

o0
/ uFe du = k!
Jo
, ® 1B,
I (1, 1) = / {B,,(f) 41 1 u} e "du

and since

i aty

. 1B,
=B,(t) + 1 ¢
dr,

. T/
I (T, ) = —/ {va +
0

aB, } —u
pule “du
dr,

«O» «Fr «

it
v

DA



Eddington Approximation

In a planar atmosphere with
I,=B,+pu y

we have:

v+ =
3 dr,
1dB, 11dB, 11 dB,dTl

3dr, 3k, dx 3k, dT dr

K, 1/HI 2y |1 p, 1 4B
V72 . V:u Mf v 4d7’,,

+1

-1




Schwarzschild-Milne Equations — |

+1 1t 10

- Idp == / L dp+ = / LM du

/71 2. Jo 2/
r rl poo dt
/ / S,(t) e~ (t=m)/n dp — / / S, —(t=m)/pn d/L:|
LJO v 1% _

[ oo [ dw ‘ dw

/ / S, (t) et dt— / S g }
2 Lh Sy 0 w

r e} 00 d Ty 00 d
/ S,(t) / et gt / S,(t) / e~ dz‘}
L7 1 w 0 1 w

Where w = 1/p and w = —1/p for left and right double integrals respectively;
in both cases dw/w = —dp/ . Since both exponents are greater than zero:

1 = iy dw
J, 7/ Sy(t)/ el gy
2 1 w

/ Sy(t) Ballt — ) dt




Schwarzschild-Milne Equations — ||

Introducing the A-Operator:

Tr/: f Ey(t — ) d
0

Ju(T) = Ar, [Su()]

Similarly for the other two specific intensity moments:

1 Ty
(7)) = / S,(0) B(|t — ) dt —5/ S,(t) Ex(lm, — t)) dt
Ty 0

= by, [S(1)]

/ Sy(t) Es(|t — 7)) dt
0

=X, [Su(t)]

v

Jy, H, and K, are depth-weighted means of S, the largest contribution being
when t — 7, = 0.

E1, E> and Ej are the first, second and third exponential integrals.




Lecture 2: Summary

Essential points covered in second lecture:
e Specific intensity defined and its invariance, in the absence of absorption, verified.

It was shown how specific intensity is related to radiative flux, luminosity and
observed flux.
Energy density, radiation pressure and the absorption of radiation were discussed.

The equation of radiative transfer, optical depth and source function were intro-
duced. Simple special case solutions of the transfer equation were presented with
formal solution and boundary conditions.

Diffusion approximation needed for stellar structure and evolution calculations was
derived.

Schwarzschild-Milne equations were also derived as these are needed for stellar
atmosphere and synthetic spectrum calculations.

Stellar evolution depends on initial photospheric abundances and their determination
from spectra are to be discussed in the next lecture.
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