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Radiative Transfer
Specific Intensity, Radiative Flux and Stellar Luminosity
Observed Flux, Emission and Absorption of Radiation
Radiative Transfer Equation, Solution and Boundary Conditions
Diffusion Approximation and Radiative Equilibrium

Stellar Atmospheres

Equations of Stellar Structure

Nuclear Reactions in Stellar Interiors



Radiative Transfer Introduction

Relative abundances of chemical elements are adjusted until synthetic
spectra agree with observation; requirements are:

• Accurate laboratory determinations of atomic and molecular data,
primarily oscillator strengths.

• Teff and log g from some combination of energy distributions,
Balmer line profiles, ionisation ratios and molecular association
ratios.

• Temperature, gas pressure and electron pressure dependence on
geometric or optical depth in the stellar atmosphere.

• Broadening theory for lines used in abundance determinations.

• Radiation transfer theory to calculate the wavelength-dependent
emergent flux

Dependent on radiative transfer; the subject of this lecture.
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Specific Intensity Invariance
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Spherical Coordinates
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Radiative Flux

Energy flowing through element of area dA in unit time, per unit frequency interval,
per unit area is the monochromatic physical flux Fν:
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∮
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Stellar Luminosity

Energy flowing through element of area dA in unit time, per
unit area is the total physical flux Frad:

Frad =

∫ ∞

0

Fν dν

In general, no incident flux at outer boundary of atmosphere
(r = R0):

Frad =
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0

Fν
+ dν

=
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Iν(cos θ) cos θ sin θ dθ dφ dν

Stellar luminosity is energy per unit time from the entire stel-
lar surface:

L = 4π R0
2 Frad



Observed Flux - I
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For telescope aperture area dA′′ at distance d:

dΩ =
dA′′

d 2

Contribution of dA to energy received by observer at frequency ν

in interval dν, in time dt (note dA = R0
2 sin θ dθ dφ):

dEν = Iν(cos θ) cos θ dAdΩ dν dt
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Observed Flux - II

dEν = Iν(cos θ) cos θ dAdΩ dν dt

=
dA′′

d 2
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2 Iν(cos θ) cos θ sin θ dθ dφ dν dt

Integrating over the half-sphere facing the observer:
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Monochromatic flux received by observer in unit time, per
unit area per unit frequency:

fν =
R0

2

d 2
Fν

+



Specific Intensity Moments
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Energy Density & Radiation Pressure

Energy Density:

uν =
radiation energy

volume

=
1

c
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Iν dΩ

Radiation Pressure:
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dt
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Absorption of Radiation

ds

Iν + dIνIν

dIν = −κν Iν ds

κν : absorption coefficient
[
cm−1

]

Microscopically: κν = nσν

Over a distance s:

∫ s

0

dIν

Iν
= −

∫ s

0

κν ds = −τν, dτν = κν ds

Iν(s) = Iν(0) exp(−τν)

By convention, τν = 0 at top of atmosphere and increases inwards.
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Optical Depth

Optical thickness of a layer determines the specific intensity fraction passing through it.

• If τν = 1, Iν(s) = Iν(0)/e ' 0.37Iν(0).

• We can see through an atmosphere to the point where τν ∼ 1.

• Optically thick(thin) medium: τν>(<)1.

• τν = 1 has a geometrical interpretation in terms of the mean free path of photons s̄.

τν = 1 =

∫ s̄

0

κν ds

• Photons travel on average for a distance s̄ before absorption.



Radiative Acceleration

Infinitesimal energy absorbed :

dEν
a = dIν

a cos θ dAdΩ dt dν

= κν Iν cos θ dAdΩ dt dν ds

If κν is isotropic, total energy absorbed is:

Ea =

∫ ∞

0

κν

∮
Iν cos θ dΩ dν dAds dt

=

∫ ∞

0

κν Fν dν dAds dt

Consequent rate of change of photon momentum (E/c)/dt
leads to the radiative acceleration (grad):

1

c

∫ ∞

0

κν Fν dν

dt
dA dt ds = grad dm

grad =
1

cρ

∫ ∞

0

κν Fν dν dm = ρ dAds



Emission of Radiation

ds

dIν
e

dA cos θ

dΩ

dV = dA cos θ ds

Energy radiated into dΩ by dA cos θ due to emission processes
in dV :

dEν
e = dIν

e dA cos θ dΩ dν dt

= εν dAdΩ cos θ dν dt ds

= εν dV dΩ dν dt

εν is defined as the emission coefficient and has
dimensions

[
erg cm−3 sr−1 Hz−1 s−1

]



Equation of Radiative Transfer

Combine emission and absorption

dEν
a = dIν

a dA cos θ dΩ dt dν = −κν Iν cos θ dAdΩ dt dν ds

dEν
e = dIν

e dA cos θ dΩ dt dν = εν cos θ dAdΩ dt dν ds

dEν
a + dEν

e = (dIν
a + dIν

e) dA cos θ dΩ dν dt

= (−κν Iν + εν) dA cos θ dΩ dν dt ds

Writing

dIν = (dIν
a + dIν

e)

gives the differential equation (the equation of radiative transfer)

dIν
ds

= −κν Iν + εν

describing the flow of radiation through matter.



Equation of Radiative Transfer - Plane Parallel
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Equation of Radiative Transfer - Spherical
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Optical Depth & Source Function
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x

τν = 0
τν
xp

Optical depth increasing towards interior.

−κν dx = dτν τν = −
∫ xp

Ro

κν dx

For a plane-parallel atmosphere

µ
dIν(µ, x)

dx
= −κν(x) Iν(µ, x) + εν

gives

µ
dIν(µ, τν)

dτν
= Iν(µ, τν)− Sν(τν)

where

Sν = εν/κν is the SourceFunction.

κν =
dτν
ds
' ∆τν

∆s
' 1

s̄
Sν = εν/κν ' εν s̄

Since photon mean free path is ∆τν = 1, Sν corresponds to intensity emitted over this distance.
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Radiative Transfer Equation – Formal Solution
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EE
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ray
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For a plane-parallel atmosphere:

µ
dIν
dτν

= Iν − Sν

e−τν/µ µ
dIν
dτν

= Iν e
−τν/µ − Sν e−τν/µ

d

dτν
(Iν e

−τν/µ) = −Sν e
−τν/µ

µ

Integrate between τ1 (outside) to τ2 (inside, τ1 < τ2):

[
Iν e

−τν/µ
]τ2
τ1

= −
∫ τ2

τ1

Sν e
−τν/µ dτν

µ

Iν(τ1, µ) = Iν(τ2, µ) e−(τ2−τ1)/µ +

∫ τ2

τ1

Sν(t) e
−(t−τ1)/µ dt

µ

In general, Sν depends on Iν and an actual solution is challenging.



Radiative Transfer Equation – Boundary Conditions

For incoming radiation µ < 0 and inward radiation from outside is usually
neglected: Iν(τν = 0, µ < 0) = 0

I inν (τν, µ) =

∫ 0

τν

Sν(t) e
−(t−τν)/µ dt

µ

For outgoing radiation µ > 0 and we have either

• a finite slab or shell for which Iν(τmax, µ) = I+ν (µ) or

• a semi-infinite (planar or spherical) case where lim
τν→∞

Iν(τν, µ) e−τν/µ = 0

The second applies in the case of stellar atmospheres and so

Ioutν (τν, µ) =

∫ ∞

τν

Sν(t) e
−(t−τν)/µ dt

µ

For the case where τν = 0, the above equation gives the emergent intensity:

Iν(0, µ) =

∫ ∞

0

Sν(t) e
−t/µ dt

µ



Source Function – Simple Cases – I

• In Local Thermodynamic Equilibrium, photons are absorbed and re-emitted at
the local temperature (T ) (Kirchhoff’s Law)

Sν =
εν

κν
= Bν(T ).

• For coherent isotropic scattering, absorption is characterised by the scattering
coefficient σν, analogous to κν:

dIν = −σν Iν ds dEν
em =

∮

4π

εν
sc dΩ dEν

abs =

∮

4π

σν
sc Iν dΩ.

At each ν, dEν
em = dEν

abs:
∮

4π

εν
sc dΩ =

∮

4π

σνIν dΩ

εν
sc

∮

4π

dΩ = σν

∮

4π

Iν dΩ

εν
sc

κν
=

1

4π

∮

4π

Iν dΩ

Sν = Jν.

Source function is completely dependent on radiation field and independent of T .



Source Function – Simple Cases – II

• Mixed case:

Sν =
εν + εν

sc

κν + σν

=
κν

κν + σν

εν
κν

+
σν

κν + σν

εν
sc

σν

=
κν

κν + σν
Bν +

σν

κν + σν
Jν



Diffusion Approximation – I

At large optical depths (τν � 1) and photons are local so that Sν → Bν.
Expanding as a power series about τν:

Sν(t) = Bν(t) =

∞∑

n=0

dnBν(τν)

dτν
n

(t− τν)n/n!

Photons are local and therefore (t − τν) ∼ 0, justifying the retention of only
the first order term (Diffusion Approximation):

Bν(t) = Bν(τν) +
dBν

dτν
(t− τν)

Ioutν (τν, µ) =

∫ ∞

τν

Sν(t) e
−(t−τν)/µ dt

µ

=

∫ ∞

τν

[
Bν(τν) +

dBν

dτν
(t− τν)

]
e−(t−τν)/µ

dt

µ



Diffusion Approximation – II

Let

u =
t− τν
µ

→ dt = µ du

and since ∫ ∞

0

uk e−u du = k!

Ioutν (τν, µ) =

∫ ∞

τν/µ

[
Bν(t) +

dBν

dτν
µu

]
e−u du

= Bν(t) + µ
dBν

dτν

I inν (τν, µ) = −
∫ τν/µ

0

[
Bν(t) +

dBν

dτν
µu

]
e−u du

Eddington-Barbier relation for observed emergent in-
tensity obtained for τν = 0; it depends linearly on µ.



Eddington Approximation

In a planar atmosphere with

Iν = Bν + µ
dBν

dτν

we have:
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a

4
=
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1
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2
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3
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1
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1
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dT
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dx
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2
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−1
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3
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dτν
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=

1

3
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Schwarzschild-Milne Equations – I

Jν =
1

2
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0

Iν
out dµ +

1

2

∫ 0

−1
Iν

in dµ

=
1

2

[∫ 1

0

∫ ∞

τν

Sν(t) e
−(t−τν)/µ dt

µ
dµ −

∫ 0

−1

∫ τν

0

Sν(t) e
−(t−τν)/µ dt

µ
dµ

]

=
1

2

[∫ ∞

1

∫ ∞

τν

Sν(t) e
−(t−τν)w dt

dw

w
+

∫ ∞

1

∫ τν

0

Sν(t) e
−(τν−t)w dt

dw

w

]

=
1

2

[∫ ∞

τν

Sν(t)

∫ ∞

1

e−(t−τν)w
dw

w
dt +

∫ τν

0

Sν(t)

∫ ∞

1

e−(τν−t)w
dw

w
dt

]

Where w = 1/µ and w = −1/µ for left and right double integrals respectively;
in both cases dw/w = −dµ/µ. Since both exponents are greater than zero:

Jν =
1

2

∫ ∞

0

Sν(t)

∫ ∞

1

e−w|t−τν |
dw

w
dt

=
1

2

∫ ∞

0

Sν(t)E1(|t− τν|) dt



Schwarzschild-Milne Equations – II

Introducing the Λ-Operator:

Λτν =
1

2

∫ ∞

0

f (t)E1(|t− τν|) dt

Jν(τν) = Λτν [Sν(t)]

Similarly for the other two specific intensity moments:

Hν(τν) =
1

2

∫ ∞

τν

Sν(t)E2(|t− τν|) dt −
1

2

∫ τν

0

Sν(t)E2(|τν − t|) dt

= Φτν [Sν(t)]

Kν(τν) =
1

2

∫ ∞

0

Sν(t)E3(|t− τν|) dt

= Xτν [Sν(t)]

Jν, Hν and Kν are depth-weighted means of Sν, the largest contribution being
when t− τν = 0.

E1, E2 and E3 are the first, second and third exponential integrals.



Lecture 2: Summary

Essential points covered in second lecture:

• Specific intensity defined and its invariance, in the absence of absorption, verified.

• It was shown how specific intensity is related to radiative flux, luminosity and
observed flux.

• Energy density, radiation pressure and the absorption of radiation were discussed.

• The equation of radiative transfer, optical depth and source function were intro-
duced. Simple special case solutions of the transfer equation were presented with
formal solution and boundary conditions.

• Diffusion approximation needed for stellar structure and evolution calculations was
derived.

• Schwarzschild-Milne equations were also derived as these are needed for stellar
atmosphere and synthetic spectrum calculations.

Stellar evolution depends on initial photospheric abundances and their determination
from spectra are to be discussed in the next lecture.
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