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Radiative Transfer Introduction

Relative abundances of chemical elements are adjusted until synthetic
spectra agree with observation; requirements are:

• Accurate laboratory determinations of atomic and molecular data,
primarily oscillator strengths.

• Teff and log g from some combination of energy distributions,
Balmer line profiles, ionisation ratios and molecular association
ratios.

• Temperature, gas pressure and electron pressure dependence on
geometric or optical depth in the stellar atmosphere.

• Broadening theory for lines used in abundance determinations.

• Radiation transfer theory to calculate the wavelength-dependent
emergent flux

Dependent on radiative transfer; the subject of this lecture.
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Specific Intensity

Consider an infinitesimal area dA which radiates energy dEν in time dt,

in frequency interval dν, into solid angle dΩ and in a direction inclined at

an angle θ to the normal to dA. The projected infinitesmal area in the

direction of dEν is dA cos θ. Clearly dEν is proportional to dt, dν, dΩ

and dA cos θ. Iν cos θ is adopted as the “constant” of proportionality,

the cos θ dependence arises because dEν = 0 when θ = π/2 and attains a

maximum when θ = 0.
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Specific Intensity Invariance

An infinitesimal area dA
′

acts as a receiver of an infinitesimal amount of

energy dEν emitted by another infinitesimal area dA, at which dA
′

subtends an infinitesimal solid angle dΩ. Similarly, dA subtends an

infinitesimal solid angle dΩ
′

at dA
′
. As energy is conserved in the absence

of any absorption or scattering along the line of sight, the dEν emitted by

dA into dΩ is also received by dA
′

from dΩ
′
. After substituting for dΩ

and dΩ
′

in terms of the projected area divided by the squared distance

between dA and dA
′
, it follows that the specific intensity Iν

′
at the

receiver is the same as the specific intensity Iν emitted by the emitter.
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Spherical Coordinates

Since it is usual to consider an infinitesimal area dA to reside on the

surface of a sphere, it is customary to express it and an infinitesimal solid

angle dΩ in terms of spherical polar coordinates (r , θ, φ). Here r is the

radius of a sphere, θ the altitudinal angle and φ the azimuthal angle.



Radiative Flux

Energy flowing through element of area dA in unit time, per unit frequency interval,
per unit area is the monochromatic physical flux Fν:
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Radiative Flux

For historical reasons, a monochromatic astrophysical flux Fν
a is

defined such that when this quantity is multiplied by π, the

monochromatic physical flux is obtained. The latter is defined as the

energy flowing through an element of area dA at frequency ν in unit

time, per unit frequency interval, per unit area; this is the specific

intensity, with projection effects taken into account, integrated over all

solid angles. Expressing the dΩ in terms of dθ and dφ leads to a double

integral over θ and φ. Since 0 6 φ 6 2π it follows that 0 6 θ 6 π. The

interval 0 6 θ 6 π/2 corresponds to an emergent monochromatic flux

(Fν
+) whereas the interval π/2 6 θ 6 π corresponds to an incident

monochromatic flux (Fν
−).



Stellar Luminosity

Energy flowing through element of area dA in unit time, per
unit area is the total physical flux Frad:
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Stellar Luminosity

The total physical flux passing through an element of area is the integral

over all frequencies of the monochromatic flux; this gives the energy per

unit time and per unit area emerging from the stellar surface, in the usual

case where there is no incident flux. Multiplication by the surface area

gives the stellar luminosity.



Observed Flux - I
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Observed Flux - I

The aperture of an observer’s telescope, and distance from the star,

determine the solid angle subtended at the observer’s telescope by any

element of area on the stellar surface.
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Observed Flux - II

Substituting for that solid angle (dΩ) and expressing the element of area

dA in terms of spherical polar coordinates, yields an expression which can

be integrated over the hemisphere facing the observer to give the

monochromatic flux received by the observer in unit time per unit area

per unit frequency. The result deduced in the previous lecture is

recovered, namely that the observer’s flux is the corresponding flux

emergent at the stellar surface scaled by the squared ratio of the stellar

radius to the stellar distance.
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Specific Intensity Moments

Weighted averages of the specific intensity are introduced for further

development of radiative transfer theory. General expressions are used to

derive special cases, valid in spherical geometry, by expressing the

infinitesimal solid angle in terms of the spherical polar coordinates θ and

φ remembering that µ = cos θ. Jν , Hν , Kν are respectively the zeroth,

first and second moments of the specific intensity Iν . Jν is also referred

to as the mean intensity and Hν as the Eddington Flux.
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Energy Density & Radiation Pressure

The monochromatic energy density is the radiation energy at frequency ν
per unit frequency interval, per unit time, per unit volume. For radiation
flow through unit area, the volume traversed in unit time is determined
by the velocity of light. The required energy density per unit frequency is
therefore the specific intensity integrated over all solid angles and divided
by the speed of light. Since the radiation flow is normal to the unit area,
cos θ = 1.

The monochromatic radiation pressure due to radiation emerging at an

angle θ with respect to the normal to an infinitesimal area is the rate of

change of radiation field momentum in the direction normal to the

element of area, divided by its area, which is (dEν/c) cos θ/dA.
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Absorption of Radiation

An absorption coefficient κν is expressed in units of inverse length so as

to express the decrease in specific intensity (Iν) on passing through a slab

of material of thickness ds. Obviously the absorption is directly

proportional to the incident radiation in contrast with emission which is

independent of it. Microscopically κν will be given by the absorption

cross-section (in appropriate units of area) of each absorber, multiplied

by the number of absorbers per unit volume (also in appropriate units).



Optical Depth

Optical thickness of a layer determines the specific intensity fraction passing through it.

• If τν = 1, Iν(s) = Iν(0)/e ' 0.37Iν(0).

• We can see through an atmosphere to the point where τν ∼ 1.

• Optically thick(thin) medium: τν>(<)1.

• τν = 1 has a geometrical interpretation in terms of the mean free path of photons s̄.

τν = 1 =

∫ s̄

0

κν ds

• Photons travel on average for a distance s̄ before absorption.
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Radiative Acceleration

If the absorption coefficient is isotropic the total energy absorbed by a

slab of thickness ds, of area dA in time dt is obtained by integrating over

frequency and solid angle. The corresponding rate of change of photon

momentum gives the radiative force causing radiative acceleration.
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Emission of Radiation

The infinitesimal increment to the monochromatic specific intensity

(dEν) contributed by emission in a slab of thickness ds is εν ds. Note

that unlike absorption processes this is independent of the incident

specific intensity (Iν).



Equation of Radiative Transfer

Combine emission and absorption

dEν
a = dIν

a dA cos θ dΩ dt dν = −κν Iν cos θ dAdΩ dt dν ds
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a + dEν

e = (dIν
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e) dA cos θ dΩ dν dt

= (−κν Iν + εν) dA cos θ dΩ dν dt ds

Writing

dIν = (dIν
a + dIν

e)

gives the differential equation (the equation of radiative transfer)

dIν
ds

= −κν Iν + εν

describing the flow of radiation through matter.
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Equation of Radiative Transfer

The equation of radiative transfer is a differential equation giving the rate

of change of monochromatic specific intensity (Iν) with distance (s), due

to emission and absorption processes, as radiation is propagated through

a slab of gas. Solving the equation of radiative transfer gives Iν(s). As

presented here, the equation of radiative transfer is one-dimensional and

time-independent.



Equation of Radiative Transfer - Plane Parallel

+3

lines of constant ρ, T

Ri Ro

x

44
ray

ds

dx

θ

dx = cos θ ds = µ ds

d

ds
= µ

d

dx

µ
dIν(µ, x)

dx
= −κν Iν(µ, x) + εν

1



Equation of Radiative Transfer - Plane Parallel

+3

lines of constant ρ, T

Ri Ro

x

44
ray

ds

dx

θ

dx = cos θ ds = µ ds

d

ds
= µ

d

dx

µ
dIν(µ, x)

dx
= −κν Iν(µ, x) + εν

1

2
0
1
6
-0
3
-0
1

Stellar Evolution
Radiative Transfer

Radiative Transfer Equation, Solution and Boundary
Conditions

Equation of Radiative Transfer - Plane Parallel

In plane parallel geometry, density and temperature (for example) are

constant at any given depth. The thickness of the stellar atmosphere in

this approximation is taken to be negligible in comparison with the radius

of the star. All quantities are specified in terms of the depth coordinate

(x) and a simple transformation allows a monochromatic specific

intensity increment to be expressed in terms of x and µ = cos θ.



Equation of Radiative Transfer - Spherical
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Equation of Radiative Transfer - Spherical
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Equation of Radiative Transfer - Spherical

In spherical geometry the angle θ between a ray and the radial direction

is not constant. As a consequence, the equation of radiative transfer is

more complicated than in the plane-parallel case.



Optical Depth & Source Function
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s̄
Sν = εν/κν ' εν s̄

Since photon mean free path is ∆τν = 1, Sν corresponds to intensity emitted over this distance.
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Conditions

Optical Depth & Source Function

Monochromatic optical depth (τν) is introduced as minus the integral of

the appropriate absorption coefficient over the corresponding interval in

atmospheric height, where the minus sign is needed because optical

depth increases as height in the atmosphere decreases. Then it is natural

to express the ratio εν/κν as the source function (Sν) and reformulate

the equation of radiative transfer accordingly.



Radiative Transfer Equation – Formal Solution

oo

EE

τν
τ2 τ1
θ

ray

∆τ/µ

For a plane-parallel atmosphere:

µ
dIν
dτν

= Iν − Sν

e−τν/µ µ
dIν
dτν

= Iν e
−τν/µ − Sν e−τν/µ

d

dτν
(Iν e

−τν/µ) = −Sν e
−τν/µ

µ

Integrate between τ1 (outside) to τ2 (inside, τ1 < τ2):

[
Iν e

−τν/µ
]τ2
τ1

= −
∫ τ2

τ1

Sν e
−τν/µ dτν

µ

Iν(τ1, µ) = Iν(τ2, µ) e−(τ2−τ1)/µ +

∫ τ2

τ1

Sν(t) e
−(t−τ1)/µ dt

µ

In general, Sν depends on Iν and an actual solution is challenging.
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Radiative Transfer Equation – Formal Solution

A formal solution of the radiative transfer equation for plane parallel

geometry, using optical depth as the independent variable, may be

obtained by multiplying by e−τν/µ and collecting terms in Iν on the

left-hand side and Sν on the right-hand side. The left-hand side is easily

integrated between two optical depths to give the monochromatic

specific intensity at one optical depth in terms of the monochromatic

specific intensity at the other optical depth and some integral involving

the monochromatic source function. In general Sν is dependent on Iν and

further progress is a challenge



Radiative Transfer Equation – Boundary Conditions

For incoming radiation µ < 0 and inward radiation from outside is usually
neglected: Iν(τν = 0, µ < 0) = 0

I inν (τν, µ) =

∫ 0

τν

Sν(t) e
−(t−τν)/µ dt

µ

For outgoing radiation µ > 0 and we have either

• a finite slab or shell for which Iν(τmax, µ) = I+ν (µ) or

• a semi-infinite (planar or spherical) case where lim
τν→∞

Iν(τν, µ) e−τν/µ = 0

The second applies in the case of stellar atmospheres and so

Ioutν (τν, µ) =

∫ ∞

τν

Sν(t) e
−(t−τν)/µ dt

µ

For the case where τν = 0, the above equation gives the emergent intensity:

Iν(0, µ) =

∫ ∞

0

Sν(t) e
−t/µ dt

µ
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Conditions

Radiative Transfer Equation – Boundary
Conditions

From any point in a stellar atmosphere, the gas becomes opaque

(τν →∞ at all frequencies in the direction of the stellar centre. As a

result, radiation is only received from the surface layers; this provides the

boundary condition in so far as the specific intensity at any finite optical

depth is determined by an integral involving the source function between

that optical depth and infinity.



Source Function – Simple Cases – I

• In Local Thermodynamic Equilibrium, photons are absorbed and re-emitted at
the local temperature (T ) (Kirchhoff’s Law)

Sν =
εν

κν
= Bν(T ).

• For coherent isotropic scattering, absorption is characterised by the scattering
coefficient σν, analogous to κν:

dIν = −σν Iν ds dEν
em =

∮

4π

εν
sc dΩ dEν

abs =

∮

4π

σν
sc Iν dΩ.

At each ν, dEν
em = dEν

abs:
∮

4π

εν
sc dΩ =

∮

4π

σνIν dΩ

εν
sc

∮

4π

dΩ = σν

∮

4π

Iν dΩ

εν
sc

κν
=

1

4π

∮

4π

Iν dΩ

Sν = Jν.

Source function is completely dependent on radiation field and independent of T .



Source Function – Simple Cases – II

• Mixed case:

Sν =
εν + εν

sc

κν + σν

=
κν

κν + σν

εν
κν

+
σν

κν + σν

εν
sc

σν

=
κν

κν + σν
Bν +

σν

κν + σν
Jν



Source Function – Simple Cases – II

• Mixed case:

Sν =
εν + εν

sc

κν + σν

=
κν

κν + σν

εν
κν

+
σν

κν + σν

εν
sc

σν

=
κν

κν + σν
Bν +

σν

κν + σν
Jν

2
0
1
6
-0
3
-0
1

Stellar Evolution
Radiative Transfer

Radiative Transfer Equation, Solution and Boundary
Conditions

Source Function – Simple Cases – II

Simple solutions to the radiative transfer equation arise when photons are

absorbed and re-emitted at the local temperature so that the source

function (Sν) is equal to the Planck Function (Bν). A second simple case

is where absorption is absent and photons are only scattered isotropically

and coherently; in this case the source function is the mean intensity

(Jν). In the mixed case, the contributions to Sν from absorption and

isotropic coherent scattering are separated. Because Jν depends on Iν ,

some iterative scheme is needed to solve the transfer equation in all but

the simplest case when Sν = Bν .



Diffusion Approximation – I

At large optical depths (τν � 1) and photons are local so that Sν → Bν.
Expanding as a power series about τν:

Sν(t) = Bν(t) =

∞∑

n=0

dnBν(τν)

dτν
n

(t− τν)n/n!

Photons are local and therefore (t − τν) ∼ 0, justifying the retention of only
the first order term (Diffusion Approximation):

Bν(t) = Bν(τν) +
dBν

dτν
(t− τν)

Ioutν (τν, µ) =

∫ ∞

τν

Sν(t) e
−(t−τν)/µ dt

µ

=

∫ ∞

τν

[
Bν(τν) +

dBν

dτν
(t− τν)

]
e−(t−τν)/µ

dt

µ



Diffusion Approximation – II

Let

u =
t− τν
µ

→ dt = µ du

and since ∫ ∞

0

uk e−u du = k!

Ioutν (τν, µ) =

∫ ∞

τν/µ

[
Bν(t) +

dBν

dτν
µu

]
e−u du

= Bν(t) + µ
dBν

dτν

I inν (τν, µ) = −
∫ τν/µ

0

[
Bν(t) +

dBν

dτν
µu

]
e−u du

Eddington-Barbier relation for observed emergent in-
tensity obtained for τν = 0; it depends linearly on µ.
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Diffusion Approximation and Radiative Equilibrium
Diffusion Approximation – II

The diffusion approximation provides a robust solution to the radiative

transfer equation at large optical depths, as appropriate for stellar

interiors, when photons are necessarily local. It is supposed that

temperature is monotonically increasing with optical depth (τν) and so

the Planck Function (Bν) may, in this context, be regarded as a function

of τν . The approach is then to expand Bν in a Taylor’s Series about the

local τν and as the optical depth range is small, only the first order term

need be retained. The standard integral is Equation 3.384 in Gradshteyn

& Ryzhik.



Eddington Approximation

In a planar atmosphere with

Iν = Bν + µ
dBν

dτν

we have:

Jν =
1

2

∫ +1

−1
Iν dµ =

1

2

[
µBν +

µ2

2

dBν

dτν

]+1

−1
= Bν(τν)

Hν =
Fν

a

4
=

1

2

∫ +1

−1
Iν µ dµ =

1

2

[
µ2

2
Bν +

µ3

3

dBν

dτν

]+1

−1

=
1

3

dBν

dτν
= −1

3

1

κν

dBν

dx
= −1

3

1

κν

dBν

dT

dT

dx

Kν =
1

2

∫ +1

−1
Iν µ

2 dµ =
1

2

[
µ3

3
Bν +

µ4

4

dBν

dτν

]+1

−1
=

1

3
Bν(τν)



Eddington Approximation
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Kν =
1

2

∫ +1

−1
Iν µ

2 dµ =
1

2

[
µ3

3
Bν +
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=
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Using the Diffusion Approximation, simple expressions follow for Jν , Hν
and Kν .



Schwarzschild-Milne Equations – I

Jν =
1

2

∫ +1

−1
Iν dµ =

1

2

∫ +1

0

Iν
out dµ +

1

2

∫ 0

−1
Iν

in dµ

=
1

2

[∫ 1

0

∫ ∞

τν

Sν(t) e
−(t−τν)/µ dt

µ
dµ −

∫ 0

−1

∫ τν

0

Sν(t) e
−(t−τν)/µ dt

µ
dµ

]

=
1

2

[∫ ∞

1

∫ ∞

τν

Sν(t) e
−(t−τν)w dt

dw

w
+

∫ ∞

1

∫ τν

0

Sν(t) e
−(τν−t)w dt

dw

w

]

=
1

2

[∫ ∞

τν

Sν(t)

∫ ∞

1

e−(t−τν)w
dw

w
dt +

∫ τν

0

Sν(t)

∫ ∞

1

e−(τν−t)w
dw

w
dt

]

Where w = 1/µ and w = −1/µ for left and right double integrals respectively;
in both cases dw/w = −dµ/µ. Since both exponents are greater than zero:

Jν =
1

2

∫ ∞

0

Sν(t)

∫ ∞

1

e−w|t−τν |
dw

w
dt

=
1

2

∫ ∞

0

Sν(t)E1(|t− τν|) dt



Schwarzschild-Milne Equations – II

Introducing the Λ-Operator:

Λτν =
1

2

∫ ∞

0

f (t)E1(|t− τν|) dt

Jν(τν) = Λτν [Sν(t)]

Similarly for the other two specific intensity moments:

Hν(τν) =
1

2

∫ ∞

τν

Sν(t)E2(|t− τν|) dt −
1

2

∫ τν

0

Sν(t)E2(|τν − t|) dt

= Φτν [Sν(t)]

Kν(τν) =
1

2

∫ ∞

0

Sν(t)E3(|t− τν|) dt

= Xτν [Sν(t)]

Jν, Hν and Kν are depth-weighted means of Sν, the largest contribution being
when t− τν = 0.

E1, E2 and E3 are the first, second and third exponential integrals.
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Schwarzschild-Milne Equations – II

In plane parallel geometry, the zeroth, first and second moments of the

radiation field may be expressed as integrals over the source function

multiplied respectively by the first, second and third exponential

integrals. The first exponential integral can be obtained from a published

Chebyshev series; from this the second and higher order exponential

integrals may be obtained using the usual recurrence formula.



Lecture 2: Summary

Essential points covered in second lecture:

• Specific intensity defined and its invariance, in the absence of absorption, verified.

• It was shown how specific intensity is related to radiative flux, luminosity and
observed flux.

• Energy density, radiation pressure and the absorption of radiation were discussed.

• The equation of radiative transfer, optical depth and source function were intro-
duced. Simple special case solutions of the transfer equation were presented with
formal solution and boundary conditions.

• Diffusion approximation needed for stellar structure and evolution calculations was
derived.

• Schwarzschild-Milne equations were also derived as these are needed for stellar
atmosphere and synthetic spectrum calculations.

Stellar evolution depends on initial photospheric abundances and their determination
from spectra are to be discussed in the next lecture.
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