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Stellar Atmospheres Introduction

Synthetic stellar spectra used for the determination of chemical element abun-
dances were, until recently, based on one-dimensional model stellar atmospheres.

• At any optical (or geometric) depth, gravity is exactly balanced by pressure
(gas, electron and radiation) – hydrostatic equilibrium

• A constant temperature is maintained at every depth; radiative energy
received from below is equal to the energy radiated to layers above although
frequency redistribution will have occurred – radiative equilibrium.

• Atmosphere assumed to be static and convection treated with crude mixing
length theory, using an empirically determined mixing length.

• Opacities needed are dependent on abundances sought.

Model stellar atmosphere may be obtained empirically, in the case of the Sun,
by direct measurement of limb-darkening; for other cases where only Fν is ob-
servable, an iterative calculation is needed with some realistic estimate used as
a starting approximation.



Hydrostatic Equilibrium – I
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Consider a cylindrical element

of mass ∆M and surface area
dS between radii r and r + dr
in a star.

Mass of gas in the star at
smaller radii = m = m(r).
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Hydrostatic Equilibrium – II

Radial forces acting on the element

• Gravity (inward)

Fg = −Gm∆M

r2

• Pressure Difference (outward – net force due to difference in pressure
between upper and lower faces)

Fp = P (r) dS − P (r + dr) dS

= P (r) dS −
[
P (r) +

dP

dr
× dr

]
dS

= − dP
dr
× dr dS

If ρ is gas density in element ∆M = ρ dr dS.
Inward and outward forces must balance in hydrostatic equilibrium:

0 = −Gmρdr dS

r2
− dP

dr
dr dS

dP

dr
= −Gm

r2
ρ (First Equation of Stellar Structure)

= −g ρ (in stellar atmosphere)
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For hydrostatic equilibrium to prevail, the pressure gradient must exactly

balance the force of gravity at every point from the stellar centre to the

surface. A slab of area dS , thickness dr , density ρ and mass ∆M at

distance r from the stellar centre has a total mass m(r) interior to it.

Calculating the force of gravitation (Fg ) and setting it equal to the

pressure gradient force (Fp) across the slab, leads to the Equation of

Hydrostatic Equilibrium. The gravitational force per unit mass in the

stellar atmosphere is simply g , the acceleration due to gravity.



Radiative Equilibrium – I

Radiative equilibrium requires the flux at any depth to be constant.

F (r) =

∫ ∞

0

∮

4π

Iν cos θ dΩ dν = 4π

∫ ∞

0

Hν dν

4πr2F (r) = 4πr2 . 4π

∫ ∞

0

Hν dν = constant = L

For a plane-parallel atmosphere r ' R and

4π

∫ ∞

0

Hν dν = constant = σ Teff

Integrating radiative transfer equation in plane-parallel geometry

µ
dIν

dx
= −(κν + σν)(Iν − Sν)

over all angles, gives:

1

2

∫ 1

−1

µ
dIν

dx
dµ = −1

2

∫ 1

−1

(κν + σν)(Iν − Sν) dµ

d

dx

[
1

2

∫ 1

−1

µ Iν dµ

]
= −(κν + σν)(Jν − Sν)

dHν

dx
= −(κν + σν)(Jν − Sν)



Radiative Equilibrium – II

Integrating over frequency:

d

dx

∫ ∞

0

Hν dν = −
∫ ∞

0

(κν + σν)(Jν − Sν) dν

The integral on the left-hand side is constant and therefore:
∫ ∞

0

(κν + σν)(Jν − Sν) dν = 0

Substituting

Sν =
κν

κν + σν
Bν +

σν

κν + σν
Jν

gives ∫ ∞

0

[(κν + σν)Jν − κν Bν − σν Jν] dν = 0

∫ ∞

0

κν [Jν − Bν(T )] dν = 0

At every depth, the temperature T has to assume a value which satisfies the
above equation.



Radiative Equilibrium – II

Integrating over frequency:

d

dx

∫ ∞

0

Hν dν = −
∫ ∞

0

(κν + σν)(Jν − Sν) dν

The integral on the left-hand side is constant and therefore:
∫ ∞

0

(κν + σν)(Jν − Sν) dν = 0

Substituting

Sν =
κν

κν + σν
Bν +

σν

κν + σν
Jν

gives ∫ ∞

0

[(κν + σν)Jν − κν Bν − σν Jν] dν = 0

∫ ∞

0

κν [Jν − Bν(T )] dν = 0

At every depth, the temperature T has to assume a value which satisfies the
above equation.

2
0
1
6
-0
3
-0
2

Stellar Evolution
Stellar Atmospheres

Hydrostatic and Radiative Equilibrium
Radiative Equilibrium – II

No energy is generated in a static stellar atmosphere, the process of

radiation transfer simply redistributes radiation in frequency. The

monochromatic flux integrated over all frequencies is therefore invariant

throughout a stellar atmosphere and is the stellar luminosity once further

integrated over the area of the star. Accordingly, at each depth in a

stellar atmosphere, there must be a specific temperature which ensures

(given the monochromatic opacity at each frequency) that the

monochromatic flux integrated over all frequencies received from below is

the same as that radiated to the layer above.



Grey Approximation

Approximate radiative equilibrium integral using a frequency-averaged absorption coef-
ficient κ̄ placed in front of the integral:

κ̄

∫ ∞

0

[Jν −Bν(T )] dν = 0

With

J =

∫ ∞

0

Jν dν H =

∫ ∞

0

Hν dν K =

∫ ∞

0

Kν dν B =

∫ ∞

0

Bν dν =
σT 4

π

radiative equilibrium then implies

J = B

4πH = σTeff
4.

In LTE and radiative equilibrium S = B = J and with a mean optical depth dτ̄ = κ̄ dx

J(τ̄ ) = Λτ̄ [J(t)] =
1

2

∫ ∞

0

J(t)E1(|t− τ̄ |) dt

with an exact solution

J(τ̄ ) = B(τ̄ ) = (σ/π)T (τ̄ )4 = constant× [τ̄ + q(τ̄ )]

and boundary condition
T (τ̄ )4 = 0.75Teff

4 [τ̄ + q(τ̄ )]

where q(τ̄ ) ∼ 2/3 is Hopf’s function.
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In the Eddington Approximation dKν/dτν = Hν which may be integrated
over τν to give K = H(τ + c) in the grey approximation where all
quantities are independent of frequency and H is independent of depth.
Here c is a constant. Since the Eddington Approximation also gives
Jν = 3Kν it follows that J = 3H(τ + c) and so

T (τ̄)4 = 0.75Teff
4 [τ̄ + c].

Since J = S = B in the grey approximation, the Schwarzschild-Milne
equation for the Eddington Flux gives for τ̄ = 0

H =
1

2

∫ ∞

0

J(t)E2(t) dt =
1

2
3H

[∫ ∞

0

t E2(t)dt + c

∫ ∞

0

E2(t)dt

]
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The standard integral

∫ ∞

0

ts En dt =
s!

s + n

gives ∫ ∞

0

t En dt =
1

3
and

∫ ∞

0

En dt =
1

2

Therefore c = 2/3.



Rosseland Mean Opacity - I

The second moment of the transfer equation in planar geometry

µ
dIν

dτν
= Iν − Sν

is

d

dτν

∫ +1

−1
µ2 Iν dµ =

∫ +1

−1
µ Iν dµ− Sν

∫ +1

−1
µ dµ

dKν

dτν
= Hν

dKν

dx
= −κνHν

In the grey approximation
∫ ∞

0

1

κν

dKν

dx
dν =

1

κ̄

dK

dx
= −H

1

κ̄
=

∫ ∞

0

1

κν

dKν

dx
dν

dK
dx



Rosseland Mean Opacity - I

The second moment of the transfer equation in planar geometry

µ
dIν

dτν
= Iν − Sν

is

d

dτν

∫ +1

−1
µ2 Iν dµ =

∫ +1

−1
µ Iν dµ− Sν

∫ +1

−1
µ dµ

dKν

dτν
= Hν

dKν

dx
= −κνHν

In the grey approximation
∫ ∞

0

1

κν

dKν

dx
dν =

1

κ̄

dK

dx
= −H

1

κ̄
=

∫ ∞

0

1

κν

dKν

dx
dν

dK
dx
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The result dKν/dτν = Hν follows because the second integral on the

right-hand side of the line above is clearly zero.



Rosseland Mean Opacity - II

As τ →∞, Kν → (1/3) Jν, Jν → Bν and

dKν

dx
→ 1

3

dBν

dx
=

1

3

dBν

dT

dT

dx

Substitution in above mean opacity expression gives definition for Rosseland Mean
Opacity

1

κ̄Ross

=

∫ ∞

0

1

κν

dBν(T )

dT
dν

∫ ∞

0

dBν(T )

dT
dν

which has the properties:

• large weight for low-opacity (more transparent to radiation) regions,

• at large τ the T structure is accurately given by T 4 = 0.75Teff
4 [τRoss + q(τRoss)],

• κ̄Ross used in stellar interiors and

• for stellar atmospheres using κ̄Ross allows an approximate temperature stratifica-
tion to be obtained and used as a starting point for further iterations.



Rosseland Mean Opacity - II
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Note that the denominator on the right-hand side of the expression for
the Rosseland Mean Opacity is obtained using

d

dx

∫ ∞

0

Kν dν =
1

3

dT

dx

∫ ∞

0

dBν

dT
dν.



Schwarzschild Criterion for Convective Instability – I

+3

Ri Ro

x

ρ, T ρi, Ti

//
∆x

ρ, T ρa, Ta

Assume mass element (“cell”) in photosphere is
perturbed slowly (v < vsound) so it rises adia-
batically (no energy exchanged with surround-
ings):

• Ambient density decreases (ρ→ ρa).

• Cell expands and its internal density also
decreases (ρ→ ρi).

There are two cases:

• ρi > ρa cell falls back → stable.

• ρi < ρa cell rises further → unstable.

1



Schwarzschild Criterion for Convective Instability – II

At the end of adiabatic expansion, the density and temperature of
the cell are ρi and Ti respectively. Identifying environmental quanti-
ties as “radiative” and those in the cell as “adiabatic” we make the
substitutions: ρi → ρad, Ti → Tad, ρa → ρrad and Ta → Trad.

Change in cell density when rising over radial distance ∆x

∆ρad =

[
dρ

dx

]

ad

∆x

that is we obtain stability if

|∆ρad | < |∆ρrad |

or [
dρ

dx

]

ad

<

[
dρ

dx

]

rad



Schwarzschild Criterion for Convective Instability – III

We assume that the motion is slow (v � vsound) so that pressure equilibrium
prevails; pressure inside cell is equal to the pressure outside

Prad = Pad

From the equation of state P ∼ ρ T and so

ρrad Trad = ρad Tad

and an equivalent criterion for stability against convection is
∣∣∣∣
dT

dx

∣∣∣∣
ad

>

∣∣∣∣
dT

dx

∣∣∣∣
rad

.

The equation of hydrostatic equilibrium and the perfect gas equation are

dPgas = −g ρ(x) dx Pgas =
k

mHµ̄
ρT

give
∣∣∣∣
dT

dx

∣∣∣∣ =

∣∣∣∣
dT

dP

dP

dx

∣∣∣∣ =

∣∣∣∣
dT

dP
g ρ

∣∣∣∣ =

∣∣∣∣
dT

dP

∣∣∣∣ g
mHµ̄

kT
P = g

mHµ̄

k

∣∣∣∣
d ln T

d ln P

∣∣∣∣
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.
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∣∣∣∣
dT

dP

dP

dx
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dT
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dT

dP
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k
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Since Pgas ∝ ρT and pressures are equal in the rising gas bubble and its
surrounds, the criterion for stability against convection expressed terms of
the density gradient may also (and more conveniently) be expressed in
terms of the corresponding temperature gradient.

Symbols introduced for the first time: mH — mass of the hydrogen atom
(1.67× 10−27) kg and
µ̄ — mean molecular weight.

As pressures inside and outside a rising gas bubble are equal, pressure

may replace depth as the independent variable and it is customary to

state the Schwarzschild Criterion in terms of the adiabatic and radiative

gradients of the natural logarithm of temperature with respect to the

natural logarithm of pressure.



Schwarzschild Criterion for Convective Instability – IV

Therefore the criterion for stability against convention in a stellar atmosphere
or enevelope, known as the Schwarzschild Criterion is:

∣∣∣∣
d ln T

d ln P

∣∣∣∣
ad

>

∣∣∣∣
d ln T

d ln P

∣∣∣∣
rad

or instability occurs when the temperature gradient in a stellar atmosphere or
envelope is larger than the adiabatic gradient, leading to convection. In an
adiabatic process

P ∼ ργ where γ = Cp/Cv

and from the perfect gas equation of state

Pgas =
k

mHµ̄
ρT,

P γ−1 ∼ T γ

and so ∣∣∣∣
d ln T

d ln P

∣∣∣∣
ad

=
γ − 1

γ
= 1− 1

γ



Schwarzschild Criterion for Convective Instability – V

In a plasma which is completely ionised or neutral γ = 5/3 and
∣∣∣∣
d ln T

d ln P

∣∣∣∣
ad

= 0.4

With changing degree of ionisation:

• Plasma undergoes phase transition.

• Specific heats Cp and Cv are no longer constant.

• Adiabatic exponent γ changes.

In general

∣∣∣∣
d ln T

d ln P

∣∣∣∣
ad

=

2 + Xion(1−Xion)

(
5
2

+
Eion

kT

)

5 + Xion(1−Xion)

(
5
2

+
Eion

kT

)2

where
Xion =

ne
np + nH

is the degree of ionisation and Eion is ionisation potential. For Xion = 0 or 1
∣∣∣∣
d ln T

d ln P

∣∣∣∣
ad

= 0.40

For Xion = 0.5, a minimum
∣∣∣∣
d ln T

d ln P

∣∣∣∣
ad

= 0.07

is reached.
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In an adiabatic process, gas pressure and density are related by an

exponent γ which is the ratio of specific heat at constant pressure (Cp)

to the specific heat at constant volume (Cv). The ionisation state of a

gas and relative abundances of the elements then determine γ and

whether the radiative temperature gradient is higher than the adiabatic

temperature gradient whih allows convection.



Conditions for Convection

For a grey atmosphere or a stellar interior

T 4 = 0.75Teff
4

[
τRoss +

2

3

]

∣∣∣∣
dT

dx

∣∣∣∣
rad

=
κ̄Ross

4T 3

3

4
Teff

4

∣∣∣∣
d lnT

d lnP

∣∣∣∣
rad

=
k

g µ̄mH

κ̄Ross

4T 3

3

4
Teff

4 =
3

16

(
Teff

T

)4

κ̄RossH '
3

16

P

σgρT 4
κ̄Ross F

where H = kT/(g µ̄mH) is the pressure scale height.

Conditions for convection:

• Adiabatic Gradient [(d lnT/d lnP )ad] small (γ-effect);

• Radiative Gradient [(d lnT/d lnP )rad] large (κ-effect) when κ̄Ross large (F or H large are
less important);

• strong absorption from the n = 2 level in hydrogen at T ' 9000K gives large κ̄Ross and
hence hydrogen convection zone in Sun;

• molecular phase transitions occur in stars cooler than the Sun and molecular opacities are
increasingly important, convection therefore becomes more and more important and

• scale-height also becomes important in red giants and supergiants.
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The second line follows using

dτRoss = κRoss dx .



Mixing Length Theory – I

A simple approach to a complicated phenomenon:

• Suppose atmosphere becomes unstable at r = r0 and mass element (cell)
rises for a characteristic distance ` (mixing length) to r0 + `.

• Cell excess energy is released into the ambient medium.

• Cell cools, sinks back down, absorbs energy and rises again.

• The mixing length (`) is assumed to be equal for all cells.

• The velocity (v) of all cells is equal.

Note that the last two assumptions are made for ad hoc simplicity; there is
no real justification for them beyond the fact that Mixing Length Theory pro-
vides a remarkably good representation of convection in stellar atmospheres
and envelopes.



Mixing Length Theory – II

Given the pressure scale height

H =
kT

(g µ̄mH)

we adopt an adjustable parameter α = `/H as a parameterisation of the mixing length
(α ∼ 0.5→ 2.0 km/s) and calculate the consequent energy flux.

For a cell moving up with speed v

Flux of energy transferred = mass flow × heat transferred per gram

Fconv = ρ v × dQ = ρ v Cp ∆T

We need to estimate v from the work done by the buoyancy force

|fb| = g |∆ρ|
by relating the cell – surroundings density difference (∆ρ) to the known temperature
difference (∆T ). In pressure equilibrium, the equation of state

P =
ρ k T

µ̄mH

gives

dP

P
=
dρ

ρ
+
dT

T
− dµ̄

µ̄
= 0

dρ = −ρ
(
dT

T
− dµ̄

µ̄

)
= −ρ dT

T

(
1− d ln µ̄

d lnT

)
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The heat transferred per gram as the bubble of gas rises a height ` is

dQ = Cp ∆T where Cp is the specific heat at constant pressure.



Mixing Length Theory – III

Work done by buoyancy force

w =

∫ `

0

|fb| d(∆r) =

∫ `

0

g |∆ρ| d(∆r)

where

|∆ρ| = ρ

T
∆T

∣∣∣∣1−
d ln µ̄

d lnT

∣∣∣∣ and ∆T =

[∣∣∣∣
dT

dr

∣∣∣∣
rad

−
∣∣∣∣
dT

dr

∣∣∣∣
ad

]
∆r.

Assume integrand above is constant over integration interval (crude approximation):

w = g
ρ

T

∣∣∣∣1−
d ln µ̄

d lnT

∣∣∣∣
[∣∣∣∣
dT

dr

∣∣∣∣
rad

−
∣∣∣∣
dT

dr

∣∣∣∣
ad

]
× 1

2
`2.

Cell kinetic energy must be work done by buoyancy force:

v =

[
g

T

∣∣∣∣1−
d ln µ̄

d lnT

∣∣∣∣
]1/2 [∣∣∣∣

dT

dr

∣∣∣∣
rad

−
∣∣∣∣
dT

dr

∣∣∣∣
ad

]1/2
`

and so the convective flux is given by

Fconv = ρ v Cp ∆T = ρCp

[
g

T

∣∣∣∣1−
d ln µ̄

d lnT

∣∣∣∣
]1/2 [∣∣∣∣

dT

dr

∣∣∣∣
rad

−
∣∣∣∣
dT

dr

∣∣∣∣
ad

]3/2
`2.

From the equations of state and hydrostatic equilibrium
∣∣∣∣
dT

dr

∣∣∣∣ =
g mH µ̄

k

∣∣∣∣
d lnT

d lnP

∣∣∣∣ =
T

H

∣∣∣∣
d lnT

d lnP

∣∣∣∣ ,
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In making the crude assumption that the integrand is constant in the

work done by the buoyancy force, the integrand remaining is ∆r d(∆r)

which when evaluated gives (1/2) `2. In fact as the equation is written

down, the work done by the buoyancy force is the work done per unit

volume. Removing the density (ρ) then leaves the square of the velocity

required. The final result needed (bottom line on the slide) comes from

the equations of hydrostatic equilibrium and perfect gas as derived on a

previous slide labelled “Schwarzschild Criterion for Convective Instability

— III”.



Mixing Length Theory – IV

a final expression for the convective flux is

Fconv = ρCp α
2 T

[
g H

∣∣∣∣1−
d ln µ̄

d lnT

∣∣∣∣
]1/2 [∣∣∣∣

d ln T

d ln P

∣∣∣∣
rad

−
∣∣∣∣
d ln T

d ln P

∣∣∣∣
ad

]3/2

.

We require that the total energy flux is given by

F = Frad + Fconv = σ Teff
4

but as temperature stratification was initially calculated assuming

F = Frad = σ Teff
4

a correction ∆T (τ ) must be iteratively applied to correct the T stratification if
the convection instability criterion is satisfied.

Note also that Fconv ∼ T 1.5 whereas Frad ∼ Teff
4 and convection is therefore

not effective in the atmospheres of hot stars.



Classical Stellar Atmosphere Models – I

Parameters defining a model stellar atmosphere are Teff, log g and abundances of chemical ele-
ments. Procedure for iteratively computing a stellar atmosphere is:

• Define about 100 depth-points (layers) in the atmosphere having monotonically increas-
ing geometric depth. Each layer is assumed to have uniform properties in the horizontal
direction.

• Apply the following steps to all depth-points.

1) Establish initial values for T (x), κν(x), Bν [T (x)], P (x) and ρ(x) using the Grey
Approximation already discussed.

2) Solve the equation of radiative transfer to determine Jν(x) and Hν(x) at each depth-
point.

3) Are the conditions of radiative equilibrium and flux conservation
∫ ∞

0

κν(x) [Jν(x)−Bν(x)] dν = 0 and 4 π

∫ ∞

0

Hν(x) dν = σ Teff
4

satisfied at each depth? If so, we have a converged model stellar atmosphere and
calculations may cease. Otherwise corrections need to be made to current estimates
of T (x), κν(x), Bν [T (x)], P (x) and ρ(x) before returning to Step 2.

Once a converged model atmosphere is available, we know T , Pgas and Pe at every depth-point
and all other quantities of interest may be calculated.



Classical Stellar Atmosphere Models – II
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Classical Stellar Atmosphere Models – II

It is customary to specify a model stellar atmosphere as series of

plane-parallel layers. For each layer, assuming Local Theromdynamic

Equilibrium (LTE), a temperature (Ti ), gas pressure (Pg )i and electron

pressure (Pe)i needs to have been determined; once these are known, all

other quantities of interest such as ionisation fractions and opacities can

be calculated for any specified element abundances. In LTE, temperature

is monotonically increasing with increasing depth.



Calculation of Synthetic Spectra – I

Bound-bound transitions in atoms, ions or molecules can give rise to absorption lines seen in
stellar spectra; steps involved in using this line in an abundance determination for the chemical
element responsible (or partly responsible) for the line are:

• Compute a model stellar atmosphere as already described or, in case of the Sun, deduce a
model atmosphere empirically from limb darkening measurements.

• For each depth-point in the stellar atmosphere it is then necessary to

1) Establish ionisation fractions and fractions associated into molecules for the chemical
element of interest.

2) Determine the population of the lower level involved in the transition responsible for
the spectral line of interest.

3) Calculate line opacities at every frequency point used to define the synthetic spectrum.

4) Repeat steps 1–3 for all other lines to be included in the synthetic spectrum.

5) Deduce a total line opacity, to which all spectral lines contribute, for every frequency
point used to define the synthetic spectrum.

• Solve the radiative transfer equation at all frequencies of interest, with line opacity added
to the continuous opacity, to obtain the emergent synthetic spectrum.

An abundance has to be assumed in a line opacity calculation and several iterations of the
calculation described above would be needed before the observed spectrum is matched.



Calculation of Synthetic Spectra – II

Absorption line profiles in stellar spectra are broadened by thermal and pressure effects;
these are the most important and will be considered in the consideration of line opacity
calculations.

• Each atom (ion or molecule) in a stellar atmosphere will have a velocity along the
line of sight, measured in the observer’s frame, and an intrinsic profile Doppler
shifted by the corresponding amount.

• If the damping process producing the intrinsic profile for each species (atom, ion
or molecule) is uncorrelated with its velocity, then the shifted profile may be su-
perimposed to yield the total line absorption cross-section by a simple convolution
procedure.

Assuming the plasma is characterised by a kinetic temperature (T ), the velocity distri-
bution is Maxwellian, so that the probability of finding an absorber (of mass mA) with
a line-of-sight velocity between ξ and ξ + dξ is

W (ξ) dξ = (π1/2 ξ0)
−1 exp(−ξ2/ξ02) dξ

where ξ0 = (2 k T/mA)1/2 = 12.85 (T/104 A)1/2 km/s and A is the atomic mass of the
absorber.



Calculation of Synthetic Spectra – III

If an atom (ion or molecule) having a velocity component ξ in the observer’s direction
is observed at frequency ν, it is absorbing at frequency ν [1− (ξ/c)] in is own frame
and the line absorption coefficient for that atom is `(ν − ξν/c). The total absorption
coefficient at frequency ν for all species of that type as seen by the observer is therefore
given by the convolution integral

`(ν) =

∫ +∞

−∞
`(ν − ξν/c)W (ξ) dξ

which can be applied to any absorption profile to allow for the effects of Doppler broad-
ening.

In general, pressure broadening is important in stellar atmospheres; this is the damping
phenomenon and its frequency dependence is given by the Lorentz profile

`(ν) =

(
π e2

me c

)
f

(Γ/4 π2)

(ν − ν0)2 + (Γ/4 π)2

where f is the transition oscillator strength, ν0 the line-centre frequency and Γ the
damping constant.
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A transition oscillator strength (f ) is related to the transition probability;

that is given an incident photon of the right energy, there is a probability

that an electron in the lower level will jump to the upper level and thereby

absorb the incident photon. Oscillator strengths may be calculated

exactly for one-electron atoms (H I, He II, ...) but for more complicated

atoms they need to be measured in a laboratory or calculated

approximately using state of the art quantum mechanical calculations.



Calculation of Synthetic Spectra – IV

Substituting in the convolution integral above gives

`(ν) =

(
π e2

me c

)
f (Γ/4 π2)

∫ +∞

−∞

(π1/2 ξ0)
−1 e−ξ

2/ξ0
2

(ν − ξν0/c− ν0)2 + (Γ/4 π)2
dξ

=

√
π e2

me c
f

1

π

∫ +∞

−∞

(Γ/4 π) e−ξ
2/ξ0

2

(ν − ξν0/c− ν0)2 + (Γ/4 π)2
dξ

ξ0

Define the Doppler width of a line as

∆νD = ξ0 ν0/c,

along with the Voigt displacement parameter

v =
(ν − ν0)

∆νD

and the Voigt damping parameter as

a =
Γ

4 π∆νD

with

y =
∆ν

∆νD
=
ξ

ξ0
.



Calculation of Synthetic Spectra – V

Then the line absorption coefficient due to the selected line and atmospheric
depth point is

`(ν) =

√
π e2 f

me c∆νD

a

π

∫ +∞

−∞

e−y
2

(v − y)2 + a2
dy

The integral

H(a, v) =
a

π

∫ ∞

−∞

e−y
2

(v − y)2 + a2
dy

is known as the Voigt Function; it needs to be evaluated rapidly for synthetic
stellar spectrum calculations.



Solar Abundances

ANRV385-AA47-12 ARI 22 July 2009 4:10

Table 1 Element abundances in the present-day solar photosphere. Also given are the
corresponding values for CI carbonaceous chondrites (Lodders, Palme & Gail 2009). Indirect
photospheric estimates have been used for the noble gases (Section 3.9)

Z Element Photosphere Meteorites Z Element Photosphere Meteorites
1 H 12.00 8.22 ± 0.04 44 Ru 1.75 ± 0.08 1.76 ± 0.03
2 He [10.93 ± 0.01] 1.29 45 Rh 0.91 ± 0.10 1.06 ± 0.04
3 Li 1.05 ± 0.10 3.26 ± 0.05 46 Pd 1.57 ± 0.10 1.65 ± 0.02
4 Be 1.38 ± 0.09 1.30 ± 0.03 47 Ag 0.94 ± 0.10 1.20 ± 0.02
5 B 2.70 ± 0.20 2.79 ± 0.04 48 Cd 1.71 ± 0.03
6 C 8.43 ± 0.05 7.39 ± 0.04 49 In 0.80 ± 0.20 0.76 ± 0.03
7 N 7.83 ± 0.05 6.26 ± 0.06 50 Sn 2.04 ± 0.10 2.07 ± 0.06
8 O 8.69 ± 0.05 8.40 ± 0.04 51 Sb 1.01 ± 0.06
9 F 4.56 ± 0.30 4.42 ± 0.06 52 Te 2.18 ± 0.03
10 Ne [7.93 ± 0.10] −1.12 53 I 1.55 ± 0.08
11 Na 6.24 ± 0.04 6.27 ± 0.02 54 Xe [2.24 ± 0.06] −1.95
12 Mg 7.60 ± 0.04 7.53 ± 0.01 55 Cs 1.08 ± 0.02
13 Al 6.45 ± 0.03 6.43 ± 0.01 56 Ba 2.18 ± 0.09 2.18 ± 0.03
14 Si 7.51 ± 0.03 7.51 ± 0.01 57 La 1.10 ± 0.04 1.17 ± 0.02
15 P 5.41 ± 0.03 5.43 ± 0.04 58 Ce 1.58 ± 0.04 1.58 ± 0.02
16 S 7.12 ± 0.03 7.15 ± 0.02 59 Pr 0.72 ± 0.04 0.76 ± 0.03
17 Cl 5.50 ± 0.30 5.23 ± 0.06 60 Nd 1.42 ± 0.04 1.45 ± 0.02
18 Ar [6.40 ± 0.13] −0.50 62 Sm 0.96 ± 0.04 0.94 ± 0.02
19 K 5.03 ± 0.09 5.08 ± 0.02 63 Eu 0.52 ± 0.04 0.51 ± 0.02
20 Ca 6.34 ± 0.04 6.29 ± 0.02 64 Gd 1.07 ± 0.04 1.05 ± 0.02
21 Sc 3.15 ± 0.04 3.05 ± 0.02 65 Tb 0.30 ± 0.10 0.32 ± 0.03
22 Ti 4.95 ± 0.05 4.91 ± 0.03 66 Dy 1.10 ± 0.04 1.13 ± 0.02
23 V 3.93 ± 0.08 3.96 ± 0.02 67 Ho 0.48 ± 0.11 0.47 ± 0.03
24 Cr 5.64 ± 0.04 5.64 ± 0.01 68 Er 0.92 ± 0.05 0.92 ± 0.02
25 Mn 5.43 ± 0.04 5.48 ± 0.01 69 Tm 0.10 ± 0.04 0.12 ± 0.03
26 Fe 7.50 ± 0.04 7.45 ± 0.01 70 Yb 0.84 ± 0.11 0.92 ± 0.02
27 Co 4.99 ± 0.07 4.87 ± 0.01 71 Lu 0.10 ± 0.09 0.09 ± 0.02
28 Ni 6.22 ± 0.04 6.20 ± 0.01 72 Hf 0.85 ± 0.04 0.71 ± 0.02
29 Cu 4.19 ± 0.04 4.25 ± 0.04 73 Ta −0.12 ± 0.04
30 Zn 4.56 ± 0.05 4.63 ± 0.04 74 W 0.85 ± 0.12 0.65 ± 0.04
31 Ga 3.04 ± 0.09 3.08 ± 0.02 75 Re 0.26 ± 0.04
32 Ge 3.65 ± 0.10 3.58 ± 0.04 76 Os 1.40 ± 0.08 1.35 ± 0.03
33 As 2.30 ± 0.04 77 Ir 1.38 ± 0.07 1.32 ± 0.02
34 Se 3.34 ± 0.03 78 Pt 1.62 ± 0.03
35 Br 2.54 ± 0.06 79 Au 0.92 ± 0.10 0.80 ± 0.04
36 Kr [3.25 ± 0.06] −2.27 80 Hg 1.17 ± 0.08
37 Rb 2.52 ± 0.10 2.36 ± 0.03 81 Tl 0.90 ± 0.20 0.77 ± 0.03
38 Sr 2.87 ± 0.07 2.88 ± 0.03 82 Pb 1.75 ± 0.10 2.04 ± 0.03
39 Y 2.21 ± 0.05 2.17 ± 0.04 83 Bi 0.65 ± 0.04
40 Zr 2.58 ± 0.04 2.53 ± 0.04 90 Th 0.02 ± 0.10 0.06 ± 0.03
41 Nb 1.46 ± 0.04 1.41 ± 0.04 92 U −0.54 ± 0.03
42 Mo 1.88 ± 0.08 1.94 ± 0.04
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Table 1 Element abundances in the present-day solar photosphere. Also given are the
corresponding values for CI carbonaceous chondrites (Lodders, Palme & Gail 2009). Indirect
photospheric estimates have been used for the noble gases (Section 3.9)

Z Element Photosphere Meteorites Z Element Photosphere Meteorites
1 H 12.00 8.22 ± 0.04 44 Ru 1.75 ± 0.08 1.76 ± 0.03
2 He [10.93 ± 0.01] 1.29 45 Rh 0.91 ± 0.10 1.06 ± 0.04
3 Li 1.05 ± 0.10 3.26 ± 0.05 46 Pd 1.57 ± 0.10 1.65 ± 0.02
4 Be 1.38 ± 0.09 1.30 ± 0.03 47 Ag 0.94 ± 0.10 1.20 ± 0.02
5 B 2.70 ± 0.20 2.79 ± 0.04 48 Cd 1.71 ± 0.03
6 C 8.43 ± 0.05 7.39 ± 0.04 49 In 0.80 ± 0.20 0.76 ± 0.03
7 N 7.83 ± 0.05 6.26 ± 0.06 50 Sn 2.04 ± 0.10 2.07 ± 0.06
8 O 8.69 ± 0.05 8.40 ± 0.04 51 Sb 1.01 ± 0.06
9 F 4.56 ± 0.30 4.42 ± 0.06 52 Te 2.18 ± 0.03
10 Ne [7.93 ± 0.10] −1.12 53 I 1.55 ± 0.08
11 Na 6.24 ± 0.04 6.27 ± 0.02 54 Xe [2.24 ± 0.06] −1.95
12 Mg 7.60 ± 0.04 7.53 ± 0.01 55 Cs 1.08 ± 0.02
13 Al 6.45 ± 0.03 6.43 ± 0.01 56 Ba 2.18 ± 0.09 2.18 ± 0.03
14 Si 7.51 ± 0.03 7.51 ± 0.01 57 La 1.10 ± 0.04 1.17 ± 0.02
15 P 5.41 ± 0.03 5.43 ± 0.04 58 Ce 1.58 ± 0.04 1.58 ± 0.02
16 S 7.12 ± 0.03 7.15 ± 0.02 59 Pr 0.72 ± 0.04 0.76 ± 0.03
17 Cl 5.50 ± 0.30 5.23 ± 0.06 60 Nd 1.42 ± 0.04 1.45 ± 0.02
18 Ar [6.40 ± 0.13] −0.50 62 Sm 0.96 ± 0.04 0.94 ± 0.02
19 K 5.03 ± 0.09 5.08 ± 0.02 63 Eu 0.52 ± 0.04 0.51 ± 0.02
20 Ca 6.34 ± 0.04 6.29 ± 0.02 64 Gd 1.07 ± 0.04 1.05 ± 0.02
21 Sc 3.15 ± 0.04 3.05 ± 0.02 65 Tb 0.30 ± 0.10 0.32 ± 0.03
22 Ti 4.95 ± 0.05 4.91 ± 0.03 66 Dy 1.10 ± 0.04 1.13 ± 0.02
23 V 3.93 ± 0.08 3.96 ± 0.02 67 Ho 0.48 ± 0.11 0.47 ± 0.03
24 Cr 5.64 ± 0.04 5.64 ± 0.01 68 Er 0.92 ± 0.05 0.92 ± 0.02
25 Mn 5.43 ± 0.04 5.48 ± 0.01 69 Tm 0.10 ± 0.04 0.12 ± 0.03
26 Fe 7.50 ± 0.04 7.45 ± 0.01 70 Yb 0.84 ± 0.11 0.92 ± 0.02
27 Co 4.99 ± 0.07 4.87 ± 0.01 71 Lu 0.10 ± 0.09 0.09 ± 0.02
28 Ni 6.22 ± 0.04 6.20 ± 0.01 72 Hf 0.85 ± 0.04 0.71 ± 0.02
29 Cu 4.19 ± 0.04 4.25 ± 0.04 73 Ta −0.12 ± 0.04
30 Zn 4.56 ± 0.05 4.63 ± 0.04 74 W 0.85 ± 0.12 0.65 ± 0.04
31 Ga 3.04 ± 0.09 3.08 ± 0.02 75 Re 0.26 ± 0.04
32 Ge 3.65 ± 0.10 3.58 ± 0.04 76 Os 1.40 ± 0.08 1.35 ± 0.03
33 As 2.30 ± 0.04 77 Ir 1.38 ± 0.07 1.32 ± 0.02
34 Se 3.34 ± 0.03 78 Pt 1.62 ± 0.03
35 Br 2.54 ± 0.06 79 Au 0.92 ± 0.10 0.80 ± 0.04
36 Kr [3.25 ± 0.06] −2.27 80 Hg 1.17 ± 0.08
37 Rb 2.52 ± 0.10 2.36 ± 0.03 81 Tl 0.90 ± 0.20 0.77 ± 0.03
38 Sr 2.87 ± 0.07 2.88 ± 0.03 82 Pb 1.75 ± 0.10 2.04 ± 0.03
39 Y 2.21 ± 0.05 2.17 ± 0.04 83 Bi 0.65 ± 0.04
40 Zr 2.58 ± 0.04 2.53 ± 0.04 90 Th 0.02 ± 0.10 0.06 ± 0.03
41 Nb 1.46 ± 0.04 1.41 ± 0.04 92 U −0.54 ± 0.03
42 Mo 1.88 ± 0.08 1.94 ± 0.04
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Lecture 3: Summary

Essential points covered in the third lecture:

• The connection between density and pressure as determined by hydrostatic equilib-
rium was introduced; while relevant to static stellar atmospheres, it also provides
one of the four equations of stellar structure.

• No stellar energy generation takes place in the stellar atmosphere and this provides
the condition of radiative equilibrium.

• Rosseland Mean Opacity was defined.

• An analytical solution to the stellar atmosphere problem was presented assuming
frequency independent opacities (Grey Approximation).

• Conditions under which convection becomes important and how to calculate the
convective flux were introduced; these too apply to stellar interiors as well as
atmospheres.

• The calculation of a model stellar atmosphere by iteration was summarised, as was
their application to the calculation of synthetic spectra for abundance determina-
tions.
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