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Introduction – I

Main physical processes which determine the structure of stars:

• Stars are held together by gravitation — attraction exerted on each part
of the star by all other parts.

• Collapse is resisted by internal thermal pressure.

• Gravitation and internal thermal pressure must be (at least almost) in
balance.

• Stars continually radiate into space; for thermal properties to be constant,
a continuous energy source must exist.

• Theory must describe origin of energy and its transport to the surface.

Two fundamental assumptions are made:

• Neglect the rate of change of properties due to stellar evolution in the first
instance; assume these are constant with time.

• All stars are spherical and symmetric about their centres of mass.



Introduction – II

For stars which are isolated, static and spherically symmetric, there are four
equations to describe structure. All physical quantities depend only on distance
from the centre of the star:

• Equation of Hydrostatic Equilibrium – at each radius, forces due pressure
difference balance gravity,

• Conservation of mass,

• Conservation of energy – at each radius, the change in the energy flux is
the local rate of energy release and

• Equation of Energy Transport – the relation between the energy flux and
the local temperature gradient.

These basic equations are supplemented with:

• an equation of state giving gas pressure as a function of its density and
temperature,

• opacity (how opaque the gas is to the radiation field) and

• core nuclear energy generation rate.



Hydrostatic Equilibrium – I

In connection with a discussion of radial pulsation and subsequently
while considering stellar atmospheres, the equation

dP

dr
= −Gm(r)

r2
ρ(r)

was derived; it is the Equation of Hydrostatic Equilibrium ( or Hydro-
static Support) and is the First Equation of Stellar Structure.

When the pressure gradient is not exactly balanced by gravity, the
equation of motion was found to be

dP

dr
= −Gm(r)

r2
ρ(r)− ρ(r)d

2r

dt2
.

Near the surface Gm(r)/r2 = g and suppose we then have a small
inward acceleration of d2r/dt2 = βg, the displacement after time t if
it begins at rest is

d =
1

2
βgt2.



Hydrostatic Equilibrium – II

If we allowed the star to collapse, that is set d = R where R is the
stellar radius, then the time required would be

t =

(
2R

βg

)1/2

=
1
√
β

(
2R 3

GM

)1/2

.

In the absence of a pressure gradient dP/dr = 0, β ' 1 and we have
an expression for the stellar dynamical time

td =

(
2R 3

GM

)1/2

,

which provides an estimate for the characteristic period on which a
stellar interior vibrates in response to small mechanical disturbances
such as flares, convection or impacts; it is roughly the time required
for a sound wave to cross the star.

In the case of the Sun R� ' 7 × 108 m and M� ' 2 × 1030 kg
giving td ' 2300 seconds.



Hydrostatic Equilibrium – III

Stars are rotating gaseous bodies and is consequent flattening at the
poles so significant that departures from spherical symmetry need to
be taken into account?

Consider δm to be a mass near the surface of a star of mass M and
radius R; the inward centripetal force acting on it to provide circular
motion is δmω2R where ω is the angular rotation velocity of the star.

Condition for no significant departure from spherical symmetry is:

δmω2R� GM δm

R2
or ω2 � GM

R3
or ω2 � 2

td
2 .

As ω = 2π/trot, where trot is the stellar rotation period, spherical
symmetry exists if trot � td.

For the Sun trot ∼ 1 month and td ∼ 0.5 hours and so departures from
spherical symmetry can be ignored, as is the case for most stars.

Some stars do rotate rapidly and rotational effects must be included
in the structure equations.



Mass Conservation

In connection with a discussion of radial pulsation, the equation

dM(r)

dr
= 4π r2 ρ(r)

was derived; it is the Equation of Mass Conservation and is the Sec-
ond Equation of Stellar Structure.



Minimum Central Pressure – I

Hydrostatic equilibrium and mass conservation

dP (r)

dr
= −GM(r) ρ(r)

r2
and

dM(r)

dr
= 4π r2 ρ(r)

are two of the four equations of stellar structure discussed.

Dividing these two equations gives

dP (r)

dM(r)
= −GM(r)

4 πr4

which on integrating over the whole star results in

Pc − Ps =

∫ M

0

GM(r)

4 πr4
dM(r)

where Pc and Ps are pressures at the stellar centre and surface respec-
tively.



Minimum Central Pressure – II

Clearly the maximum value of r is at the stellar surface when r = R;
here the integrand is a minimum and therefore

Pc − Ps =

∫ M

0

GM(r)

4 πr4
dM(r) >

∫ M

0

GM(r)

4 πR4
dM(r) =

GM 2

8 πR4
.

To a good approximation, pressure at the stellar surface is zero giving
a minimum value for the central pressure of

Pc >
GM 2

8 πR4
.

For example, for the Sun

Pc > 4.5× 1013 Nm−2

which indicates that gas at the centre of the Sun is not an ordinary
gas typically found in the Earth’s atmosphere.



Virial Theorem – I

Hydrostatic equilibrium and mass conservation

dP (r)

dr
= −GM(r) ρ(r)

r2
and

dM(r)

dr
= 4π r2 ρ(r)

are two of the four equations of stellar structure discussed.

Dividing these two equations gives

dP (r)

dM(r)
= −GM(r)

4 πr4

which on multiplying both sides by 4πr3 and integrating over the whole
star results in

4πr3 dP (r) =
GM(r)

r
dM(r)

3

∫ Ps

Pc

V (r) dP (r) = −
∫ M

0

GM(r)

r
dM(r)

where V (r) is the volume contained within radius r.



Virial Theorem – II

Integrating the left hand side by parts gives

3 [PV ]PsPc − 3

∫ Vs

Vc

P (r) dV (r) = −
∫ M

0

GM(r)

r
dM(r).

Clearly Vc = 0 and Ps = 0 and therefore

3

∫ Vs

0

P (r) dV (r)−
∫ M

0

GM(r)

r
dM(r) = 0 and

3

∫ Vs

0

P (r) dV (r) + Ω = 0.

The second equation is the Virial Theorem, where

−Ω =

∫ M

0

GM(r)

r
dM(r),

and is of great importance in astrophysics. Ω is the total gravitational
energy of the star or the energy released in forming the star from its
components dispersed to infinity. As a consequence, the left-hand term
is the thermal energy of the star.



Mean Temperature – I

For all points inside the star, r < R and so

−Ω =

∫ M

0

GM(r)

r
dM(r) >

∫ M

0

GM(r)

R
dM(r) =

GM 2

2R
.

Now dM = ρ dV and the Virial Theorem can be written as

−Ω = 3

∫ Vs

0

P (r) dV (r) = 3

∫ M

0

P (r)

ρ(r)
dM(r).

Assume for the moment that stars are composed of an ideal gas and
that radiation pressure is negligible; in this case:

P = Pgas =
k

mHµ̄
ρ T

and so

−Ω = 3

∫ M

0

k T (r)

mHµ̄
dM(r) >

GM 2

2R

and ∫ M

0

T (r) dM(r) >
GM 2mH µ̄

6 k R
.



Mean Temperature – II

The left-hand-side of the above equation can be thought of as the sum
of the mass-elements dM(r) which make up the star; dividing this by
the total mass of the star gives its mean temperature:

M T̄ =

∫ M

0

T (r) dM(r)

T̄ >
GM mH µ̄

6 k R
.

As an example, for the Sun we have

T̄ > 4× 106 µ̄K

Hydrogen is generally (but not always) the most abundant element in
stars and for fully ionised hydrogen µ̄ = 1/2

T̄� > 2× 106 K.



Physical State of Stellar Material – I

The mean density of material in the Sun is

ρ̄� =
3M�

4πR�
3

= 1.4× 103 kg m−3

which is a little higher than water and other ordinary liquids. Such
liquids become gaseous at T � T̄�.

Moreover, the kinetic energy of particles at T̄� is much higher than
the ionisation potential of hydrogen. Thus the gas must be almost
completely ionised and exist as a plasma; it can therefore withstand
greater compression without departure from an ideal gas state.

Note that an ideal gas demands that the distances between particles
are much larger that their sizes. A fully ionised plasma satisfies the
condition more readily than a neutral gas because nuclear dimensions
are ∼ 10−15 m whereas atomic dimensions are ∼ 10−10 m.



Physical State of Stellar Material – II

In order to assess the importance of radiation pressure, recall that
radiation in the frequency interval ν → ν + dν contributes

pν =
1

c

∮

4π

Iν cos2θ dΩ = 4π
Kν

c

to the radiation pressure.

In the Eddington Approximation, Kν = Bν(T )/3 and the total radia-
tion pressure is

p =
4π

3c

∫ ∞

0

Bν(T ) dν

=
4π

3c

∫ ∞

0

2hν3

c2
1

exp(hν/kT )− 1
dν



Physical State of Stellar Material – III

Let x = hν/kT and then dν = (kT/h) dx so that

p =
4π

3c

2 k4 T 4

c2 h3

∫ ∞

0

x3

exp(x)− 1
dx

=
1

3

8 k4 T 4

c3 h3
π5

15

=
1

3
a T 4

where a = (8k4π5/15c3h3) is known as the radiation constant.

Now comparing gas and radiation pressures gives:

Prad

Pgas

=
aT 4

3

(
kTρ

mHµ̄

)−1
=
mHµ̄aT

3

3kρ

Taking T ∼ T̄� = 2×106 K, ρ ∼ ρ̄� = 1.4×103 kg m−3, mH = 1.67×10−27 kg,
µ̄ = 0.5 and a = 7.6× 10−16Nm−2K−4 gives Prad/Pgas ' 10−4.



Significance of Radiation Pressure

Hence radiation pressure appears to be negligible at an average point in
the Sun. Without recourse to our knowledge of how energy is generated
in the Sun, a value for its internal temperature has been derived and
it has been deduced that the material is essentially an ideal gas with
negligible radiation pressure.

Now we consider higher mass stars by replacing density in the pressure
ratio expression giving

Prad

Pgas

=
mHµ̄aT

3

3k
(

3M
4πR3

) =
4πmH µ̄ a

9k

R3 T 3

M

From the Virial Theorem T̄ scales as M/R and so

Prad

Pgas

∝M 2.

Clearly radiation pressure becomes increasingly significant as stellar
mass increases.



Energy Generation in the Sun

Only considered the dynamical properties of a star and the state of stellar material.
Attention now needs to be given to the source of stellar energy.

Energy is converted from some form in which it is not immediately available into a form
which can be radiated.

How much energy does the Sun need to generate in order to maintain its observed
luminosity?

L� = 4× 1026 W

and it is known from geological records that the Sun has not changed appreciably in 109

years (3× 1016 seconds) and so it has radiated 1.2× 1043J . To get the equivalent mass
lost, divide by c2 giving

Mlost =
1.2× 1043

9.0× 1016
= 1.3× 1026 kg ' 10−4M�.



Source of Energy Generation – I

Consider four possible sources of energy generation in stars:

• cooling,

• contraction,

• chemical reactions and

• nuclear reactions.

Cooling and contraction are closely related and are considered together. Cooling is the
simplest idea. Suppose the radiative energy of the Sun is due to the Sun being hotter
when it was formed and has since been cooling down. Or since its formation, the Sun
has been slowly contracting with the consequent release of gravitational potential energy
which is converted to radiation.



Source of Energy Generation – II

In an ideal gas, the thermal energy of a particle having three degrees of freedom is
(3/2)kT . Total thermal energy per unit volume is then (3/2)nkT , where n is the
number of particles per unit volume.

From the Virial Theorem

3

∫ Vs

0

P dV + Ω = 0

assuming stellar material to be an ideal gas

3

∫ Vs

0

nkT dV + Ω = 0.

Define U to be the integral over volume of the thermal energy per unit volume; then

2U + Ω = 0.

The negative gravitational energy of a star is equal to twice its thermal energy. The
time for which the present thermal energy of the Sun could supply its luminosity, and
the time for which a previous release of gravitational energy could have done so, differ
by a factor of two.



Source of Energy Generation – III

As already shown, if stellar material is a perfect gas

−Ω >
GM 2

2R

and so adopting

−Ω ∼ GM 2

2R
as a crude approximation, it can be seen that the conversion of gravitational potential
energy to radiation would provide a luminosity L for a time

tth =
GM 2

LR
,

where tth is defined as the thermal (or Kelvin-Helmholtz) time-scale.

Substituting values for the Sun gives tth� = 3 × 107 years. Therefore if the Sun were
powered by either contraction or cooling, it would have changed substantially in the last
107 years, a factor of ∼ 100 too short to account for age constraints imposed by fossil
and geological records.



Source of Energy Generation – IV

Chemical reactions can be ruled out as a possible source for stellar energy because:

• It was shown above that the Sun is made up of largely ionised material. Hydrogen
in particular is almost completely ionised except in the atmosphere. There are
therefore very few atoms or ions having the bound electrons needed for chemical
reactions to proceed.

• The energy source needs to provide, in the solar case, the energy equivalent of at
least 10−4M� over ∼ 109 years. Chemical reactions such as the combustion of
fossil fuels release the energy equivalent of ∼ 5× 10−10M� in the same period.



Source of Energy Generation – V

Therefore nuclear reactions need to be considered as the only known viable way of
producing sufficiently large amounts of energy to power a star. Consider the fusion
of four protons (atomic mass 1.008172) into 4He (an alpha particle of atomic mass
4.003875):

• Mass deficit with each fusion reaction is 0.0288 atomic mass units.

• The equivalent in kilograms is 0.0288× (1.67×10−27) = 4.8× 10−29 kg.

• Number of reactions required before 10−4M� are converted into energy is
((2.0× 1030)× 10−4)/(4.8× 10−29) = 4.16× 1054.

• Energy equivalent of each fusion reaction mass-deficit is
(4.8× 10−29)×(3× 108)2 = 4.33× 10−12 J.

• Therefore the total energy produced over 109 years by all fusion reactions is
(4.33× 10−12)×(4.16× 1054) = 1.8× 1043 J.

• As 109 years ' 3× 1016 seconds the consequent stellar luminosity would be
6× 1026 W which is within a factor of 2 of the observed solar luminosity.

Provided conditions allow the fusion of hydrogen into helium to proceed, it is a probable
energy source in the case of the Sun; it is also more probable than fission (involving
uranium or plutonium) given relative abundances of the elements involved.



Energy Production Equation – I

//

r

??

R

Consider spherical shell of thickness dr in a spherically

symmetric star of radius R in which energy transport

is radial and time variations are unimportant.

L(r) - rate of energy flow across sphere of radius r.

L(r + dr) - rate of energy flow across sphere of

radius r + dr.

Because the shell is thin

dV (r) = 4πr2 dr and dM(r) = 4πr2 ρ dr

1



Energy Production Equation – II

Define ε(r) as the energy release per unit mass in unit time and hence rate of
energy release in the shell is 4πr2 ρ(r) ε(r) dr. As energy is conserved

L(r + dr) = L(r) + 4πr2 ρ(r) ε(r) dr and therefore

L(r + dr)− L(r)

dr
= 4πr2 ρ(r) ε(r) .

In the limit as dr → 0
dL(r)

dr
= 4πr2 ρ(r) ε(r) .

Here we have the Equation of Energy Production which is the
Third Equation of Stellar Structure.

As the unknowns are P (r),M(r), L(r), ρ(r) and ε(r) energy transport needs to
be revisited before stellar structure equations can be solved.



Equation of Radiation Transport – I

As previously shown, the radiation pressure may be expressed as

p =
4π

3c

∫ ∞

0

Bν(T ) dν =
1

3
a T 4

and differentiating with respect to T gives

dp

dT
=

4π

3c

∫ ∞

0

dBν(T )

dT
dν =

4

3
a T 3.

And so ∫ ∞

0

dBν(T )

dT
dν =

a c T 3

π
.

Instead of using the absorption coefficient (κν) in units of cm−1 or m−1, an absorption
coefficient (κν) in units of cm2/gm or m2/kg is adopted. Clearly

κν = κν ρ.

A previously derived solution of the radiative transfer equation in the diffusion approx-
imation is

Hν = −1

3

1

κνρ

dBν

dT

dT

dr



Equation of Radiation Transport – II

Integrating with respect to frequency gives
∫ ∞

0

Hν dν = − 1

3ρ

dT

dr

∫ ∞

0

1

κν

dBν

dT
dν

= − 1

3ρ

dT

dr

1

κ̄Ross

∫ ∞

0

dBν

dT
dν

= − 1

3ρ

dT

dr

1

κ̄Ross

a c T 3

π

=
L(r)

4π

1

4πr2

where the definition of κ̄Ross has been used and the resulting integral evaluated using
the radiation pressure expression. Since ac = 4σ

dT

dr
=

3ρκ̄Ross

64πr2σT 3
L(r)

which gives the temperature gradient in a stellar envelope, in the absence of convec-
tion, at distance r from the stellar centre; it is the Fourth Equation of Stellar
Structure.



Equation of Radiation Transport – III

As already explained, a stellar atmosphere or envelope becomes convective when the
Schwarzschild Criterion

1− 1

γ
<

∣∣∣∣
d ln T

d ln P

∣∣∣∣
rad

is satisfied. In other words, the adiabatic gradient becomes less than the radiative
gradient. If the condition is satisfied, large scale rising and falling motions transport
energy upwards.

The criterion can be satisfied in two ways:

• the ratio of specific heats (γ) is close to unity or

• the temperature gradient is very large.

For example, if a large amount of energy is released at the centre of a star, it may require
a large temperature gradient to carry that energy away. Hence where nuclear energy is
being released, convection may occur.

Alternatively, in the cool outer layers of a star, gas may only be partially ionised and
much of the heat used to raise the temperature of the gas goes into ionisation; in these
circumstances the specific heats at constant pressure and volume are almost the same
and γ ∼ 1.



Solution of Stellar Structure Equations – I

The four equations of stellar structure

dP (r)

dr
= −GM(r) ρ(r)

r2

dM(r)

dr
= 4π r2 ρ(r)

dL(r)

dr
= 4π r2 ρ(r) ε(r)

dT (r)

dr
=

3ρ(r)κ̄Ross

64πr2σT (r)3
L(r)

have been derived and the quantities P (r), κ̄Ross(r) and ε(r) are all also considered to
be functions of ρ, T and chemical composition. The dependence of P (r) on ρ, T and
chemical composition is referred to as the Equation of State.

The obvious boundary conditions are:

• At the stellar centre, r = 0, M(r) = 0 and L(r) = 0.

• At the stellar surface ρ ∼ 10−4 kg m−3 � ρ̄� ∼ 1.4× 103 kg m−3 and T ∼ Teff =
5780 K� T̄� ∼ 2× 106 K. At the surface r = R and ρ = T = 0 is adopted.



Solution of Stellar Structure Equations – II

From a theoretical point of view, it is the mass of a star which is chosen, and while some mass
is lost during evolution, it does not change by orders of magnitude as in the case of the radius.
M(r) is therefore a more natural choice of independent variable; the other three stellar structure
equations are divided by the equation of mass conservation, which itself is inverted giving:

dP (r)

dM(r)
= −GM(r)

4 π r4
,

dr

dM(r)
=

1

4 π r2 ρ(r)
,

dL(r)

dM(r)
= ε(r) and

dT (r)

dM(r)
=

3κ̄RossL(r)

16 π2 r4 a c T (r)3
.

The time taken by a star to consume all its nuclear energy is the nuclear time-scale given by

tnuc ∼
ηM c2

L

where η is the mass-fraction converted into energy. For the Sun tnuc� ∼ 1.0 × 1011 years.
Moreover, for the Sun td� ∼ 2300 seconds and tth� ∼ 3× 107 years. Clearly

td� � tth� � tnuc�.



Solution of Stellar Structure Equations – III

Solution of the coupled differential equations of stellar structure allows the complete structure of
a star, whose chemical composition and mass have been specified, to be determined. Limitations
do need to be remembered:

• Evolution needs to proceed slowly when compared with td so that pulsations may be ignored;
for the Sun this is certainly true.

• It has also been assumed that time-dependence can be omitted from the equation of energy
generation if tnuc � tth; again, for the Sun this is certainly the case.

• If there are no bulk motions in the stellar interior, any changes in chemical composition
are localised in the element of material in which nuclear reactions occurred. Chemical
composition is then a function of mass, age and distance from the stellar centre.

• When bulk motions do occur, as with convection, stellar structure equations need to be
supplemented by equations describing the rates of change of abundances of each chemical
element. If CX,Y,Z represents the chemical composition in terms of mass fractions for
hydrogen (X), helium (Y) and metals (Z) at some mass-point M(r) and time t0 then

∂[CX,Y,Z]M(r),t0

∂t
= f (ρ, T, CX,Y,Z)

and at some later time t0 + δt

[CX,Y,Z]M(r),(t0+δt)
= [CX,Y,Z]M(r),t0

+
∂[CX,Y,Z]M(r),t0

∂t
δt.



Solution of Stellar Structure Equations – IV

In convective regions, energy transport by convection needs to be included in the solution
of stellar structure equations.

• As the temperature difference and velocity of rising elements are determined by
the difference between the actual and adabatic temperature gradients, the former
cannot be much larger than the latter.

• It is therefore a reasonable approximation to assume both gradients are equal in
which case

P (r)

T (r)

dT (r)

dP (r)
=
γ − 1

γ

• Stellar structure equations supplemented as described above are first solved for
each concentric shell, into which the stellar interior has been discretised, assuming
convection is unimportant in the first instance.

• The Schwarschild-Criterion is then applied to each concentric shell and the convec-
tive contribution to luminosity, computed by the Mixing Length Theory, included
in the total shell luminosity if conditions permit convection to occur.

• Iteration then proceeds until a converged solution is attained for each concentric
shell and the star as a whole.



Lecture 4: Summary

Essential points covered in fourth lecture:

• dynamical and thermal timescales, and the Virial Theorem;

• mean temperature and mean density of stellar envelope gas, and pressure at a
stellar centre;

• the physical state of stellar material;

• energy generation in stars must be by fusion reactions;

• the significance of radiation pressure as a function of stellar mass and

• the equations of stellar structure.

It has been assumed that stellar structure can be determined assuming that changes due
to stellar evolution are too slow to influence it; in general (though not always) this is a
good approximation.
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