Homologous Stellar Models and Polytropes

Main Sequence Stars
 Stellar Evolution Tracks and Hertzsprung-Russell Diagram
 Star Formation and Pre-Main Sequence Contraction
 Main Sequence Star Characteristics
 Luminosity Evolution
 Convective Regions, CNO Cycle and PP-Chain
 Lifet ime on the Main-Sequence
 Convective Overshooting and Semi-Convection

Post-Main Sequence Hydrogen-Shell Burning

Post-Main Sequence Helium-Core Burning

White Dwarfs, Massive and Neutron Stars
Stars form as a consequence of the gravitational collapse of a gas cloud.

- Irrespective of mass, the collapsing gas cloud is fully convective and follows the Hayashi Line in the Hertzsprung-Russell Diagram.
- A fully convective star has to be on the Hayashi line.
- The region to the right of the Hayashi Line in the Hertzsprung-Russell Diagram is a “forbidden zone”.
- All fully convective stars, such as very low mass M dwarfs, will remain on the Hayashi line throughout their Main Sequence evolution.
- Once on the Main Sequence, helium is produced by the PP-Chain for low mass stars and mostly by the CNO cycle in higher mass stars.
- Main Sequence lifetime falls off as roughly the inverse square of the stellar mass.
The study of stellar evolution involves:

- Calculating some initial stellar model by the simultaneous solution of the four equations of stellar structure along with the three supplementary equations.

- Identify nuclear reactions and other processes such as convection and gravitational contraction which can change the structure of the model just computed.

- For an appropriate time-step, estimate a new stellar structure and use this as a starting approximation for a new solution of the stellar structure and supplementary equations.

- Repeating the process yields an evolutionary track in the Hertzsprung-Russell Diagram (HRD) \((\log_{10} L \text{ vs. } \log_{10} T)\) which shows how the HRD position of a star of given mass and initial chemical composition changes with time.

- Evolution tracks calculated for a range of stellar masses allows the dependence of evolution on mass to be studied.

- Points identifying a fixed age on evolution tracks for different masses define an isochrone.

- Isochrones may be extracted for any number of ages and compared with observed colour-magnitude diagrams for globular clusters to determine their ages.
All stars of sufficient mass have a core hydrogen-burning phase which is the Main Sequence, but subsequent evolution depends on mass:

- Brown Dwarfs (and Planets) have masses below $0.08 \, M_\odot$ or $80 \, M_{\text{Jup}}$ which is the estimated lower mass limit for T_c to reach the 1.5×10^7 K needed for core hydrogen burning.

- Red Dwarfs are stars whose main-sequence lifetime exceeds the present age of the Universe estimated as 1.37×10^{10} years. Models yield an upper mass limit ($0.7 \, M_\odot$ for stars that must still be on the Main Sequence, even if they are as old as the Universe.

- Low-Mass Stars ($0.7 \leq M \leq 2 \, M_\odot$) in most cases end up losing most of their mass to become planetary nebulae before evolving on to the white dwarf cooling track.

- Intermediate-Mass Stars ($2 \leq M \leq 8 \, M_\odot$) have evolution tracks similar to those of low-mass stars, but always at higher luminosity.

- High-Mass (or massive) stars ($M > 8 \, M_\odot$) have distinctly different lifetimes and evolutionary paths.
A rough estimate of the radius of a protostar after the dynamical collapse can be obtained by assuming all gravitational energy released during the collapse is absorbed in the dissociation of molecular hydrogen (requiring $\chi_{\text{H}_2} = 4.5 \text{ eV per H}_2 \text{ molecule}$) and ionisation of hydrogen $\chi_{\text{H}} = 13.6 \text{ eV}$ and helium $\chi_{\text{He}} = 79 \text{ eV}$. Assuming the collapse starts with the initial gas cloud having an infinite radius, the protostar radius R_p is given by

$$\frac{GM^2}{2R_p} \simeq \frac{M}{m_{\text{H}}} \left(\frac{X}{2} \chi_{\text{H}_2} + \chi_{\text{H}} + \frac{Y}{4} \chi_{\text{He}} \right)$$

where the left hand side follows from the Virial Theorem as already discussed. Taking $X \simeq 0.7$ and $Y = 1 - X$ gives

$$\frac{R_p}{R_\odot} = 60 \frac{M}{M_\odot}.$$

Since the protostar is in hydrostatic equilibrium to a good approximation, an earlier application of the Virial Theorem may be followed to give the mean temperature in its stellar envelope as

$$\bar{T} \gtrsim \frac{GM m_{\text{H}} \bar{\mu}}{6kR_p} \simeq 6 \times 10^4 \text{ K}$$

and which is independent of mass.
At these low temperatures the opacity is very high, rendering radiative transport inefficient and making the protostar convective throughout. Protostar properties are then:

- If T_{eff} is small enough, stars become completely convective.

- In that case energy transport is very efficient throughout the interior of a star, and a tiny superadiabaticity $[(d \ln T/d \ln P) - (d \ln T/d \ln P)_{ad}]$ is sufficient to transport a very large energy flux.

- The structure of such a star can be said to be adiabatic.

- Since an almost arbitrarily high energy flux can be carried, the luminosity of a fully convective star is practically independent of its structure; this is in marked contrast to a star in radiative equilibrium, for which the luminosity is strongly linked to the temperature gradient.

For a fully convective polytropic star ($n = 3/2$) with H$^-$ opacity, it can be shown that T_{eff} is related to the total mass (M), luminosity (L) and mean molecular weight $\bar{\mu}$ by

$$T_{\text{eff}} \sim 2600 \bar{\mu}^{13/51} \left(\frac{M}{M_\odot}\right)^{7/51} \left(\frac{L}{L_\odot}\right)^{1/102} \text{K.}$$

Note that T_{eff} is nearly independent of L and only weakly dependent on M and $\bar{\mu}$. All fully convective stars will therefore fall in more or less the same cool area of the HRD.
It therefore follows that:

- Fully convective stars of a given mass occupy an almost vertical line in the HRD (i.e. with $T_{\text{eff}} \simeq$ constant).

- The line is known as the Hayashi line.

- The region to the right of the Hayashi line in the HRD is a forbidden region for stars in hydrostatic equilibrium.

- Stars to the left of the Hayashi line (at higher T_{eff}) cannot be fully convective but must have some portion of their interior in radiative equilibrium.

The forbidden region of the HRD exists because any star which evolves into it must have a superadiabatic gradient (in addition to the outer layers which are always superadiabatic). A very large convective energy flux results, far exceeding normal stellar luminosities. Energy is very rapidly (on a dynamical timescale) transported outwards, reducing the temperature gradient in the superadiabatic region until it is adiabatic once more and the star is again on the Hayashi line.
A newly formed star emerges from dynamical collapse and settles on the Hayashi line appropriate for its mass; it is now a pre-main sequence (PMS) star having a radius roughly as given above.

- The temperature is not high enough for nuclear burning and the energy source for its luminosity is gravitational contraction.

- As dictated by the Virial Theorem, the PMS star internal temperature increases as a consequence.

- The PMS star remains fully convective for as long as the opacity remains high; it contracts along its Hayashi line and thus its luminosity decreases.

- Since fully convective stars are accurately described by $n = 1.5$ polytropes, this phase of contraction is homologous to a very high degree.

- Thus the central temperature increases as $T_c \propto \rho_c^{1/3} \propto R^{-1}$.

- As the internal temperature increases, opacity will decrease and the point will be reached where the Schwarzschild Criterion for convective instability are no longer satisfied.

- A radiative core then develops and the PMS star moves to the left in the HRD, away from the Hayashi line and towards higher T_{eff}.
As the radiative core grows, the extent of the convective envelope decreases.

Contraction continues but luminosity is now roughly constant as the effective temperature increases.

Before thermal equilibrium on the Zero-Age Main Sequence (ZAMS) is reached, several nuclear reactions have already set in.

- Deuterium is a very fragile nucleus that reacts readily with protons (second reaction in the PPI Chain) and all deuterium in the stellar core is removed at $T \gtrsim 1.0 \times 10^6$ K.

- A similar but much smaller effect happens later (at higher T) when the initially present lithium, with mass fraction $\lesssim 10^{-8}$, is depleted.

 1) $^1\text{H} + ^6\text{Li} \rightarrow ^7\text{Be}$
 2) $^7\text{Be} + e^- \rightarrow ^7\text{Li} + \nu$
 3) $^1\text{H} + ^7\text{Li} \rightarrow ^8\text{Be}$
 4) $^8\text{Be} \rightarrow ^4\text{He} + ^4\text{He}$
- In addition, the first CNO-Cycle reaction $^{12}\text{C}(^{1}\text{H},\gamma)^{13}\text{N}$ is already activated at a temperature below that of the full CNO-Cycle, due to the relatively large ^{12}C abundance compared with the equilibrium CNO abundances.

- The next two CNO-Cycle reactions ensure almost all ^{12}C in the core is converted to ^{14}N before the ZAMS is reached.

- Time taken by a PMS star to reach ZAMS is basically the Kelvin-Helmholtz time scale previously derived to be
 \[t_{\text{th}} = \frac{GM^2}{LR}, \]
 a time scale dominated by the final stages of contraction when L and R are comparatively small.

- A crude average of the ZAMS homology relations already obtained for "low" and "high" mass stars suggest $LR \sim M^{4.5}$ and so the PMS lifetime is
 \[\tau_{\text{PMS}} \sim 3 \times 10^7(M/M_\odot)^{-2.5}\text{yr}. \]
 Thus massive protostars reach the ZAMS much earlier than lower mass stars.
Main Sequence stars obey several relations:

- As already shown by homology, $L \propto M^{a_5}$ where for low-mass and high-mass stars $a_5 = 5.5$ and $a_5 = 3.0$ were deduced respectively. The flattening at higher masses is due to the increased contribution of radiation pressure in the central core, which helps support the star and decreases the central temperature slightly. A flattening also occurs at the very low masses due to the increasing importance of convection for stellar structure.

- Homology also indicates that there is a mass-radius relation $R \propto M^{a_1}$ but there is significant break at $M \sim 1 M_\odot$ due to the onset of convection in the envelope. Convection increases the energy flow out of a star which causes it to contract slightly. Stars with convective envelopes therefore lie below the mass-radius relation and above the mass-luminosity relation for non-convective stars.

- Uncertainties in the mixing-length scale (α) affect the computed stellar R and T_{eff} slightly. For example, a factor of two increase in α translates to a change of $+0.03$ in $\log T_{\text{eff}}$.

- The depth of the convective envelope in terms of M_{env}/M increases with decreasing mass. Stars with $M \sim 1 M_\odot$ have extremely thin convective envelopes, while those with $M \lesssim 0.3 M_\odot$ are entirely convective. Nuclear burning ceases at $M \approx 0.08 M_\odot$.
Main Sequence Star Characteristics – II

Figure 8.8. Occurrence of convective regions (gray shading) on the ZAMS in terms of fractional mass coordinate \(m/M \) as a function of stellar mass, for detailed stellar models with a composition \(X = 0.70, Z = 0.02 \).

The solid (red) lines show the mass shells inside which 50% and 90% of the total luminosity are produced. The dashed (blue) lines show the mass coordinate where the radius \(r \) is 25% and 50% of the stellar radius \(R \). (After Kippen & Wohler.)

This behaviour can be understood from the Schwarzschild criterion for convection, which tells us that convection occurs when \(\nabla_{\text{rad}} > \nabla_{\text{ad}} \) (eq. 4.50). As discussed in Sec. 4.5.1, a large value of \(\nabla_{\text{rad}} \) is found when the opacity \(\kappa \) is large, or when the energy flux to be transported (in particular the value of \(l/m \)) is large, or both. Starting with the latter condition, this is the case when a lot of energy is produced in a core of relatively small mass, i.e. when the energy generation rate \(\dot{\epsilon}_{\text{nuc}} \) is strongly peaked towards the centre. This is certainly the case when the CNO-cycle dominates the energy production, since it is very temperature sensitive (\(\nu \approx 18 \)) which means that \(\dot{\epsilon}_{\text{nuc}} \) rapidly drops as the temperature decreases from the centre outwards. It results in a steep increase of \(\nabla_{\text{rad}} \) towards the centre and thus to a convective core. This is illustrated for a 4 \(M_\odot \) ZAMS star in Fig. 4.5. The size of the convective core increases with stellar mass (Fig. 8.8), and it can encompass up to 80% of the mass of the star when \(M \) approaches 100 \(M_\odot \). This is mainly related with the fact that at high mass, \(\nabla_{\text{ad}} \) is depressed below the ideal-gas value of 0.4 because of the growing importance of radiation pressure. At 100 \(M_\odot \) radiation pressure dominates and \(\nabla_{\text{ad}} \approx 0.25 \).

In low-mass stars the pp-chain dominates, which has a much smaller temperature sensitivity. Energy production is then distributed over a larger area, which keeps the energy flux and thus \(\nabla_{\text{rad}} \) low in the centre and the core remains radiative (see Fig. 4.5). The transition towards a more concentrated energy production at \(M > 1.2 M_\odot \) is demonstrated in Fig. 8.8 by the solid lines showing the location of the mass shell inside which most of the luminosity is generated.

Convective envelopes can be expected to occur in stars with low effective temperature, as discussed in Sec. 6.2.3. This is intimately related with the rise in opacity with decreasing temperature in the envelope. In the outer envelope of a 1 \(M_\odot \) star for example, \(\kappa \) can reach values of \(10^5 \) cm\(^2\)/g which results in enormous values of \(\nabla_{\text{rad}} \) (see Fig. 4.5). Thus the Schwarzschild criterion predicts a...
The diagram shows the occurrence of convective regions (gray shading) on the Zero Age Main Sequence (ZAMS) in terms of the fractional mass coordinate m/M as a function of the stellar mass M, for detailed stellar models with a composition $X = 0.70$, $Z = 0.02$. The solid (red) lines show the mass shells inside which 50% and 90% of the total luminosity is produced. The dashed (blue) lines show the mass coordinate where the radius r is 25% and 50% of the stellar radius R.
Main sequence star interiors are extremely hot ($T > 10^6$ K) and the fall-off to surface temperatures ($T \sim 10^4$ K) takes place in a very thin region near the surface.

Nuclear energy generation is restricted to a very small $M(r)$ near the centre of the star. The rapid fall-off of $\epsilon(r)$ with r reflects the extreme sensitivity of energy generation to temperature.

Main sequence stars with $M \lesssim 1 M_{\odot}$ generate most of their energy through the PP-Chain; at greater masses the CNO-Cycle is responsible for most of the energy generation. The changeover is responsible for a shift in the homology relations in stellar interiors.

CNO burning exhibits an extreme temperature dependence and consequently those stars for which the CNO-Cycle is the most important source of energy have very large values of $L(r)/(4\pi r^2)$ in the core. The resulting high temperature gradient ensures efficient convective energy transport in the core.

Because of the extreme sensitivity of CNO burning to temperature, nuclear reactions in stars having $M \gtrsim 1 M_{\odot}$ are confined to a small region which is very much smaller than the convective core.

As the stellar mass increases, so does the size of the convective core; this is a direct consequence of the large increase in $\epsilon(r)$ with temperature. Supermassive stars with $M \sim 100 M_{\odot}$ would be entirely convective.
Figure 8.7. Central temperature versus central density for detailed ZAMS models with $X = 0.7$, $Z = 0.02$ (blue solid line) and with $X = 0.757$, $Z = 0.001$ (red dashed line). Plus symbols indicate models for specific masses (in units of M_\odot). The dotted lines indicate the approximate temperature border between energy production dominated by the CNO cycle and the pp chain. This gives rise to a change in slope of the T_c, ρ_c relation.

Temperature to increase with mass, the mass dependence being larger for the pp chain ($T_c \propto M^{0.57}$) than for the CNO cycle ($T_c \propto M^{0.21}$). Since the CNO cycle dominates at high T_c, we can expect low-mass stars to power themselves by the pp chain and high-mass stars by the CNO cycle. This is confirmed by detailed ZAMS models, as shown in Fig. 8.7. For solar composition, the transition occurs at $T_c \approx 1.7 \times 10^7$ K, corresponding to $M \approx 1.3 M_\odot$. Similarly, from the homology relations, the central density is expected to decrease strongly with mass in stars dominated by the CNO cycle ($\rho_c \propto M^{-1.4}$), but much less so in pp-dominated low-mass stars ($\rho_c \propto M^{-0.3}$). Also this is borne out by the detailed models in Fig. 8.7; in fact the central density increases slightly with mass between 0.4 and 1.5 M_\odot. The abrupt change in slope at 0.4 M_\odot is related to the fact that stars with $M \sim < 0.4 M_\odot$ are completely convective. For these lowest-mass stars one of the main assumptions made in the homology relations (radiative equilibrium) breaks down.

The energy generation rate of the CNO cycle depends on the total CNO abundance. At lower metallicity, the transition between pp chain and CNO cycle therefore occurs at a higher temperature. As a consequence, the mass at which the transition occurs is also larger. Furthermore, high-mass stars powered by the CNO cycle need a higher central temperature to provide the same total nuclear power. Indeed, comparing metal-rich and metal-poor stars in Figs. 8.6 and 8.7, the luminosity of two stars with the same mass is similar, but their central temperature is higher. As a consequence of the virial theorem (eq. 2.27 or 6.28), their radius must be correspondingly smaller.

8.2.2 Convective regions

An overview of the occurrence of convective regions on the ZAMS as a function of stellar mass is shown in Fig. 8.8. For any given mass M, a vertical line in this diagram shows which conditions are encountered as a function of depth, characterized by the fractional mass coordinate m/M. Gray shading indicates whether a particular mass shell is convective or radiative (white). We can thus distinguish three types of ZAMS star:

- completely convective, for $M < 0.35 M_\odot$,
- radiative core + convective envelope, for $0.35 M_\odot < M < 1.2 M_\odot$,
- convective core + radiative envelope, for $M > 1.2 M_\odot$.

The abrupt change in slope at 0.4 M_\odot is related to the fact that stars with $M \sim < 0.4 M_\odot$ are completely convective. For these lowest-mass stars one of the main assumptions made in the homology relations (radiative equilibrium) breaks down.
Central temperature versus central density for detailed Zero Age Main Sequence (ZAMS) models with $X = 0.70, Z = 0.02$ (blue solid line) and with $X = 0.757, Z = 0.001$ (red dashed line). Plus symbols indicate models for specific masses (in units of M_\odot). The dotted lines indicate the approximate temperature border between energy production dominated by the CNO-Cycle and the PP-Chain. This gives rise to a change in slope of the T_c, ρ_c relation.
• Position on the ZAMS depends on both stellar mass and initial helium abundance. The higher $\bar{\mu}$ implied by a higher helium abundance translates to a lower core pressure. Helium-rich stars are therefore more condensed which (through the Virial Theorem) mean they have higher core temperatures, nuclear reaction rates and luminosities.

• Changes in metallicity shift the location of the ZAMS. A lower metallicity reduces bound-free absorption throughout the star; this allows the energy to escape more easily as may be seen from the equation of radiation transport used in stellar interiors

$$L = -\frac{16 \pi a c r^2 T^3}{3 \kappa \rho} \frac{dT}{dr}.$$

The effect is slightly less important for higher mass stars since the energy generation rate is proportional to Z in CNO burning, but the smaller κ remains the more important factor. The luminosity increase also results in a hotter surface temperature since $L \propto R^2 T_{\text{eff}}^4$.

• Changes in the metallicity and helium abundance also affect the precise mass at which a convective core disappears. A greater helium abundance forces an increase in ρT to maintain the pressure. The result is an increased nuclear reaction rate, luminosity, temperature gradient and probability of convection. Similarly, a decrease in Z also results in an increased nuclear reaction rate, luminosity, temperature gradient and probability of convection.
Figure 8.6. The location of the zero-age main sequence in the Hertzsprung-Russell diagram for homogeneous, detailed stellar models with $X = 0.7$, $Z = 0.02$ (blue solid line) and with $X = 0.757$, $Z = 0.001$ (red dashed line). Plus symbols indicate models for specific masses (in units of M_\odot). ZAMS models for metal-poor stars are hotter and have smaller radii. Relatively low-mass stars at low metallicity are also more luminous than their metal-rich counterparts.

The reasons for the changes in $d \log R / d \log M$ are similar. Note that for low masses we should have used the homology relation for the pp chain (for reasons explained in Sect. 8.2.1 below), which has a smaller slope – the opposite of what is seen in the detailed ZAMS models. The occurrence of convective regions (see Sect. 8.2.2) is the main reason for this non-homologous behaviour.

The detailed ZAMS models do reproduce the observed stellar luminosities quite well. The models trace the lower boundary of observed luminosities, consistent with the expected increase of L with time during the main sequence phase (see Sect. 8.3). The same can be said for the radii (right panel of Fig. 8.5), although the scatter in observed radii appears much larger. Partly this is due to the much finer scale of the ordinate in this diagram compared to the luminosity plot. The fact that most of the observed stellar radii are larger than the detailed ZAMS models is explained by expansion during (and after) the main sequence (see Sect. 8.3).

The location of the detailed ZAMS models in the H-R diagram is shown in Fig. 8.6. The solid (blue) line depicts models for quasi-solar composition, which were also used in Fig. 8.5. The increase of effective temperature with stellar mass (and luminosity) reflects the steep mass-luminosity relation and the much shallower mass-radius relation – more luminous stars with similar radii must be hotter, by eq. (1.1). The slope of the ZAMS in the HRD is not constant, reflecting non-homologous changes in structure as the stellar mass increases.

The effect of composition on the location of the ZAMS is illustrated by the dashed (red) line, which is computed for a metal-poor mixture characteristic of Population II stars. Metal-poor main sequence stars are hotter and have smaller radii. Furthermore, relatively low-mass stars are also more luminous than their metal-rich counterparts. One reason for these differences is a lower bound-free opacity at lower Z (eq. 4.33), which affects relatively low-mass stars (up to about 5 M_\odot). On the other hand, higher-mass stars are dominated by electron-scattering opacity, which is independent of metallicity. These stars are smaller and hotter for a different reason (see Sect. 8.2.1).

8.2.1 Central conditions

We can estimate how the central temperature and central density scale with mass and composition for a ZAMS star from the homology relations for homogeneous, radiative stars in thermal equilibrium (Sec. 6.4.2, see eqs. 6.37 and 6.38 and Table 6.1). From these relations we may expect the central
The location of the Zero-Age Main Sequence (ZAMS) in the Hertzsprung-Russell diagram for homogeneous, detailed stellar models with $X = 0.7, Z = 0.02$ (blue solid line) and with $X = 0.757, Z = 0.001$ (red dashed line). Plus symbols indicate models for specific masses (in units of M_\odot). ZAMS models for metal-poor stars are hotter and have smaller radii. Relatively low-mass stars at low metallicity are also more luminous than their metal-rich counterparts.
Since main sequence stars are in virial equilibrium
\[T_c \propto \frac{M}{R} \] and so \[T_c^3 \propto \left(\frac{M}{R}\right)^3 \propto \rho_c M^2. \]

And from the energy generation equation
\[\frac{dL(r)}{dM(r)} = \epsilon(r) \propto \rho_c T^\eta \] and therefore \[L \propto \rho_c T^\eta M. \]

Now the mass-luminosity relation for a homologous star is \(L \propto M^{a_5} \). Eliminating \(L \) and substituting for \(T_c \) gives
\[M^{a_5} \propto \rho_c \left(\rho_c^{1/3} M^{2/3} \right)^\eta M \]
and consequently
\[\rho_c \propto M^{(3a_5-3-2\eta)/(3+\eta)}. \]

There are three cases to consider
- \(M \gtrsim 2 M_\odot \) with \(a_5 = 3 \) and \(\eta = 18 \) \(\rightarrow (3a_5 - 3 - 2\eta)/(3 + \eta) = -1.43 \),
- \(0.7 \lesssim M \lesssim 2 M_\odot \) with \(a_5 = 5.5 \) and \(\eta = 4 \) \(\rightarrow (3a_5 - 3 - 2\eta)/(3 + \eta) = +0.79 \) and
- \(M \lesssim 0.7 M_\odot \) with \(a_5 = 3 \) and \(\eta = 4 \) \(\rightarrow (3a_5 - 3 - 2\eta)/(3 + \eta) = -0.29 \).

The very low mass case above has not been derived as convection had been ignored in the earlier discussion on homologous stars.
• At large and small stellar masses, the central density ρ_c follows its homology relation, but becomes almost independent of mass near $\sim 1 \, M_\odot$.

• The behaviour can be understood from the change in sign of $(3a_5 - 3 - 2\eta)/(3 + \eta)$ when $0.7 \lesssim M \lesssim 2.0 \, M_\odot$ as demonstrated on the previous slide.

• ZAMS stars in the mass range $0.7 \lesssim M \lesssim 2.0 \, M_\odot$ are distinguished from lower and higher mass stars in that they are convective only in the outermost layers, which will not significantly affect the central density.
As a star on the Main Sequence burns hydrogen in its core, its luminosity will increase; this is due to the star’s higher mean molecular weight. Since the core has fewer particles to support it, ρT must increase, and so must the rate of nuclear reactions.

By the Virial Theorem
\[
\frac{1}{\mu} T \propto \frac{M}{R} \quad \text{or} \quad T \propto \mu M^{2/3} \rho^{1/3}
\]

since $R \propto (M/\rho)^{1/3}$. Assuming that energy is transported radiatively, then the equation of radiation transport as used in stellar interiors gives
\[
L = -\frac{16 a c r^2 T^3}{3 \kappa \rho} \frac{dT}{dr}.
\]

Very roughly,
\[
\frac{dT}{dr} \approx \frac{T - T_0}{0 - R} \approx -\frac{T}{R} \quad \text{and so} \quad L \propto \frac{RT^4}{\kappa \rho}.
\]

For main sequence stars, Kramer’s law opacity dominates except in the centre, where electron scattering dominates, thus
\[
L \propto \frac{RT^{15/2}}{\rho^2}.
\]
Using proportionalities for R and T above, the proportionality for L is

$$L \propto \frac{M^{1/3} T^{15/2}}{\rho^{7/3}} \propto \frac{M^{1/3} \bar{\mu}^{15/2} M^5 \rho^{5/2}}{\rho^{7/3}} \propto M^{16/3} \rho^{1/6} \bar{\mu}^{15/2}.$$

Since the stellar mass (M) is essentially constant, and the density dependence is very weak, the above equation implies:

$$\frac{L(t)}{L(0)} = \left[\frac{\bar{\mu}(t)}{\bar{\mu}(0)} \right]^\psi$$

where t is the elapsed time (or age) since the star was on the ZAMS and $\psi = 15/2$.

The previously derived expression for the mean molecular weight was

$$\bar{\mu} = \frac{4}{6X + Y + 2}$$

which becomes

$$\bar{\mu} = \frac{4}{3 + 5X}$$

if metal content is ignored so that $X + Y = 1$.

Finally, if the fusion process releases energy Q per unit mass of hydrogen fused, the rate of hydrogen consumption is related to luminosity by

$$\frac{dX}{dt} \simeq - \frac{L}{M Q}.$$
The rate of change of luminosity of a star evolving on the Main Sequence may be expressed as:

$$\frac{dL(t)}{dt} = \left(\frac{dL(t)}{d\bar{\mu}(t)} \right) \left(\frac{d\bar{\mu}(t)}{dX(t)} \right) \left(\frac{dX(t)}{dt} \right)$$

where

$$\frac{dL(t)}{d\bar{\mu}(t)} = \psi \left(\frac{L(0)}{\bar{\mu}(0)} \right) \left(\frac{\bar{\mu}(t)}{\bar{\mu}(0)} \right)^{\psi-1}$$

and

$$\frac{d\bar{\mu}(t)}{dX(t)} = -5 \frac{4}{(3 + 5X(t))^2} = -\frac{5}{4} \bar{\mu}(t)^2.$$

After substitution

$$\frac{dL(t)}{dt} = \psi \left[\frac{L(0)}{\bar{\mu}(0)} \left(\frac{\bar{\mu}(t)}{\bar{\mu}(0)} \right)^{\psi-1} \right] \left(-\frac{5}{4} \bar{\mu}(t)^2 \right) \left(-\frac{L(t)}{M Q(t)} \right),$$

$$= \frac{5}{4} \psi L(0) \bar{\mu}(0) \left(\frac{\bar{\mu}(t)}{\bar{\mu}(0)} \right)^{\psi+1} \frac{L(t)}{M Q(t)}$$

and

$$= \frac{5}{4} \psi L(0) \bar{\mu}(0) \frac{L(t)}{M Q(t)} \left(\frac{L(t)}{L(0)} \right)^{(\psi+1)/\psi}$$
Rearranging leads to the differential equation

\[L(t)^{(−2−1/ψ)} \frac{dL(t)}{dt} = \frac{5 ψ \bar{μ}(0)}{4 L(0)^{1/ψ} M Q(t)} dt \]

which on integrating leads to

\[L(t)^{−(ψ+1)/ψ} − L(0)^{−(ψ+1)/ψ} = \frac{5 (ψ + 1) \bar{μ}(0)}{4 L(0)^{1/ψ} M Q(t)} t \text{ or} \]

\[L(t) = L(0) \left[1 - \frac{5}{4} (ψ + 1)^{−1} \bar{μ}(0) \frac{L(0)}{M Q} t \right]^{−ψ/(ψ+1)}. \]

If \(\bar{μ}(0) \simeq 0.6, \) \(ψ = 15/2, \) \(L(0) = 4 \times 10^{26} \) Watts, \(M = 2.0 \times 10^{30} \) kg and \(Q = 6.0 \times 10^{14} \) J kg\(^{-1}\) then in solar units

\[\frac{L(t)}{L_⊙} = \frac{L(0)}{L_⊙} \left[1 - 0.3 \frac{L(0)}{L_⊙} t \right]^{−15/17}. \]

For the Sun, the above relation corresponds to \(L_⊙ = 1.26 L(0) \) which compares with detailed models suggesting the Sun has brightened since the ZAMS by a factor of 1.37. In other words, as a ZAMS star, the Sun was \(\sim 25\% \) less luminous than it is now.
As already discussed, three types of ZAMS star may be distinguished by their convective and radiative regions:

- for $M < 0.35 \, M_\odot$ the star is completely convective,
- for $0.35 \, M_\odot < M < 1.2 \, M_\odot$ the core is radiative but the envelope is convective and
- for $M > 1.2 \, M_\odot$ the core is convective but the envelope is radiative.

The behaviour may be understood from the Schwarzschild Criterion which are that convection occurs when $\nabla_{\text{rad}} > \nabla_{\text{ad}}$, having written $\nabla \equiv d \ln T / d \ln P$.

- The CNO-Cycle, which dominates energy production when $M > 1.2 \, M_\odot$ has a very high burning rate temperature sensitivity ($\eta = 18$), implying a rapid decrease in ϵ with falling temperature away from the stellar centre. ∇_{rad} is therefore large at the stellar centre and energy transport in the core is convective.
- When $M < 1.2 \, M_\odot$, energy generation is dominated by the PP-Chain ($\eta = 4$) which has a much smaller burning rate temperature sensitivity. Burning is therefore distributed over a larger volume, ∇_{rad} is too small for convection and the core remains radiative.
- With decreasing M, $T(r)$ also decreases leading to a higher opacity and ∇_{rad}; the envelope therefore becomes convective. The depth to which convection penetrates in the envelope increases as M decreases and for $M < 0.35 \, M_\odot$, the entire star is convective.
Stars Powered by the CNO-Cycle

Main Sequence stars powered by the CNO-Cycle ($M \gtrsim 1.2 \, M_\odot$) have an evolution on it which distinguish them from stars powered by the PP-Chain:

- As the conversion of $H \rightarrow He$ raises $\bar{\mu}$, the perfect gas law requires that P_c must decrease because observations show that L does not increase and therefore T_c is constant ($\epsilon_{CNO} \propto \rho T^{18}$); this can only happen if the pressure exerted on the core by the envelope decreases. In other words, the star must expand in order to maintain hydrostatic equilibrium.

- CNO-Cycle temperature sensitivity ensures energy production is concentrated at the stellar centre; the high temperature gradient gives efficient convection which mixes the H and He throughout the convective core. H available for burning is therefore increased and this increases the Main Sequence lifetime.

- Towards the end of the Main Sequence, X becomes very small in the convective core and T has to increase to maintain energy production. Once $X \simeq 0$ through the convective core, burning will cease the star radiates more energy than is generated and will undergo an overall contraction. This defines the end of the Main Sequence evolution phase.

- Contraction results in a heating of the core and surrounding envelope to the point where the CNO-Cycle is ignited in a shell around the helium core.
Main Sequence stars powered by the PP-Chain ($M \lesssim 1.2 M_{\odot}$) have an evolution on it which distinguish them from stars powered by the CNO-Cycle:

- The lower temperature sensitivity ($\epsilon_{\text{PP}} \propto \rho T^4$) means that T_c and ρ_c increase more than was the case for the CNO-Cycle. Therefore the outer layers need to expand less in order to maintain hydrostatic equilibrium in the core, and evolution is almost parallel to the ZAMS in the HRD.

- The lower temperature gradient in the core means that these are radiative. An H abundance gradient builds up in the core, with X lowest at the stellar centre. As a result, H is depleted gradually in the core and there is a smooth transition to H-shell burning.

- At solar metallicity and $1.1 \lesssim M \lesssim 1.2 M_{\odot}$, T_c becomes high enough for the CNO-Cycle to take over from the PP-Chain; these stars therefore develop convective cores and end their lives on the Main Sequence in the same way as stars having $M \gtrsim 1.2 M_{\odot}$.
The time \(\tau_{MS} \) that a star spends on the Main Sequence is essentially the nuclear timescale previously discussed. Essentially the same result follows from the relation

\[
\frac{dX}{dt} = -\frac{4 m_H}{Q_H} \epsilon
\]

where \(Q_H \) is the effective energy release of the reaction chain

\[
4^1\text{H} \rightarrow ^4\text{He} + 2\text{e}^+ + 2\nu_e.
\]

For a star in thermal equilibrium, integrating over all mass shells, gives

\[
\frac{dM_H}{dt} = -\frac{4 m_H}{Q_H} L
\]

where \(M_H \) is the total mass of hydrogen in the star. Integrating over the Main Sequence lifetime results in

\[
\Delta M_H = \frac{4 m_H}{Q_H} \int_0^{\tau_{MS}} L \, dt = \frac{4 m_H}{Q_H} \bar{L} \tau_{MS}
\]

where \(\bar{L} \) is the average luminosity over the Main Sequence lifetime.
Writing $\Delta M_H = f_{\text{nuc}} M$ and f_{nuc} as the product of the initial H mass-fraction X_0 and an effective core mass-fraction q_c, inside which all H is consumed, gives

$$\tau_{MS} = X_0 q_c \frac{Q_H}{4m_H} \frac{M}{L}.$$

Since the variation of L during τ_{MS} is modest and L increases dramatically with increasing M, the ZAMS relation $\bar{L} \propto M^{a_5}$ may be adopted, with $a_5 \sim 3.8$ on average. Therefore

$$\tau_{MS} \propto M^{1-a_5}$$

and τ_{MS} decreases dramatically with increasing mass, a trend which has important consequences for observed star cluster HRDs:

- All stars in a cluster are assumed to have been formed at the same time and therefore have the same age τ_{cl}
- Cluster stars with M above some limit M_{to} have $\tau_{MS} < \tau_{cl}$ and have therefore already left the Main Sequence.
- Similarly stars having $\tau_{MS} > \tau_{cl}$ are still on the Main Sequence and determining the mass at which stars turn-off (M_{to}) gives an estimate of the cluster age.
The actual τ_{MS} depends on a number of other factors:

- The effective energy release Q_H depends on exactly which reactions are involved in energy production, and therefore has a small mass-dependence.

- More importantly, the exact value of q_c is determined by the H-profile left at the end of the Main Sequence; this is somewhat mass-dependent, especially for massive stars in which the relative size of the convective core tends to increase with mass.

- A larger convective core mass means a larger fuel reservoir and a longer τ_{MS}.

- Our poor understanding of convection and mixing in stars introduces considerable uncertainty in the size of the reservoir and therefore both in τ_{MS} for a particular mass, and the star’s further evolution.
The size of a convective region inside a star is expected to be larger than that defined by the Schwarzschild criterion because of convective overshooting; however, this is not reliably known from theory.

- In stellar evolution calculations, overshooting is usually parameterised as \(d_{ov} = \alpha_{ov} H \) where \(H \) is the local pressure scale-height already introduced in the Mixing Length Theory.

- Other physical effects such as rotation may also mix material beyond the formal convective core boundary.

- Stellar evolution models which include overshooting generally provide a better match to observations; it is therefore understood to be significant in stars with sizeable convective cores on the Main Sequence.
Overshooting has several important consequences for the evolution of a star:

- τ_{MS} is longer because of the larger H reservoir available.
- The increase in L and R during the Main Sequence evolution are greater, because of the larger region inside which $\bar{\mu}$ increases.
- The hydrogen-exhausted core mass is larger at the end of Main Sequence evolution which leads to
 - higher luminosities during evolution phases which follow the Main Sequence and
 - shorter lifetimes of post-main sequence phases.

Stellar evolution models computed with different values of α_{ov} may be compared with the observed width of the Main Sequence in star clusters, and to the luminosities of evolved stars in binary systems. It is then possible to calibrate α_{ov} if the luminosity difference between binary components or cluster M_{to} are well determined observationally. Tests suggest $\alpha_{ov} \simeq 0.25$ is appropriate for $1.5 \lesssim M \lesssim 8.0M_\odot$. For larger masses, α_{ov} is poorly constrained.
Outside a convective core, a composition gradient develops.

- In such a region, an overstable oscillation pattern can develop on a thermal timescale.
- The region is slowly mixed and the composition gradient becomes smoothed out.
- The process, known as semi-convection, has an uncertain outcome and efficiency.
- Semi-convection is encountered during various phases of stellar evolution, most importantly during central H-burning in stars with $M \gtrsim 10 \, M_\odot$ and during helium burning in low and intermediate mass stars.
Stars form as a consequence of the gravitational collapse of a gas cloud.

- Irrespective of mass, the collapsing gas cloud is fully convective and follows the Hayashi Line in the Hertzsprung-Russell Diagram.
- A fully convective star has to be on the Hayashi line.
- The region to the right of the Hayashi Line in the Hertzsprung-Russell Diagram is a “forbidden zone”.
- All fully convective stars, such as very low mass M dwarfs, will remain on the Hayashi line throughout their Main Sequence evolution.
- Once on the Main Sequence, helium is produced by the PP-Chain for low mass stars and mostly by the CNO cycle in higher mass stars.
- Main Sequence lifetime falls off as roughly the inverse square of the stellar mass.
Material presented in this lecture on Main Sequence star evolution is based almost entirely on slides prepared by N. Langer (Universität Bonn) and by others for use at Pennsylvania State University.