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Introduction

In this lecture, consideration is given to final evolution stages and this too
is dependent on mass.

• The vast majority of stars become white dwarfs in which all nuclear
reactions have ceased. Interest therefore centres on cooling, structural
changes during cooling and the cooling time. Equally important is
what the study of white dwarfs can reveal about their progenitors on
the Asymptotic Giant Branch.

• Very massive stars (& 8M�) experience mass-loss throughout their
evolution and for this reason their evolution is substantially different
from that of lower mass stars.

• Very massive stars (& 8M�) are neutron star and black hole progen-
itors following a supernova explosion.

• Circumstances leading to a neutron star, as opposed to a black hole,
need to be understood.



Equation of State of a Degenerate Gas – I

So far it has been assumed that stars are formed of ideal gases although degeneracy pressure has
been mentioned in connection with cores formed at the centres of lower mass stars on the RGB
and AGB.

Degeneracy pressure resists gravitational collapse and in connection with white dwarfs, the final
evolution stage for most stars, this idea now needs to be developed.

• At high densities, gas particles become so close that interactions between them can no
longer be ignored.

• Beyond the regime where pressure ionisation becomes important, as pressure on a highly
ionised gas is further increased the Pauli Exclusion Principle becomes relevant.

• No more than two electrons of opposite spin can occupy the same quantum cell.

• The quantum cell of an electron is defined in phase-space and specified by three spatial
coordinates (qi) and three momentum coordinates (pi) where (i = 1, 2, 3).

• The volume of allowed phase-space for an electron quantum cell is

∆q1 ∆q2 ∆q3 ∆p1 ∆p2 ∆p3 = h3

which can be occupied by at most two electrons.



Equation of State of a Degenerate Gas – II

Consider the centre of a star as ρ increases:

• Electrons become confined to a smaller phase-space.

• Eventually two electrons with opposite spins occupy the same state.

• Lowest energy states will fill first and phase-space becomes full up to some critical momen-
tum p0.

Consider electrons in volume V = ∆q1 ∆q2 ∆q3 having momenta in the range p to p + dp:

• Volume of momentum-space occupied by the electrons is the volume of a spherical shell of
radius p and thickness dp or 4π p2 dp.

• The volume of phase-space Vph occupied by the considered electrons is the product of the
momentum and position space volumes

Vph = 4π p2 V dp.

• To get the number of quantum states in Vph it is necessary to divide by the phase-space
volume of each quantum state h3, giving 4 π p2 V dp/h3.



Equation of State of a Degenerate Gas – III

• Let Np dp be the actual number of electrons in V having momenta in the range p to p+dp;
then Pauli’s Exclusion Principle leads to

Np dp 6
8 π p2 V

h3
dp.

• Consider a completely degenerate gas in which all momentum states up to p0 are filled while
all higher momentum states are empty; the total number of electrons in this degenerate gas
would then be

N =
8 π V

h3

∫ p0

0

p2 dp =
8 π p0

3 V

3h3

• Pressure exerted by completely degenerate gas on surrounding environment is the rate of
transfer of momentum across unit area of the the interface with that environment:

P =
1

3

∫ p0

0

Np

V
p vp dp

where vp is the velocity of an electron having momentum p.



Equation of State of a Degenerate Gas – IV

• Special relativistic relations between velocity and momentum are:

p =
mevp

(1− vp2/c2)1/2
or equivalently

vp =
p/me

[
1 + p2/(me c)

2
]1/2

where me is the electron mass.

• Substituting for Np and vp in the above expression for the electron degeneracy pressure
gives

P =
8 π

3h3me

∫ p0

0

p4

[
1 + p2/(me c)

2
]1/2 dp.

• For a non-relativistic degenerate gas, p0 � me c and so

P =
8 π

3h3me

∫ p0

0

p4 dp. =
8 π p0

5

15h3me



Equation of State of a Degenerate Gas – V

• For a relativistic degenerate gas, p0 � me c and so

P =
8 π c

3h3

∫ p0

0

p3 dp. =
8 π c p0

4

12h3
.

• Defining

ne = N /V =
8 πp0

3

3h3

the electron degeneracy pressures for non-relativistic and relativistic case are

P =
1

20

(
3

π

)2/3 h2 ne5/3
me

and P =
1

8

(
3

π

)1/3

h c ne
4/3

respectively.

• The aim is to obtain an equation of state for a degenerate gas; this is achieved by converting
ne to the mass-density ρ.

• For each mH there is one electron and for each He and heavier elements there is approxi-
mately one electron for every 2mH; therefore

ne =
ρX

mH

+
ρ (1−X)

2mH

=
ρ (1 + X)

2mH

.



Equation of State of a Degenerate Gas – VI

On substituting for ne the expressions for degeneracy pressure (equations of state) become

P = K1 ρ
5/3 and P = K2 ρ

4/3

for the non-relativistic and relativistic case respectively. where

K1 =
h2

20me

(
3

π

)2/3 (1 +X

2mH

)5/3

and

K2 =
h c

8

(
3

π

)1/3 (1 +X

2mH

)4/3

.

In an electron degenerate gas the pressure depends only on ρ and chemical composition; it is
independent of T .

In stars where electron degeneracy occurs:

• There is no sharp transition between relativistically and non-relativisitically degenerate gas.

• Similarly there is no sharp transition between an ideal gas and one that is electron degen-
erate.

• Partial degeneracy requires a more complex solution.



Chandrasekhar Mass – I

Recall that the polytropic equation of state

P = K ργ = K ρ(n+1)/n

applies to a relativistic degenerate gas if K2 = K and n = 3. The mass of a polytropic star was
found to be

M = −4 π α3 ρc ξ1
2

[
dθ

dξ

]

ξ=ξ1

where α2 =
(n + 1)K

4 π Gρc
(n−1)/n

and other symbols have the same meanings as before.

Define

Mn = −ξ12
[
dθ

dξ

]

ξ=ξ1

and Rn = ξ1

gives

α2 =

(
R

Rn

)2

=
(n + 1)K

4 π Gρc
(n−1)/n

ρc
n−1 =

[
(n + 1)K

4 π G

]n ( R

Rn

)−2n



Chandrasekhar Mass – II

and

M = 4π

(
R

Rn

)3

ρcMn

ρc
n−1 =

(
1

4 π

)n−1(M
Mn

)n−1( R

Rn

)−3(n−1)

Eliminating ρc
n−1 between the above equation and the equation at the bottom of the previous

slide gives

(
1

4 π

)n−1(M
Mn

)n−1( R

Rn

)−3(n−1)
=

[
(n + 1)K

4 π G

]n ( R

Rn

)−2n

(
GM

Mn

)n−1( R

Rn

)3−n
=

[(n + 1)K]n

4 π G

For non-relativistic degeneracy, n = 1.5; substituting this into the above relation shows that
M ∝ R−3. A remarkable property of white dwarfs has therefore been indentified; as the mass
increases, the radius decreases.



Chandrasekhar Mass – III

As mass is accreted by a white dwarf, its radius becomes smaller and eventually the point is
reached where the degeneracy is relativistic; this is the maximum mass a white dwarf can have
and is known as the Chandrasekhar Mass (Mch).

An electron-degenerate core which is relativistic in the sense that vp → c is still a polytrope but
n = 3 and so

(
GM

M3

)2

=
[4K]3

4 π G

M = 4πM3

(
K

πG

)3/2

For a relativistic electron degenerate gas, K = K2 and so on substituting

Mch =
M3

√
1.5

4 π

(
h c

GmH
4/3

)3/2(1 +X

2

)2

From the solution of the Lane Emden Equation for n = 3, M3 = 2.01676 and substituting for
other constants gives

Mch = 5.699

(
1 +X

2

)2

M�.

which for X ≈ 0 (i.e. a He or C/O core) implies Mch ' 1.42M�



White Dwarf Cooling – I

Without nuclear reactions, a white dwarf will slowly cool over time, radiating away its thermal
energy.

• In normal stars the mean free path for photons is much greater than that of electrons or
heavier particles; consequently energy transport is mainly by radiative diffusion.

• In a white dwarf, degenerate electrons can travel long distances before losing energy in a
collision with a nucleus, since the vast majority majority of lower-energy electron states are
already occupied.

• Thus, in a white dwarf energy is carried by electron conduction (similar to conduction in
metals) rather than by radiation.

• Electron conduction is so efficient that the interior of a white dwarf is nearly isothermal,
with the temperature dropping significantly only in the non-degenerate surface layers.

• The thin (∼ 1% of the white dwarf radius) non-degenerate envelope transfers heat less
efficiently and acts as an insulating “blanket” allowing energy to leak out slowly.

• A steep temperature gradient near the surface results in the outer non-degenerate envelope
being convective.

• The initial temperature of a white dwarf may be estimated by recalling that it forms
from the contraction of a thermally unsupported stellar core, a process which is eventually
stopped by degeneracy pressure.



White Dwarf Cooling – II

• By the Virial Theorem, just before reaching the point of equilibrium, the thermal energy
(Eth) will equal half of the potential energy:

Eth ∼
1

2

GM 2

R
.

• For a pure He composition, the number of nuclei in the core is M/4mH and the number of
electrons is is M/2mH. The total thermal energy is therefore

Eth =
3

2
N k T =

3

2

M

mH

(
1

2
+
1

4

)
k T =

9

8

M

mH

k T,

so that

k T ∼ 4

9

GM mH

R
.

• It was previously shown that a degenerate non-relativistic star is well represented by a
n = 1.5 polytrope for which R ∝M−1/3 and therefore k T ∝M 4/3.



White Dwarf Cooling – III

• Specifically, the solution of the Lane Emden Equation for a n = 1.5 polytrope yields
ξ1 = 3.6538 and |dθ/dξ|ξ=ξ1 = −0.20325 which with the previously derived result

(
GM

Mn

)n−1( R

Rn

)3−n
=

[(n + 1)K]n

4 π G

gives
R = 2.679× 1017M−1/3

with K = K1, R1.5 = ξ1 and M1.5 = ξ1
2 |dθ/dξ|ξ=ξ1.

• Substituting for R in the above expression for kT gives

k T ∼ 4

9
GmH (2.679× 1017)−1M 4/3 = 1.848× 10−55M 4/3

• For a white dwarf having M = 0.5M�

k T ∼ 1.848× 10−15 Joules

T ∼ 1.34× 108 K.

• Clearly a just-formed degenerate core is a very hot object with thermal emission that peaks
at X-ray wavelengths; this radiation ionises the layers of gas that were blown off during the
AGB phase, giving rise to planetary nebulae.



White Dwarf Cooling – IV

Energy radiated away from the surface of a white dwarfs is the thermal energy stored in the still
classical gas of nuclei within the star’s volume.

• Degeneracy of the electron gas limits almost completely the ability of electrons to lose their
kinetic energies.

• An upper limit to the cooling rate is obtained by neglecting the envelope and assuming a
uniform temperature throughout.

• The rate at which Eth decreases is then determined by L from

L = 4π R2 σ T 4 ∼ −dEth

dt
= −3

8

M k

mH

dT

dt

where only the thermal contribution of nuclei has been included.

• On integrating and assuming a fixed radius, the time required for a white dwarf to cool
from T = T1 to T = T2 is

τ12 =
3

8

M k

mH

1

4 π R2 σ

1

3

[
1

T2
3
− 1

T1
3

]

• Substituting numerical values gives

τ12 ∼ 6.41E + 24

(
M

M�

)5/3 [ 1

T2
3
− 1

T1
3

]
seconds.



White Dwarf Cooling – V

Thus, even with an unrealistically efficient cooling it would take a 1M� white
dwarf ∼ 1Gyr to cool to ∼ 103 K.

• In reality, the insulation provided by the non-degenerate envelope results
in a Teff that is significantly lower than the interior temperature and this
lowers the cooing rate.

• Furthermore, as a white dwarf cools, it crystallises in a gradual process
that starts at the centre and moves outwards.

• The regular crystal structure is maintained by the mutual electrostatic
repulsion of the nuclei; it minimises their energy as they vibrate about
their average position in the lattice.

• As the nuclei undergo this phase change, the latent heat that is released
is added to the thermal balance, further slowing down the decline in
temperature.



White Dwarf Cooling – VI
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Fig. 7 Hertzsprung–Russell diagram for the full evolution of a 3.5 M⊙ star from the ZAMS to the white
dwarf domain. Mass-loss episodes at the thermally pulsing AGB reduce the stellar mass to 0.66 M⊙. The
various physical processes which occur as white dwarfs cool as well as the domain of the pulsating insta-
bility strips for the DOV, DBV, and DAV are indicated. Thin dashed line indicates the neutrino luminosity

core increases considerably by virtue of the outward-moving He-burning shell. Also,
during this stage most of the remaining H-rich envelope is ejected through very strong
mass-loss episodes. When the mass fraction of the remaining envelope is reduced
to ∼10−3 M⊙ the remnant star moves rapidly to the left in the Hertzsprung–Russell
diagram to the domain of the planetary nebulae. If the departure from the AGB takes
place at an advanced stage in the He shell flash cycle, the post-AGB remnant may
experience a last He thermal pulse on its early cooling branch, and eventually totally
exhausts its residual H content, thus giving rise to a H-deficient white dwarf (see
below). When the remaining H envelope is reduced to ∼10−4 M⊙, nuclear energy
generation becomes virtually extinct. The surface luminosity decreases rapidly, and
the star enters the terminal phase of its life as a white dwarf.

The newly formed white dwarf is left mostly with only gravitational and thermal
energy sources available. In fact, during most of its final evolution, the gravothermal
(gravitational plus thermal energy) contribution drives the evolution, see Sect. 4. Since
electrons are already degenerate in the interior, the stellar radius is not far from the
equilibrium radius of the zero-temperature model, and the remaining contraction is
small, but not entirely negligible. Hence, the star evolves almost at constant radius
along a diagonal straight line in the white dwarf region of the Hertzsprung–Russell
diagram.
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Massive Star Evolution – I

The evolution of massive (M & 8M�) is different from lower mass stars in several important
ways:

• As Tc reaches 5 × 108 K, non-degenerate C ignition can occur in the core provided a core
mass of MCO-core > 1.06M� can develop; this in turn requires and initial stellar mass of
& 8M�.

• The fate of stars having 8M� & M & 11M� is uncertain; they develop O-Ne cores after
central C-burning and their structure is then similar to AGB stars with degenerate CO
cores; such stars have been named “Super-AGB Stars” in recent years.

• Stars with higher initial masses (M & 11M�) also ignite and burn fuels heavier than C
until a Fe core is formed; this collapses and results in a supernova explosion.

• Mass-loss by stellar winds becomes important during all evolution phases, including the
Main Sequence.

• For stars having initial masses (M & 30M�), mass-loss rates Ṁ are so large that τml =
M/Ṁ > τnuc and as a consequence mass-loss determines the evolution.



Massive Star Evolution – II
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Massive Star Evolution – III

OB-Type Main Sequence and Blue Supergiant (BSG) stars have fast radiation driven stellar
winds.

• Prad at frequencies corresponding to spectrum absorption lines, where the interaction be-
tween photons and matter is strong, causes an outward acceleration.

• If photons transfer their entire momentum to the wind then

Ṁ v∞ <
L

c

gives an upper limit to Ṁ , where v∞ is the terminal wind velocity.

• Comparison between Ṁ from the above formula and more accurate estimates suggests
photon momentum is efficiently transferred to the stellar wind.

• The efficiency is attributed to Doppler broadening of spectral lines caused by wind accel-
eration so that outflowing atoms and ions can absorb photons of a higher frequency.

• Radiation-driven mass-loss is also dependent on metallicity because it is mostly the lines
of heavier elements that contribute to the line driving.



Massive Star Evolution – IV

BSG stars evolve into red supergiants (RSG) during H-shell burning unless
mass-loss removes such a large fraction of the envelope that this is no longer
possible.

• RSG stars have a slow but copious stellar wind.

• Stellar winds in RSG stars are probably driven in the same way as AGB
star “superwinds”; that is a combination of stellar pulsations and radia-
tion pressure on dust particles that form in the cool outer atmosphere.

• Theoretical predictions are lacking but observations suggest Ṁ as high as
10−4M� yr−1.

• Stars with M . 40M� spend a large fraction of their core He-burning
period as RSG stars.

• During the RSG phase mass-loss can remove a large part of, or even the
entire, envelope of M . 40M� stars exposing the He-core as a Wolf-
Rayet (WR) star.



Massive Star Evolution – V

Observations reveal an upper limit to L that depends on Teff

• In particular, there are no RSG stars having log (L/L�) > 5.8, corre-
sponding the RSG luminosity of a 40M�.

• Apparently stars withM & 40M� do not become RSG stars; this upper
limit in the HRD is known as the Humphreys-Davidson Limit.

• At Teff > 10000K, the maximum L increases gradually to log (L/L�) >
6.8 at Teff = 40000K (O stars).

• The Humphreys-Davidson limit is interpreted as a generalised Eddington
limit. When L exceeds the classical Eddington limit

LEdd =
4 π cGM

κ

where κ is the electron-scattering opacity, the outward force due to Prad

on free electrons exceeds the inward gravitational force on nuclei.



Massive Star Evolution – VI

• Electrostatic coupling between electrons and ions means that outer layers are ac-
celerated outwards and the star becomes unstable.

• Actual opacity in the atmosphere is larger than the electron scattering κ and
decreases with T .

• Therefore the L at which the Prad limit is reached is lower than LEdd and the
decrease of the Humphreys-Davidson limit with Teff is explained qualitatively.

• Luminous stars near the Humphreys-Davidson limit are observed to be very un-
stable, undergoing large excursions in the HRD with Ṁ & 10−3M� yr−1 during
outbursts.

• Such objects are known as luminous blue variables (LBVs), examples of which are
η Carina and P Cygni.

• Stars losing mass due to LBV outbursts are destined to become Wolf-Rayet Stars.

• Strong LBV mass-loss prevents them from ever becoming RSG stars.



Massive Star Evolution – VII

Wolf-Rayet (WR) stars are hot, very luminous and have strong emission lines in their spectra.

• Emission indicates strong, optically thick stellar winds with Ṁ ∼ 10−5 − 10−4M� yr−1.

• WR stars surrounded by circumstellar nebulae of ejected material.

• Winds are probably driven by radiation pressure as for O stars, but multiple photon scattering
in the optically thick outflow can increase Ṁ to well above the single scattering limit.

• WR spectra reveal increased CNO abundances, indicating that they are exposed H- or He-
burning cores of massive stars.

WR stars are classified into several sub-types on the basis of surface abundances:

• WNL Stars – have photospheric H (with XH < 0.4) with increased He and N abundances,
consistent with CNO-Cycle equilibrium values.

• WNE Stars – have He and N abundances similar to those in WNL stars except H is absent
(XH = 0).

• WC Stars – have no H, little or no N, and increased He, C and O abundances (consistent
with partial He-burning).

• WO Stars – are similar to WC stars with strongly increased O abundances (as expected for
nearly complete He-burning).

WNL→WNE→WC→WO appear to form an evolutionary sequence in which deeper and deeper
layers become exposed, as the envelope is “peeled-off” by mass-loss.



Massive Star Evolution – VIII

Massive star evolution may be summarised:

M . 15M� MS(OB)→ RSG→ (BSG in blue loop?)→ RSG→ SN II
Mass-loss is relatively unimportant, only a few M�
are lost during the entire evolution.

15M� .M . 25M� MS(O)→ BSG→ RSG→ SN II
Mass-loss is strong during the RSG phase, but not
strong enough to remove the entire H-rich envelope.

25M� .M . 40M� MS(O)→ BSG→ RSG→WNL→WNE→WC→ SN Ib
The H-rich envelope is removed during the RSG stage,
resulting in the formation of a WR star.

M & 40M� MS(O)→ BSG→ LBV→WNL→WNE→WC→ SN Ib/c
A LBV phase blows off the envelope before the RSG can be
reached.

Mass limits listed above are for Z = 0.02 and are metallicity dependent.



Massive Star Evolution – IX

Evolution of photospheric properties already described correspond to H- and
He-burning phases of massive stars.

• Once a C/O core has formed which is massive enough (> 1.06M�) to un-
dergo C-ignition, subsequent evolution of the core is a series of alternating
nuclear burning and core contraction cycles in quick succession.

• Due to strong neutrino losses, the core evolution is sped-up enormously.
Less than ∼ 103 years pass between the onset of C-burning and the
formation of a Fe core.

• The stellar envelope does not have time to respond to changes in the core
whose mass is fixed following C-ignition; the evolution of the envelope is
now practically disconnected from that of the core.

• As a result, the position of a massive star in the HRD remains almost
unchanged during C-burning and beyond.

• Exclusive attention to core evolution is required from this point onwards.



Massive Star Evolution – X

At high T and ρ, several weak interaction processes result in spontaneous neutrino
production:

• Pair annihilation occurs at T > 109 K. Energetic photons can undergo pair
creation (γ + γ ↔ e+ + e−), but once in every 1019 cases the pair annihilates
into neutrinos (e+ + e− → ν + ν̄).

• There is a small probability of a νν̄ pair production when a γ-ray photon
is scattered off an electron (γ + e− → e− + ν + ν̄), known as the Photo-
Neutrino Process.

• A plasma oscillation quantum (or plasmon) may decay in electron-degenerate
gas at high densities (ρ & 106 g/cm3) into a νν̄ pair, known as the Plasma-
Neutrino Process.

• Bremsstrahlung neutrinos (at low T and very high ρ) are inelastic (“free-free”)
scattering of an electron in the Coulomb field of a nucleus, producing a νν̄
pair instead of the usual γ photon.



Massive Star Evolution – XI

strength of the s process is sensitive to poorly deter-
mined nuclear quantities. Of particular interest is the
633-keV resonance in the 22Ne!! channel (Käppeller
et al., 1994). Various choices for the parameters of this
resonance can give quite different strengths for the s
process, though none so powerful as to move the
s-process peak much above A"90. Recent studies by
Jaeger et al. (2001) suggest a diminished role for this
resonance and a reaction rate no larger than the ‘‘lower
bound’’ recommended by Käppeler et al. (1994). Figure
7 used the Jaeger et al. rate for 22Ne(! ,n)25Mg and
other recent reaction rates as described by Rauscher
et al. (2001).

For stars with significantly less than solar metallicity,
12C and 16O can become significant poisons, resulting in
a still weaker s process than the low seed abundances
might suggest (Nagai et al., 1995). For lower-mass stars
in which 22Ne(! ,n)25Mg is deferred until carbon burn-
ing, other poisons produced by carbon burning (Sec.
IV.A.1) can also weaken the s process. The final s pro-
cess ejected by a 15M! supernova is significantly weaker
than that for a 25M! supernova (Rauscher et al., 2001).

While the s process is often thought of as a way of
making elements heavier than iron, a number of lighter
isotopes are also made mostly by the s process in mas-
sive stars. These include 36S, 37Cl, 40Ar, 40K, and 45Sc.
Appreciable amounts of 43Ca and 47Ti are also made by
the s process in massive stars, though probably not
enough to account for their solar abundance.

IV. ADVANCED NUCLEAR BURNING STAGES

Because of the importance of neutrino losses, stellar
evolution after helium burning is qualitatively different.
Once the central temperature exceeds "5#108 K, neu-
trino losses from pair annihilation dominate the energy
budget. Radiative diffusion and convection remain im-
portant to the star’s structure and appearance, but it is
neutrino losses that, globally, balance the power gener-
ated by gravitational contraction and nuclear reactions
(Arnett, 1972a; Woosley, Arnett, and Clayton, 1972). In-
deed, the advanced burning stages of a massive star can
be envisioned overall as the neutrino-mediated Kelvin-
Helmholtz contraction of a carbon-oxygen core (Fig. 1),
punctuated by occasional delays when the burning of a
nuclear fuel provides enough energy to balance neutrino
losses. Burning can go on simultaneously in the center of
the star and in multiple shells, and the structure and
composition can become quite complex. Owing to the
extreme temperature sensitivity of the nuclear reactions,
however, each burning stage occurs at a nearly unique
value of temperature and density (Fig. 8).

Nucleosynthesis in these late stages is characterized
by a great variety of nuclear reactions made possible by
the higher temperature, the proliferation of trace ele-
ments from previous burning stages, and the fact that
some of the key reactions, like carbon and oxygen fu-
sion, liberate free neutrons, protons, and ! particles. It is
impossible to keep track of all these nuclear transmuta-

FIG. 8. Logarithm of the energy generation during the advanced burning stages of a massive star. The center of the star is assumed
to follow a typical adiabat, #"106T9

3 (Fig. 1). Neutrino losses (Munakata et al., 1985) as a function of temperature are given as the
dark line labeled ‘‘Neutrinos.’’ The four steeper lines are simple approximations to the nuclear energy generation during carbon
(C), neon (Ne), oxygen (O), and silicon (Si) burning that are discussed in the text. The intersections of these lines define the
burning temperature for the given fuel—T9"0.7 (C), 1.45 (Ne), 1.9 (O), and 3.4 (Si). The slopes of the lines near the intersection
give the power of the temperature to which the burning is sensitive—n"32 (C), 50 (Ne), 36 (O), and 49 (Si). These include the
assumed temperature scaling of the density and are for assumed mass fractions C"0.2, O"0.7, Ne"0.2, and Si"0.5. Combustion
of each gram of these four fuels yields a relatively constant energy, q/1017 erg g$1"4.0 (C), 1.1 (Ne), 5.0 (O), and 1.9 (Si). The
lifetime of the burning stage is approximately q times the mass fraction divided by the energy generation at balanced power, i.e.,
from thousands of years for C to less than a day for Si (Table I).

1031Woosley, Heger, and Weaver: Evolution and explosion of massive stars
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Massive Star Evolution – XII

Once Tc & 5× 108 K, neutrino losses are the most important energy leak from the
stellar centre, removing it much more rapidly than photon diffusion or convection
can transport it to the surface.

• Therefore Lν � L so that during nuclear burning Lnuc = Ėnuc ≈ Lν, leading
to a much shorter timescale τnuc = Enuc/Lν � Enuc/L.

• Similarly, the rate of core contraction (on the thermal timescale) between
burning cycles also speeds up; Ėgr ≈ Lν so that τth = Egr/Lν � Enuc/L.

• Therefore the rate of evolution speeds up and accelerates as the core contracts
and heats up.

• Note that nuclear burning in the presence of neutrino losses is stable. A small
perturbation (δT > 0) would increase the local heat content (εnuc > εν),
leading to expansion and cooling of the core until thermal equilibrium is re-
established.

• Advanced burning stages leading to the Fe core have already been discussed.



Pre-Supernova Structure – I

number of neutrons in the remnant Si-S core exceeds the number of protons (p/n < 1) and therefore
that of electrons (implying that µe > 2).

Silicon burning

When the central temperature exceeds 3 × 109 K, a process known as silicon burning starts. Rather
than a fusion reaction this is a complex combination of photo-disintegration and α-capture reactions.
Most of these reactions are in equilibrium with each other, and their abundances can be described by
nuclear equivalents of the Saha equation for ionization equilibrium. For T > 4×109 K a state close to
nuclear statistical equilibrium (NSE) can be reached, where the most abundant nuclei are those with
the lowest binding energy, i.e. of isotopes belonging to the iron group. The abundances are further
constrained by the total number of neutrons and protons present. Due to the high neutron content of
the oxygen burning ashes (see above), the final composition is mostly 56Fe and 52Cr.

Silicon burning also occurs in a convective core of ≈ 1M⊙ and its duration is extremely short,
of order 10−2 yr. As in previous phases, several convective shell-burning episodes usually follow in
quick succession. The precise extent and number of these convective events determines the exact
value of the final mass of the iron core, which has important consequences for the following core
collapse and supernova phase (see Sec. 11.4).

Pre-supernova structure

We have obtained the following general picture. After exhaustion of a fuel (e.g. carbon) in the centre,
the core contracts and burning continues in a shell around the core. Neutrino losses speed up the
contraction and heating of the core, until the next fuel (e.g. neon) is ignited in the centre. At each sub-
sequent burning stage the outer burning shells have advanced outward, while neutrino cooling is more
efficient, resulting in a smaller burning core (in mass) than the previous stage. Eventually this leads to
an onion-skin structure of different layers consisting of heavier nuclei at increasing depth, separated
by burning shells (see Fig. 11.8). Often the central and shell burnings drive convective regions that
partially mix the various onion-skin layers. This eventually leads to complicated abundance profiles
just before the iron core collapses, an example of which is shown in Fig. 11.9 for a 15M⊙ star.

Fe

Si, S
O, Ne, Mg

C, O

He

H, He

Figure 11.8. Schematic overview
of the onion-skin structure of a
massive star at the end of its evo-
lution.
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Pre-Supernova Structure – II

The following general picture of a massive star, immediately before a supernova
explosion, therefore emerges.

• After exhaustion of a fuel (e.g. carbon) in the centre, the core contracts and
burning continues in a shell around it.

• Neutrino losses speed-up the contraction and heating of the core, until the
next fuel (e.g. neon) is ignited in the centre.

• At each subsequent burning stage, the outer burning shells have advanced
outward, while neutrino cooling is more efficient, resulting in a smaller burning
core (in mass) than the previous stage.

• Eventually an “onion-skin” structure of type shown in the previous slide re-
mains, layers of heavier nuclei at increasing depth, separated by burning shells.



Core Collapse in Massive Stars – I

At the end of Si-burning, when Tc & 4× 109K, the composition of the central core
is determined by nuclear statistical equilibrium; the mixture of nuclei has reached
the minimum possible binding energy at that temperature.

• Minimum binding energy is achieved by having a core of 56Fe nuclei.

• No further energy can be extracted by nuclear fusion; the core has become
inert.

• Because of neutrino cooling during the late evolution stages, the core has a
considerable degree of electron degeneracy.

• However, the high temperature and density (& 109 g/cm3) mean that electrons
are always relativistic.

• As a consequence, core contraction cannot be stopped and must continue on
the very rapid neutrino-mediated thermal timescale.

• Furthermore, since relativistic electron gas dominates the pressure, the adi-
abatic exponent γad ≈ 4/3; the Fe core is therefore very close to a state of
dynamical instability.



Core Collapse in Massive Stars – II

Two processes occur at high ρ and T that contribute to accelerating the already rapid
contraction into a dynamical collapse of the core:

• Electron Captures:

– At very high ρ, free electrons can be captured and bound into otherwise β-unstable
heavy nuclei; this process (known as inverse β-decay) occurs when the most en-
ergetic electrons have energies high enough to overcome the difference in nuclear
binding energy.

– As a result, the composition becomes increasingly neutron-rich, a process known
as neutronisation.

– Furthermore, the electron pressure decreases which can destroy the precarious
state of hydrostatic equilibrium and trigger the collapse of the core.

– For a composition of predominantly 56Fe one would expect MCh = 5.7 /µe
2M� ≈

1.2M�; electron capture increases µe and thus decreasesMCh, facilitating collapse
by bringing MCh below the current core mass.

– Stars with initial masses M . 11M� develop O-Ne-Mg cores; if these can grow
through shell burning to 1.37M�, electrons are captured by 24Mg and 20Ne which
then brings about core collapse as above.



Core Collapse in Massive Stars – III

• Photodisintegration

– If Tc → 1010 K, photon energy is high enough to break up heavy nuclei; in
particular, 56Fe is disintegrated as

56Fe + γ ↔ 13 4He + 4n.

– The above reaction is in statistical equilibrium and abundances of nuclei involved
are determined by a Saha-type equation, the balance shifting towards the right-
hand side as T increases.

– The process is thus similar to the ionisation of hydrogen, and results in a lowering
of γad to below the critical value of 4/3 leading to a dynamically unstable core;
this process dominates in relatively massive iron cores.

– 56Fe photodisintegration requires about 2 MeV per nucleon; this is absorbed from
the radiation field and thus ultimately from the internal energy of the gas.

– As a result, the pressure decreases quite drastically, triggering an almost free-fall
collapse of the core.



Core Collapse in Massive Stars – IV

Collapse is extremely rapid, taking ∼ 10 m sec, because of the short dynamical timescale at
the prevailing ρ ∼ 1010 g/cm3 at which collapse is initiated.

• During collapse, T and P keep rising, but never enough to reverse the collapse until
nuclear densities are reached.

• Further photodisintegrations can occur due to increasing photon energies.

• Electron captures on to protons

1H + e− → n + ν

inside heavy nuclei continues the process of neutronisation, creating more and more
neutron-rich nuclei.

• Neutron-rich nuclei gradually merge, creating what is essentially a gigantic stellar-mass
nucleus, as ρ→ ∼1014 g/cm3.

• Composition inside the core becomes predominantly neutrons, which become degen-
erate and thereby modify the equation of state to suddenly become “stiff” (i.e. the
neutron gas becomes almost incompressible).

• Core collapse thereby terminates at Rc ≈ 20 km.



Core Collapse and Supernova Explosion Energetics – I

Gravitational energy released during core collapse is

Egrav ≈ −
GM 2

c

Rc,i

+
GM 2

c

Rc,f

≈ GM 2
c

Rc,f

≈ 3× 1053 erg

assuming homologous collapse of a core of Mc ≈ 1.4M� from initial radius
Rc,i ≈ RWD to final radius Rc,f ≈ 20 km � Rc,i. By comparison, energy
required to expel the envelope which has no time to respond to the core collapse,
is

Eenv =

∫ M

Mc

Gm

r
dm� GM 2

Rc,i

≈ 3× 1052 erg

for M = 10M�. Eenv comes down to ∼ 1050 ergs when a realistic mass distri-
bution in the envelope is taken into account.



Core Collapse and Supernova Explosion Energetics – II

The question is therefore how such a small fraction of the collapse energy can
be transformed into kinetic energy of the envelope.

• When the inner part of the core is compressed to ∼ 1.5 times the nuclear
density, it bounces back (core bounce).

• As the velocity of the inner core material is reversed, it encounters matter
from the still free-falling outer part of the core.

• If the collision were perfectly elastic, the outer core would bounce back to
its initial radius even if the inner core were stationary.

• The outward motion of the inner core during core bounce gives the pos-
sibility of a “super-elastic” outer core bounce which might conceivably
explode the star.

• Infalling outer core material is supersonic and its encounter with the inner
core bounce creates a shock wave that steepens as it travels outward into
regions of lower density.

• Kinetic energy stored in the shock wave was once thought to give rise to
a so-called prompt explosion which blows off the envelope.



Core Collapse and Supernova Explosion Energetics – III

It is currently thought that such a prompt explosion does not occur for two reasons

1. As the shock wave travels through the infalling matter which mostly consists of
iron-group nuclei, it heats them up and effectively disintegrates them into protons
and neutrons.

• The binding energy of a 56Fe nucleus is about 9 MeV/nucleon.

• Disintegration of a 1.4M� core (1.7×1057 nucleons) requires ∼ 2×1052 ergs.

• All shock energy can then be absorbed in the core before it reaches the
envelope.

2. Electron captures by free protons created behind the shock produce energetic
neutrinos.

• Neutrinos carry away the larger fraction of the energy released in the collapse,
especially as the shock moves into relatively low density (< 1012 g/cm3) re-
gions from where they can readily escape.

• As a result, the shock wave “fizzles out” before it reaches the stellar envelope
and no prompt explosion occurs.



Core Collapse and Supernova Explosion Energetics – IV

The role played by neutrinos during core collapse requires closer examination:

• Neutrinos produced before core collapse had energies of the order of the thermal
energy of the electrons.

• During core collapse, neutrino production by neutronization dominates and so
these neutrinos have energies of the typical order of the relativistic electron Fermi
energy.

• A previous result gave the electron degeneracy pressure (P), for the relativistic
case, in terms of the Fermi momentum (p0) as

P =
8 π c p0

4

12h3
=

1

8

(
3

π

)1/3

h c ne
4/3 where ne =

8 π p0
3

3h3
.

• The Fermi momentum is then

p0 =

(
3

8 π

)1/3

hne
1/3

which is related to the Fermi Energy of degenerate relativistic electrons through
EF = c p0



Core Collapse and Supernova Explosion Energetics – V

The energy of neutrinos produced during core collapse is therefore approximately:

Eν

me c
2
≈ EF

me c
2
=

p0

me c
=

h

me c

(
3

8 π

ρ

µemH

)1/3

≈ 10−2
(
ρ

µe

)1/3

where µe is the mean molecular weight per free electron and ρ = µemH ne, with ρ
expressed in g/cm3.

In the presence of heavy nuclei, neutrinos interact mainly through so-called coherent
scattering with these nuclei, with a typical cross-section of the order

σν ≈ 10−45A2

(
Eν

me c
2

)2

cm2,

where A is the atomic mass number of the scattering nucleus. Substituting for the Fermi
energy so as to express σν in terms of ρ gives

σν ≈ 10−49A2

(
ρ

µe

)2/3

cm2.

If n = ρ/(AmH) is the number density of nuclei, the mean free path of the neutrinos in
the collapsing core can then be estimated as

`ν ≈
1

nσν
≈ 2× 1025

1

µeA

(
ρ

µe

)−5/3
cm.



Core Collapse and Supernova Explosion Energetics – VI

Taking µe ≈ 2 and A ≈ 100, `ν ≈ 107 cm (the typical dimension of the
collapsing core) when ρ/µe ≈ 4× 109 g/cm3.

• Neutrinos can no longer escape freely at the high densities prevailing in
the collapsing core.

• The core becomes opaque for neutrinos, which can only diffuse out of the
core via many scattering events.

• Towards the end of the collapse phase, when ρ > 3 × 1011 g/cm3, the
diffusion velocity becomes smaller than the infall velocity of the gas, so
that neutrinos are trapped in the core.

• Analogus to the photosphere of a star, one can define a “neutrinosphere”
in the outer layers of the core where the density is low enough for the
neutrinos to escape.

• Below the “neutrinoshpere”, there is a neutrino trapping surface under
which neutrinos are trapped.



Core Collapse and Supernova Explosion Energetics – VII

The real situation is more complicated because σν depends on the neutrino
energy, so that the neutrino transport problem needs to be solved in an energy-
dependent way.

• The congestion of neutrinos in the core causes them to become degenerate
(since neutrinos are fermions) with a high Fermi energy.

• Electron capture becomes less probable, because the new neutrinos have
to occupy higher energy states.

• Therefore neutronisation effectively stops when ρ ≈ 3× 1012 g/cm3.

• Only after some neutrinos have diffused out of the core can further neu-
tronisation take place.

• The process of neutronisation therefore takes several seconds, while the
collapse takes only a few milliseconds.



Core Collapse and Supernova Explosion Energetics – VIII

The deposition of neutrino energy in the core provides an energy source that
may revive the shock wave previously discussed and cause an explosion.

• Neutrinos diffusing out of the dense core heat the region through which
the former shock wave has passed and cause it to become convectively
unstable.

• Convection thus provides a way to convert some of the thermal energy
from neutrino deposition into kinetic energy.

• Multi-dimensional hydrodynamical calculations show that the outward
force thus created can overcome the ram pressure of the outer layers that
are still falling onto the core and launch a succesful explosion, but only
for M . 11M�.

• Alternative ways of reviving the shock and driving a successful supernova
explosion are still being explored.



Core Collapse and Supernova Explosion Energetics – IX
Heger A et al. , 2003 Astrophys. J. 591, 288

occur at all (Baraffe et al. 2001) because the progenitor stars
are pulsationally unstable.

4. SUPERNOVAE

4.1. Supernovae of Type IIp and IIL

It has long been recognized that massive stars produce
supernovae (Baade & Zwicky 1934). In this paper, we
assume the progenitor properties for the different core-
collapse supernova types listed in Table 1.

The lower and upper limits of main-sequence mass that
will produce a successful supernova (‘‘M-lower ’’ and ‘‘M-
upper ’’)—one with a strong outgoing shock still intact at
the surface of the star—have long been debated. On the
lower end, the limit is set by the heaviest star that will eject

its envelope quiescently and produce a white dwarf.
Estimates range from 6 to 11 M!, with smaller values char-
acteristic of calculations that are employed using a large
amount of convective overshoot mixing (Marigo, Bressan,
& Chiosi 1996; Chiosi 2000) and the upper limit determined
by whether helium shell flashes can eject the envelope sur-
rounding a neon-oxygen core in the same way they do for
carbon-oxygen cores (x 3). It may also slightly depend on
metallicity (Cassisi & Castellani 1993). Here we will adopt
9M! forM-lower.

The value ofM-upper depends on details of the explosion
mechanism and is even more uncertain (x 6.2). Fryer &
Kalogera (2001) estimate 40 M!, but calculations of explo-
sions even in supernovae as light as 15M! give widely vary-
ing results. It is likely that stars up to at least 25 M! do
explode, by one means or another, in order that the heavy
elements are produced in solar proportions. The number
of stars between 25 and 40 M! is not large. Here we have
taken what some may regard as a rather large value:
M-upper ¼ 40M! (Fig. 2).

For increasing metallicity, mass loss reduces the hydro-
gen envelope at the time of core collapse. A small hydrogen
envelope (d2 M!) cannot sustain a long plateau phase in
the light curve, and only Type IIL/b supernovae or, for very
thin hydrogen layers, Type IIb supernovae result (Barbon,
Ciatti, & Rosino 1979; Filippenko 1997). It is also necessary

Fig. 1.—Remnants of massive single stars as a function of initial metallicity (y-axis; qualitatively) and initial mass (x-axis). The thick green line separates
the regimes where the stars keep their hydrogen envelope (left and lower right) from those where the hydrogen envelope is lost (upper right and small strip at
the bottom between 100 and 140M!). The dashed blue line indicates the border of the regime of direct black hole formation (black). This domain is interrupted
by a strip of pair-instability supernovae that leave no remnant (white). Outside the direct black hole regime, at lower mass and higher metallicity, follows the
regime of BH formation by fallback (red cross-hatching and bordered by a black dot-dashed line). Outside of this, green cross-hatching indicates the formation
of neutron stars. The lowest mass neutron stars may be made by O/Ne/Mg core collapse instead of iron core collapse (vertical dot-dashed lines at the left). At
even lower mass, the cores do not collapse and only white dwarfs are made (white strip at the very left).

TABLE 1

Progenitor Properties for Different
Core-Collapse Supernovae

SNType Pre-SN Stellar Structure

IIp....................... e2M!H envelope
IIL/b .................. d2M!H envelope
Ib/c..................... NoH envelope
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Summary

Subjects discussed in the Tenth Lecture include:

• White dwarfs are composed of electron degenerate gas; consequences
of this are that their masses must be below the Chandrasekhar Mass
of ∼ 1.4M� and that their radii decrease with increasing mass.

• A simple method is developed for estimating white dwarf cooling
although in reality structural changes within the white dwarfs are
important and these have been neglected.

• Massive star M & 8M� evolution is discussed as these are the pro-
genitors of neutron stars and black holes.

• Core collapse supernovae are considered as the intermediate step by
which massive stars end their lives as neutron stars or black holes.
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