

Forward modelling of the gravity-mode sdB pulsator KIC 10553698A

Hamed Ghasemi^{1,2}, Ehsan Moravveji², Conny Aerts^{2,3} Roy Ostensen², Maja Vuckovic⁴, Hossein Safari¹

1: University of Zanjan, Iran

- 2: Institute of Astronomy, Faculty of Science, KU Leuven, Belgium
- 3: Radboud University Nijmegen, the Netherlands
- 4: Institute of Physics and Astronomy, University of Valparaiso, Chile

Outline

- Period Spacing and Trapped modes
- Boundary of the convective core
- Models
- KIC 10553698A
- Results
- Conclusions
- Future plan

Gravity modes period spacing

(Miglio et al. 2008)

Trapped modes

The effect of the boundary of the convective core on pulsations

Convective core boundary

(Schindler et al., 2015)

Models

- Initial mass = 1.5 M_{\odot}
- Mixture : Asplund et al. 2009
- Composition: X =0.738 , Y= 0.248 , Z= 0.014
- Schwarzschild criterion
- Mixing Length alpha = 2
- Exponential diffusive overshoot (Herwing 2000, Freytag et al.1996)
- OPAL CO-enhanced (Type II) opacities
- Envelope stripping:
- + $\rm M_{total}$ = 0.469 $\rm M_{\odot}$, $\rm \,M_{env}$ = 0.008 $\rm M_{\odot}$

Helium flash

KIC 10553698A

- Rich g-mode pulsator.
- White dwarf companion, KIC 10553698B, mass $\sim 0.6 M_{\odot}$
- Ostensen et al. 2014, identified 156 as components of I = 1 and I = 2 multiplets.

The talk by Roy

Scenarios

Scenarios	Covection	Semi- Convection mixing	Overshooting	Extra turbulent mixing	Element diffusion
	Ledoux / Schwarzschild	Y / N	Y / N	Y / N	Y / N
1	Schwarzschild	Ν	f = 0.001 H _p	$D_{mix} = 10^{-2} (cm^2/s)$	Ν
2	Schwarzschild	N	$f = 0.01 H_{p}$	$D_{mix} = 1 (cm^2/s)$	Y
3	Schwarzschild	Ν	f = 0.8 H _p	$D_{mix} = 100 (cm^2/s)$	Y

$$D_{\rm ov}(z) = D_{\rm conv} \, \exp\left(-\frac{2 \, z}{f_{\rm ov} \, H_p}\right)$$
(Moravveji,2015)

Slow mixing process

Rapid mixing process

Very rapid mixing process

Conclusions

Future plans

- More model computation.
- Other parameters: Helium core mass, Hydrogen envelope mass, Initial mass, Metallicity, etc.
- Helium core flash