# Confronting the "Extreme Planetary Systems" Claimed Around sdBVs

JJ Hermes

THE UNIVERSITY OF WARWICK

# KIC 05807616

300

400

500

#### ETTER

doi:10.1038/nature10631

#### A compact system of small planets around a former red-giant star 100 200

а S. Charpinet<sup>1,2</sup>, G. Fontaine<sup>3</sup>, P. Brassard<sup>3</sup>, E. M. Green<sup>4</sup>, V. Van Grootel<sup>5,6</sup>, S. K. Randall R. H. Østensen<sup>11</sup>, S. D. Kawaler<sup>10</sup> & J. H. Telting<sup>12</sup> ×5 FT: first 14 months 0.1 Amplitude (%) of Kepler data (Q2+Q5-Q8)0.05 KOI 55.01:  $P_{orb} = 5.7625 hr$ Frequency (µHz)  $(48.204 \ \mu Hz)$ b KOI 55.01 (F<sub>1</sub>) Amplitude (%) 0.01  $\sim 0.76 R_{\text{Earth}}$  $\sim 0.44 M_{\text{Earth}}$ Phase-folded at 5.76-hr signal  $a_{
m sep} = 1.290 \ R_{\odot}$ 0 0.5 1.5 2 KOI 55.02:  $P_{orb} = 8.2293 hr$ Phase  $(33.755 \ \mu Hz)$ С KOI 55.02 (F<sub>2</sub>) 0.01 Amplitude (%) ~0.87 R<sub>Earth</sub>  $\sim 0.66 M_{\text{Earth}}$ Phase-folded at 8.23-hr signal  $a_{
m sep} = 1.636 \ R_{\odot}$ 0.5 1.5 2 Phase  $a_{\text{Roche}} = 0.624 R_{\odot}$ *Charpinet et al. 2011, Nature, 480, 496* 

- *g*-modes (standing waves), must be reflected off surface
- <u>theoretical cutoff frequency</u> for ell=1 g-modes ~4.5 hr (61 μHz) (Hansen et al. 1985, ApJ, 297, 554)

# KIC 05807616

*"leaving orbital modulations ... the most plausible interpretation."* 





Charpinet et al. 2011, Nature, 480, 496

A&A 570, A130 (2014) DOI: 10.1051/0004-6361/201424509 © ESO 2014



#### Kepler detection of a new extreme planetary system orbiting the subdwarf-B pulsator KIC 10001893

R. Silvotti<sup>1</sup>, S. Charpinet<sup>2,3</sup>, E. Green<sup>4</sup>, G. Fontaine<sup>5</sup>, J. H. Telting<sup>6</sup>, R. H. Østensen<sup>7</sup>,
 V. Van Grootel<sup>8</sup>, A. S. Baran<sup>9</sup>, S. Schuh<sup>10,11</sup>, and L. Fox Machado<sup>12</sup>



Silvotti et al. 2014, A&A, 570, A130

#### **Issues Complicating the Planetary Hypothesis**

• Signals are <u>unstable in frequency</u>

Signals are <u>unstable in amplitude</u>

• Some signals are in <u>impossible planetary</u> <u>configurations</u>

#### 1. Signals are Unstable in Frequency

- 8.23-hr signal already showed frequency instability after first year
- Charpinet+ 2011 suggestion: Dynamical (orbital) perturbations from a third body (w/ period ~57 days)





Charpinet et al. 2011, Nature, 480, 496

#### 1. Signals are Unstable in Frequency



All data used by Charpinet+ 2011

- The frequency variability is <u>not long-term coherent</u>
- Why does it affect one mode and not the other? ("~3:2 resonance")

#### 1. Signals are Unstable in Frequency



(200-day sliding window, standard *Kepler* pipeline)



(200-day sliding window, custom pixel mask)



Jurek Krzesinski 2015, private communication



*Silvotti et al. 2014, A&A, 570, A130* 

- 40,000 K sdO KIC 10449976 shows unstable ~3.9 day variability
- "The stochastic variations in period and light amplitude are attributed to <u>weather</u> on ... a tidally locked planet that is heated to ~5000 K by the UV radiation from the hot sdO star."



-- Bear & Soker 2014, MNRAS, 437, 1400



*Jeffery et al. 2013, MNRAS, 429, 3207* 

#### 3. Signals Exist in Impossible Planetary Systems

- <u>KIC 10553698A</u>: sdBV in 3.4-day binary w/ ~0.6 M<sub>☉</sub> WD
   5σ significant signal at 46.84 μHz (5.93 hr)
- <u>KIC 11558725A</u>: sdBV in 10-day orbit w/ >0.63 M<sub> $\odot$ </sub> WD (Telting+ 2012) – Significant signals at 37.86 µHz (7.34 hr) and 49.78 µHz (5.58 hr)
- Dynamics don't allow for planet(s) to exist inside these **WD+sdBs**



### If Not Planets, then What?

- Back to the drawing board:
  - Contamination from a nearby star
    - Custom pixel masks
  - Spurious Kepler frequencies
    - Not in Baran 2013 (arXiv: 1306.5472)
  - Rotational modulations
    - *p-mode splittings:* P<sub>rot</sub> ~ 40 days
  - Stellar pulsations
    - Cutoff frequency?
  - Nonlinear combination frequencies
    - Possible difference frequencies?
  - Reflection off close-in planets



### **Revisiting the Theoretical Cutoff Frequency**

- Critical frequency delineating standing/running waves
- "Surface reflection condition"
- Charpinet+ 2011 used full seismic models, found  $v_{crit,l=1} = 61.0 \mu Hz$ (Hansen et al. 1985, ApJ, 297, 554)



## **Revisiting the Theoretical Cutoff Frequency**

- Not an energy barrier, just an energy sink: Amplitudes shrink but not necessarily to 0
- Really want to compare <u>energy leakage</u> e-folding timescale to <u>intrinsic</u> <u>driving</u> e-folding timescale
- Truly a non-adiabatic problem, but adiabatic approx. should be decent
- $v_{\text{crit,l=1}} = 61.0 \ \mu\text{Hz}$
- $v_{\text{crit,l=2}} = 105.7 \ \mu\text{Hz}$



Charpinet et al. 2011, Nature, 480, 496

# Nonlinear Combination Frequencies?

e.g., 
$$f_1 + f_2 = f_3$$
 or  $f_1 - f_2 = f_3$ 

• 14.5 hr signal in *K*2 run on white dwarf GD 1212:  $f_{10}$  -  $f_8$ 



#### **Nonlinear Combination Frequencies?**



### Conclusion: Major Flaws w/ 'Extreme sdB Planets'

- At least **four** sdBVs in *Kepler* show significant 5-9 hr variability
- Major complications to these being reflections off close-in planets:
  - Signals are **unstable in frequency**
  - Signals are **unstable in amplitude**
  - Some signals are in impossible planetary configurations
- A **connection with pulsations** is the <u>most plausible</u> explanation, but several interesting questions remain





