

Stripped red giant stars Dr Pierre Maxted, Keele University

Helium white dwarfs

- M_{WD} < 0.3 M_{Sun}
 - must be helium core
 - not single star evolution
 - Extremely Low Mass (ELM)
 WD
- $M_{WD} = 0.3 \text{ to } 0.45 \text{ M}_{Sun}$
 - probably helium core
 - can by hybrid CO/He
 - often binaries but some singles (metal-rich enhanced wind?)

Initial stellar mass

Moroni and O. Straniero, 2009

Predictions from the models

- ELM WD born with thick hydrogen envelopes
 - lower the mass \Rightarrow thicker the envelope (up to ~0.05 M_{Sun})
- For binary systems, P_{orb} related to M_{WD}
 - low mass \Rightarrow short period
 - Also depends on composition
 - observed in WD NS binaries (milli-second pulsars)
- Lifetime of stripped red giant phase depends on mass
 - lower mass \Rightarrow longer lifetime (up to 1 Gyr)
- Minimum mass ≈ 0.15M_{Sun}

How to strip a red giant

- Binary stars systems
 - Milli-second pulsars
 - Blue stragglers
- Dense stellar systems
 - PCI-V36, 47 Tuc
- Galactic centre/SMBH
 - PS-10jh

Knigge et al., 2008

ELM WD are tracers of extreme environments

Total eclipse deeper then secondary eclipse => Smaller star is hotter => some sort of subdwarf?

Known stripped red giants (2011)

Precursors of helium (ELM) white dwarfs (M<0.3M_{Sun})

Known stripped red giants (2011)

Precursors of helium (ELM) white dwarfs (M<0.3M_{Sun})

Known stripped red giants (2011)

Precursors of helium (ELM) white dwarfs (M<0.3M_{Sun})

V209 in w Cen

Primary	
Mass	0.95 M
Radius	0.98 R
Т	9,400 K
Secondary	
Mass	0.14 M
Radius	0.43 R
Т	II,000 K

UVES follow-up of J0247-25

- $M_A = 1.356 \pm 0.007 M_{\odot}$
- $M_B = 0.186 \pm 0.002 M_{\odot}$

Ultracam NTT data

Pulsations in J0247-25

Pulsation characteristics

- J0247-25A
 - Metal poor δ Scuti star (SX Phe)
 - Non-radial p-modes, $P \approx 40$ mins
 - Driving from K-mechanism in He II ionisation zone
- J0247-25B
 - Mixed modes, $P \approx 6$ mins
 - Envelope p-modes
 - Core g-modes
 - Non-radial and radial with $k \approx 10$
 - Probably similar driving mechanism to SX Phe
 - Completely new type of pulsating star
 - Will pulsate again as ZZ Cet when it is an ELM WD

10247-25 in the HRD

Maxted et al., Nature 498, 463-465 (2013)

J0257-25B born with a thick hydrogen envelope

Potential for asteroseismology

SOAR data for J0247-25

Brad Barlow, Bart Dunlap

EL CVn-type binaries

17 new eclipsing pre-He-WD from WASP (Maxted et al., MNRAS 2014)

EL CVn-type binaries

- EL CVn
 - "standard" AIV star,
 - variability found in Hipparcos photometry (V=9.4)
- Orbital periods 0.7 2.2 days (or longer)
- Primary stars A0 F0 (typically A2)
- $T_{eff,B} = 9,000 15,000K$ (typically, can be a bit hotter)
- Companion mass ~0.2M $_{\circ}$
- Found in the halo star, thin-disc stars and thick-disk

Summary

Name of object depends on how it is discovered / who discovered it

- Kepler (the space craft)
 - bloated hot white dwarf/hot white dwarf
- WASP photometry
 - EL CVn binary
 - stripped red giant star / pre-He-WD
- Spectroscopy
 - ELM WD (if binary period \Rightarrow not a main-sequence A-star)
- Milli-second pulsar optical counterpart
 - metal-rich low-gravity companion (Kaplan et al., 2013)
- Spectroscopy + parallax (HD188112)
 - helium-core white dwarf progenitor (Heber et al., 2003)