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(see For et al. 2010, for recent results and a review), and seven such
systems are eclipsing. The eclipsing systems have been monitored
over long time-bases in order to detect low-mass companions from
precise measurements of the eclipse timings with the O − C method
(Kilkenny, van Wyk & Marang 2003; Lee et al. 2009).

One of the eclipsing sdB+dM systems, NY Vir, has a pulsating
primary of the V361 Hya class (Kilkenny et al. 1998). The V361 Hya
stars were discovered by Kilkenny et al. (1997) and are character-
ized by rapid pulsations, typically in the period range between 2 and
5 min. They are known to be pressure (p-)mode pulsators excited by
the κ mechanism, driven primarily by an iron opacity bump in the
envelope (Charpinet et al. 1997). A second class of sdB pulsators
was reported by Green et al. (2003). These stars, now known as
V1093 Her stars, show pulsations with much longer periods (∼1 h)
than the V361 Hya stars, and their temperatures are lower. These
pulsations can be described in terms of gravity (g) modes excited
by the same κ mechanism (Fontaine et al. 2003). With the discov-
ery of long-period pulsations in a known rapid pulsator, DW Lyn,
Schuh et al. (2006) established the existence of hybrid sdB pul-
sators. A broad review of hot subdwarf stars in general can be
found in Heber (2009), and a review of asteroseismology and evo-
lution of the EHB stars can be found in Østensen (2009). For the
most recent ground-based pulsator discoveries see Østensen et al.
(2010a).

The Kepler spacecraft was launched in 2009 March, aiming to
find Earth-sized planets from photometric observations of a 105-
deg2 field (Borucki et al. 2010). Kepler is also ideally suited for
asteroseismological studies, and the Kepler Asteroseismic Science
Consortium (KASC; Gilliland et al. 2010) manages this important
aspect of the mission. The methods with which the compact pulsator
candidates were selected, together with analysis of the first half of
the survey phase, are presented in Østensen et al. (2010b, hereafter
Paper I). The first results on a V361 Hya star in the Kepler field are
presented by Kawaler et al. (2010a), the first results on V1093 Her
and DW Lyn pulsators are presented by Reed et al. (2010), and re-
sults on two V1093 Her pulsators in sdB+dM reflection binaries
are discussed in Kawaler et al. (2010b). Further analysis of Kepler
data on sdB stars are found in Van Grootel et al. (2010), which
present the first detailed asteroseismic analysis of a V1093 Her
star, and in Bloemen et al. (2010), which present a detailed anal-
ysis of the extraordinary binary light curve of the sdB+WD star
KPD 1946+4340.

In this Letter we present 2M1938+4603 (KIC 9472174, g =
11.96), an object first identified as an sdB star in the Kepler field
during a survey of blue targets selected from Two Micron All Sky
Survey (2MASS) photometry. Follow-up photometry showed the
presence of a reflection effect with shallow primary and secondary
eclipses (Fig. 1). The amplitude of the reflection effect is very com-
parable to those observed in HW Vir and NY Vir, but the eclipses
are much more shallow. After detrending the Kepler light curve, we
clearly detect low-level pulsations.

2 O B S E RVAT I O N S

The discovery of the strong reflection effect with grazing eclipses
was made by two of us (JBL and MM) during a photometric run
in 2008 June. Here we present only the eclipse timings from the
ground-based photometry, as the pulsations are too complex and
have too low amplitudes to be significant in those light curves. The
times of 13 primary eclipses collected between 2008 June and 2010
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Figure 1. The first half day of the Kepler light curve. The upper panel
shows the raw data, which are dominated by the strong reflection effect,
with both primary and secondary eclipses clearly visible. The middle panel
shows the same chunk after detrending with the light curve folded on P, and
the bottom panel shows the same after prewhitening the 55 most significant
frequencies.

May (Table S1) give the following ephemeris:

T0 = 2454 640.864 162 ± 0.000 058 d
P = 0.125 765 300 ± 0.000 000 021 d.

We downloaded the Kepler Q0 light curve from the KASC archive,
corrected the raw time-stamps to Barycentric Julian Date (BJD)
according to the instructions (Van Cleve 2009), and corrected the
raw fluxes with a seventh-order polynomial to take out trends on
time-scales longer than a day. The 77 consecutive eclipse times
measured from the Kepler photometry (Table S2) match the ground-
based ephemeris well within the errors. Both the ground- and space-
based eclipse times are provided in the on-line supplement.

In order to produce a useful Fourier transform (FT) that shows
the spectrum of low-level pulsations in 2M1938+4603 among the
extremely dominant orbital effects (Fig. 1, top panel) we first at-
tempted to clean out a model light curve of the system (see Sec-
tion 3), but we abandoned this approach since the FT of the residuals
contain significant peaks at every orbital harmonic. The model light
curve is unable to produce a satisfactory fit to the complicated irra-
diation effect, at the exceptional precision of the Kepler photometry.
Our model light curve does not account for radiative transfer through
the heated face of the M-dwarf, which may account for some of the
discrepancies between the model and data. Until such issues are re-
solved the precise parameters of our model are subject to systematic
uncertainties that could well be in excess of the statistical errors.
Even if we managed to model all orbital effects in the light curve to
the required precision, any pulsation peaks found in the residuals on
an orbital harmonic frequency would still be suspicious. So instead
we proceeded by folding the Kepler light curve on P, and then using
the result to clean out all orbital effects from the light curve. Note
that any stable pulsations that coincide with harmonics of the orbital
period within the resolution are also very effectively removed.

2.1 Frequency determination

After removing the orbital effects from the light curve, a spectac-
ularly rich pulsation spectrum is revealed (upper half of the five
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(see For et al. 2010, for recent results and a review), and seven such
systems are eclipsing. The eclipsing systems have been monitored
over long time-bases in order to detect low-mass companions from
precise measurements of the eclipse timings with the O − C method
(Kilkenny, van Wyk & Marang 2003; Lee et al. 2009).

One of the eclipsing sdB+dM systems, NY Vir, has a pulsating
primary of the V361 Hya class (Kilkenny et al. 1998). The V361 Hya
stars were discovered by Kilkenny et al. (1997) and are character-
ized by rapid pulsations, typically in the period range between 2 and
5 min. They are known to be pressure (p-)mode pulsators excited by
the κ mechanism, driven primarily by an iron opacity bump in the
envelope (Charpinet et al. 1997). A second class of sdB pulsators
was reported by Green et al. (2003). These stars, now known as
V1093 Her stars, show pulsations with much longer periods (∼1 h)
than the V361 Hya stars, and their temperatures are lower. These
pulsations can be described in terms of gravity (g) modes excited
by the same κ mechanism (Fontaine et al. 2003). With the discov-
ery of long-period pulsations in a known rapid pulsator, DW Lyn,
Schuh et al. (2006) established the existence of hybrid sdB pul-
sators. A broad review of hot subdwarf stars in general can be
found in Heber (2009), and a review of asteroseismology and evo-
lution of the EHB stars can be found in Østensen (2009). For the
most recent ground-based pulsator discoveries see Østensen et al.
(2010a).

The Kepler spacecraft was launched in 2009 March, aiming to
find Earth-sized planets from photometric observations of a 105-
deg2 field (Borucki et al. 2010). Kepler is also ideally suited for
asteroseismological studies, and the Kepler Asteroseismic Science
Consortium (KASC; Gilliland et al. 2010) manages this important
aspect of the mission. The methods with which the compact pulsator
candidates were selected, together with analysis of the first half of
the survey phase, are presented in Østensen et al. (2010b, hereafter
Paper I). The first results on a V361 Hya star in the Kepler field are
presented by Kawaler et al. (2010a), the first results on V1093 Her
and DW Lyn pulsators are presented by Reed et al. (2010), and re-
sults on two V1093 Her pulsators in sdB+dM reflection binaries
are discussed in Kawaler et al. (2010b). Further analysis of Kepler
data on sdB stars are found in Van Grootel et al. (2010), which
present the first detailed asteroseismic analysis of a V1093 Her
star, and in Bloemen et al. (2010), which present a detailed anal-
ysis of the extraordinary binary light curve of the sdB+WD star
KPD 1946+4340.

In this Letter we present 2M1938+4603 (KIC 9472174, g =
11.96), an object first identified as an sdB star in the Kepler field
during a survey of blue targets selected from Two Micron All Sky
Survey (2MASS) photometry. Follow-up photometry showed the
presence of a reflection effect with shallow primary and secondary
eclipses (Fig. 1). The amplitude of the reflection effect is very com-
parable to those observed in HW Vir and NY Vir, but the eclipses
are much more shallow. After detrending the Kepler light curve, we
clearly detect low-level pulsations.

2 O B S E RVAT I O N S

The discovery of the strong reflection effect with grazing eclipses
was made by two of us (JBL and MM) during a photometric run
in 2008 June. Here we present only the eclipse timings from the
ground-based photometry, as the pulsations are too complex and
have too low amplitudes to be significant in those light curves. The
times of 13 primary eclipses collected between 2008 June and 2010
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Figure 1. The first half day of the Kepler light curve. The upper panel
shows the raw data, which are dominated by the strong reflection effect,
with both primary and secondary eclipses clearly visible. The middle panel
shows the same chunk after detrending with the light curve folded on P, and
the bottom panel shows the same after prewhitening the 55 most significant
frequencies.

May (Table S1) give the following ephemeris:

T0 = 2454 640.864 162 ± 0.000 058 d
P = 0.125 765 300 ± 0.000 000 021 d.

We downloaded the Kepler Q0 light curve from the KASC archive,
corrected the raw time-stamps to Barycentric Julian Date (BJD)
according to the instructions (Van Cleve 2009), and corrected the
raw fluxes with a seventh-order polynomial to take out trends on
time-scales longer than a day. The 77 consecutive eclipse times
measured from the Kepler photometry (Table S2) match the ground-
based ephemeris well within the errors. Both the ground- and space-
based eclipse times are provided in the on-line supplement.

In order to produce a useful Fourier transform (FT) that shows
the spectrum of low-level pulsations in 2M1938+4603 among the
extremely dominant orbital effects (Fig. 1, top panel) we first at-
tempted to clean out a model light curve of the system (see Sec-
tion 3), but we abandoned this approach since the FT of the residuals
contain significant peaks at every orbital harmonic. The model light
curve is unable to produce a satisfactory fit to the complicated irra-
diation effect, at the exceptional precision of the Kepler photometry.
Our model light curve does not account for radiative transfer through
the heated face of the M-dwarf, which may account for some of the
discrepancies between the model and data. Until such issues are re-
solved the precise parameters of our model are subject to systematic
uncertainties that could well be in excess of the statistical errors.
Even if we managed to model all orbital effects in the light curve to
the required precision, any pulsation peaks found in the residuals on
an orbital harmonic frequency would still be suspicious. So instead
we proceeded by folding the Kepler light curve on P, and then using
the result to clean out all orbital effects from the light curve. Note
that any stable pulsations that coincide with harmonics of the orbital
period within the resolution are also very effectively removed.

2.1 Frequency determination

After removing the orbital effects from the light curve, a spectac-
ularly rich pulsation spectrum is revealed (upper half of the five
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Radial velocity curve
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differences from the linear analysis, we first only updated the am-
plitudes, phases and frequencies belonging to the last two identified
peaks, then updating the parameters belonging to the last 20 peaks,
and finally using all identified frequencies. The differences between
the amplitudes and frequencies were all within the derived error es-
timates, except for the frequencies around 3712 and 2593 µHz. The
non-linear fitting algorithm did not produce consistent results at
these frequencies, but future observations will allow us to resolve
these structures. Below 200 µHz, a dense forest of barely significant
peaks is visible. Although the different methods give mostly con-
sistent results, more Kepler photometry will be necessary to fully
resolve them.

2.2 Spectroscopy

Spectroscopic observations to determine radial velocities for
2M1938+4603 were undertaken primarily with the B&C spectro-
graph on the 2.3-m Bok Telescope on Kitt Peak. A few spectra were
also obtained using the MMT Blue spectrograph. In both cases, an
832 lines mm−1 grating was employed in second order, and particu-
lar care was taken to maintain precise centring of the star on the slit
throughout the exposures. The resulting spectra have a resolution of
R ∼ 2150 over the range 3675–4520 Å (Bok), or R ∼ 4200, 4000–
4950 Å (MMT). Radial velocities were derived by cross-correlating
the individual continuum-removed spectra against a supertemplate
using the IRAF task FXCOR. The supertemplate for the lower reso-
lution spectra was obtained by shifting the 66 individual spectra to
the same velocity prior to median filtering into a single spectrum;
the velocity zero-point of the resulting template was thus undeter-
mined. The cross-correlation template for the six MMT spectra was
constructed from 19 spectra previously obtained with the identical
spectroscopic set-up for other hot subdwarfs of known radial ve-
locities, whose spectral abundance patterns closely match that of
2M1938+4603.

A single sinusoidal fit was performed to all 72 velocities as a
function of orbital phase, weighted by the velocity errors and also
including an additional term for the zero-point offset of the Bok
velocities relative to the MMT velocities (Fig. 3). The orbital pe-
riod was fixed at the value of 0.125 760 d derived from the eclipse
timings. The derived radial velocity (RV) semi-amplitude is K1 =
65.7±0.6 km s−1, with a systemic velocity γ = 20.1±0.3 km s−1.
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Figure 3. RV data from the Bok and MMT telescopes (Table S3), with the
best-fitting solution as a sine curve (top), and the residuals (bottom).

3 SY S T E M PA R A M E T E R S

The effective temperature, surface gravity and helium abundance
of 2M1938+4603 were determined in the context of Paper I
to be Teff = 29 564 ± 106 K, log g = 5.425 ± 0.009 dex and
log(NHe/NH) = −2.36 ± 0.06 dex, using metal blanketed local
thermodynamic equilibrium (LTE) models. This temperature is
close to the boundary region between the p- and g-mode pulsators,
where hybrid DW Lyn type pulsators have been found.

We modelled the light curve using grid elements covering each
star, accounting for tidal (ellipsoidal) distortion of each star and
gravity and limb darkening of the sdB as in Bloemen et al. (2010).
Irradiation of the M-dwarf was accounted for by summing the M-
dwarf flux with the incident flux from the sdB point by point. Surface
brightnesses were computed assuming blackbody spectra at a sin-
gle wavelength of 600 nm. The best-fitting model is found to have
the following parameters: inclination angle, i = 69.◦45(2), relative
radii, r1 = 0.250(1), r2 = 0.177(1) in units of the orbital separation.
The errors in parentheses are formal fitting errors that may underes-
timate the true errors perhaps as much as a factor of 10, considering
the discrepancies in the light-curve fitting. The high precision on
these parameters allows us to use the mass–radius relationships as
derived from the orbital parameters and from the surface gravity to
constrain the mass and radius of the primary, as shown in Fig. 4.
We clearly see that the permitted M, R given by the photometric
orbital parameters (P, i, r1 and r2) and the spectroscopic K1 crosses
the M, R given by the spectroscopic surface gravity at precisely the
expected primary mass for a post-CE sdB star. The adjacent dotted
lines indicate the errors (on the RV for the q-track and on log g
for the g-track since the errors on P, i and the relative radii are too
small to matter). A mass for the primary of M1 = 0.48 ± 0.03 M$
can be deduced from the diagram. Using K1 and P we know the
mass function f (M) = 0.003 695. With 0.48 M$ for the primary,
and solving for the secondary, we get M2 = 0.12 ± 0.01 M$.

Figure 4. Mass–radius diagram showing the regions permitted by the orbit
(green) and by the spectroscopic gravity (red). The green-dotted curves show
the error ranges that correspond to a 3σ error in K1. The red-dotted curves
correspond to the 1σ formal error on log g for the gravity track. The green
curves are labelled with the value for q = M1/M2 that corresponds to each
point on the curve, with ticks of 0.01, increasing to the left-hand side. Note
that changing K1 by 3σ shifts the curve very little in the M/R plane, but the
q-value changes considerably. Vertical lines show the mass range typical for
EHB stars formed through the CE channel.
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Modeling the binary trend (Q0 data)
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Figure B1. The spectroscopic RVs. Open points are from the
Bok Telescope, filled dots from the MMT.

Figure C1. Best fit model light curve and the folded Kepler
light curve (top), and residuals (bottom).

APPENDIX B: RV MEASUREMENTS

APPENDIX C: LIGHT CURVE MODEL

c© 2010 RAS, MNRAS 000, 1–5
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Binary fit - another try (Q5-17 data)

Zola S. & Baran A., 2013, CEAB, 37, 227
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differences from the linear analysis, we first only updated the am-
plitudes, phases and frequencies belonging to the last two identified
peaks, then updating the parameters belonging to the last 20 peaks,
and finally using all identified frequencies. The differences between
the amplitudes and frequencies were all within the derived error es-
timates, except for the frequencies around 3712 and 2593 µHz. The
non-linear fitting algorithm did not produce consistent results at
these frequencies, but future observations will allow us to resolve
these structures. Below 200 µHz, a dense forest of barely significant
peaks is visible. Although the different methods give mostly con-
sistent results, more Kepler photometry will be necessary to fully
resolve them.

2.2 Spectroscopy

Spectroscopic observations to determine radial velocities for
2M1938+4603 were undertaken primarily with the B&C spectro-
graph on the 2.3-m Bok Telescope on Kitt Peak. A few spectra were
also obtained using the MMT Blue spectrograph. In both cases, an
832 lines mm−1 grating was employed in second order, and particu-
lar care was taken to maintain precise centring of the star on the slit
throughout the exposures. The resulting spectra have a resolution of
R ∼ 2150 over the range 3675–4520 Å (Bok), or R ∼ 4200, 4000–
4950 Å (MMT). Radial velocities were derived by cross-correlating
the individual continuum-removed spectra against a supertemplate
using the IRAF task FXCOR. The supertemplate for the lower reso-
lution spectra was obtained by shifting the 66 individual spectra to
the same velocity prior to median filtering into a single spectrum;
the velocity zero-point of the resulting template was thus undeter-
mined. The cross-correlation template for the six MMT spectra was
constructed from 19 spectra previously obtained with the identical
spectroscopic set-up for other hot subdwarfs of known radial ve-
locities, whose spectral abundance patterns closely match that of
2M1938+4603.

A single sinusoidal fit was performed to all 72 velocities as a
function of orbital phase, weighted by the velocity errors and also
including an additional term for the zero-point offset of the Bok
velocities relative to the MMT velocities (Fig. 3). The orbital pe-
riod was fixed at the value of 0.125 760 d derived from the eclipse
timings. The derived radial velocity (RV) semi-amplitude is K1 =
65.7±0.6 km s−1, with a systemic velocity γ = 20.1±0.3 km s−1.
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Figure 3. RV data from the Bok and MMT telescopes (Table S3), with the
best-fitting solution as a sine curve (top), and the residuals (bottom).

3 SY S T E M PA R A M E T E R S

The effective temperature, surface gravity and helium abundance
of 2M1938+4603 were determined in the context of Paper I
to be Teff = 29 564 ± 106 K, log g = 5.425 ± 0.009 dex and
log(NHe/NH) = −2.36 ± 0.06 dex, using metal blanketed local
thermodynamic equilibrium (LTE) models. This temperature is
close to the boundary region between the p- and g-mode pulsators,
where hybrid DW Lyn type pulsators have been found.

We modelled the light curve using grid elements covering each
star, accounting for tidal (ellipsoidal) distortion of each star and
gravity and limb darkening of the sdB as in Bloemen et al. (2010).
Irradiation of the M-dwarf was accounted for by summing the M-
dwarf flux with the incident flux from the sdB point by point. Surface
brightnesses were computed assuming blackbody spectra at a sin-
gle wavelength of 600 nm. The best-fitting model is found to have
the following parameters: inclination angle, i = 69.◦45(2), relative
radii, r1 = 0.250(1), r2 = 0.177(1) in units of the orbital separation.
The errors in parentheses are formal fitting errors that may underes-
timate the true errors perhaps as much as a factor of 10, considering
the discrepancies in the light-curve fitting. The high precision on
these parameters allows us to use the mass–radius relationships as
derived from the orbital parameters and from the surface gravity to
constrain the mass and radius of the primary, as shown in Fig. 4.
We clearly see that the permitted M, R given by the photometric
orbital parameters (P, i, r1 and r2) and the spectroscopic K1 crosses
the M, R given by the spectroscopic surface gravity at precisely the
expected primary mass for a post-CE sdB star. The adjacent dotted
lines indicate the errors (on the RV for the q-track and on log g
for the g-track since the errors on P, i and the relative radii are too
small to matter). A mass for the primary of M1 = 0.48 ± 0.03 M$
can be deduced from the diagram. Using K1 and P we know the
mass function f (M) = 0.003 695. With 0.48 M$ for the primary,
and solving for the secondary, we get M2 = 0.12 ± 0.01 M$.

Figure 4. Mass–radius diagram showing the regions permitted by the orbit
(green) and by the spectroscopic gravity (red). The green-dotted curves show
the error ranges that correspond to a 3σ error in K1. The red-dotted curves
correspond to the 1σ formal error on log g for the gravity track. The green
curves are labelled with the value for q = M1/M2 that corresponds to each
point on the curve, with ticks of 0.01, increasing to the left-hand side. Note
that changing K1 by 3σ shifts the curve very little in the M/R plane, but the
q-value changes considerably. Vertical lines show the mass range typical for
EHB stars formed through the CE channel.
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Rømer delay ⇒ the offset of the secondary eclipse

Kaplan D., 2010, ApJ, 717, 108
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with any generality. The main factor that will systematically
change for other double WD systems is τ itself, which is ∝
R1P

1/3. This means the signal-to-noise ratio (i.e., detectability)
is ∆tLT/σtc ∝

√
P/R1, so the effect is easiest to see in long-

period binaries. As the mass ratio approaches 1, the magnitude
of the delay decreases, limiting its utility, but in such systems
it may be easier to search for the second set of spectral lines
(depending on the temperatures of the objects).

This effect should also be present in partially degenerate
(sdB+WD) or non-degenerate binary systems. The precision
on the eclipse times goes as

√
τ ∝

√
Rsmall. If the binary is

wide enough that the larger star(s) are undistorted by tides and
hence the orbit remains strictly periodic, the overall detectability
∆tLT/σtc ∝

√
P/Rsmall can actually increase over the double

WD case that I have been considering. Requiring a ∝ Rlarge

to minimize tidal distortions, which scale as (Rlarge/a)3, for a
system with a 0.2 M# M star, one needs periods of !1 day to
have tidal effects that are as small as in the double WD systems.
For the ingress/egress duration the radius of the smaller object
Rsmall increases from ∼0.01 R# to ∼0.1 R# (for a 0.1 M# M star
companion, for example), so if the period increases by more than
a factor of 10 then the wide system is more easily detectable (the
probability of eclipse does decrease as R/a, though, and both
primary and secondary eclipses must be seen). However, the
ephemeris must be known sufficiently well with tight enough
limits on (or measurements of) eccentricity so that the light-
travel delay is the only deviation from regularity (see below).

For NLTT 11748, I recognize that K2 is the radial velocity
that was measured since the heavier object is the fainter one.
So, q ≈ 0.15/0.71 = 0.21, K2 = 271 km s−1, and P = 5.64 hr,
which give ∆tLT = 4.6 s. Steinfadt et al. (2010b) measured
individual eclipse times to a precision of ∼10 s, making it hard to
detect an effect like this. However, this was using 45 s exposures
on a 2 m telescope, while the ingress/egress duration was only
≈20 s. Increasing the telescope diameter to 4 m or 8 m will
improve the S/N of individual exposures by a factor of 4–16,
and using a cadence better matched to the orbit will help as
well, driving eclipse time uncertainties to "1 s (as above). This
is sufficient to detect ∆tLT; below I discuss how well one can
measure it and what constraints one can get from it.

2.2. Comparison With Eccentricity

The above discussion considered circular orbits. For eccen-
tricity e > 0 the situation changes. I note that the objects in
Table 1 have orbits that are consistent with circular orbits,
although quantitative limits for e are not always given. This
follows from their expected evolutionary histories, where
common-envelope evolution (Nelemans et al. 2000) should have
circularized orbits. Nonetheless, in case our understanding of
these systems is incorrect or some further evolution (such as
interaction with another body) may have caused non-zero ec-
centricity, I consider the effect of a non-zero eccentricity on our
detection of ∆tLT.

First, there are changes to the expression for ∆tLT (Fabrycky
2010):

∆tLT = (∆tLT)e=0 ×
(

1 − e2

1 − e2 sin2 ω

)
≈ (∆tLT)e=0

× (1 − e2 cos2 ω + O(e4)), (5)

where ω is the argument of pericenter. As (∆tLT)e=0 is small to
begin with, this is unlikely to be significant. More important,

though, is that an additional term changes the relative timing of
the primary and secondary eclipses. Following Winn (2010),

∆te ≈ Pe

π
cos ω, (6)

and the primary eclipse also changes duration relative to the
secondary eclipse by the ratio 1 + e sin ω. To compare ∆tLT and
∆te means effectively comparing K2(1 − q)/c and e cos ω. For
K2 ∼ 300 km s−1, this means that one is sensitive to e ∼ 10−3

(although ω is poorly determined for low e). If it can be asserted
for some independent reason (i.e., evolutionary assumptions)
that e ( 10−3 then one can treat any measured ∆t as coming
from light-travel delay. But if not one must be more careful.

Fortunately, eccentricity can be constrained from the radial
velocities. Adopting the small-e limit as in Lange et al. (2001),
NRV spectra can limit the eccentricity to σe ≈ 2σv/K2

√
NRV,

where σv is the precision of the individual velocity measure-
ments (see also Gaudi & Winn 2007). With >100 observations
with <1 km s−1 precision the eccentricity can be limited (inde-
pendent of ω) to (10−3, and hence can identify whether any
measured time delay has a contribution from an eccentric or-
bit. This requires dedicated radial velocity measurements over
one or more full orbits, but is achievable with current instru-
mentation. At this level, one must also account for additional
effects such as light-travel delay in the spectroscopic analysis
(Zucker & Alexander 2007). Tidal distortions can also mimic
eccentricity in radial velocity fits (Eaton 2008), but these can be
identified photometrically and are expected to be quite small,
∼10−4, except in the most compact systems.

2.3. Mass Constraints

Equation (4) gives an independent constraint on the mass
ratio q, which helps break the degeneracy in the mass function
to measure the masses of the stars individually. For the individual
masses

M1 = K2

2πGP
(2PK2 − ∆tLTπc)2 ,

M2 = (2PK2 − ∆tLTπc)2
(

K2

2πGP
− ∆tLTc

2GP 2

)
. (7)

Assume that I measure K2 ±σK and ∆tLT ±σ∆ (P is typically
known to much higher precision); I also assumed e = 0. How
well can I determine the individual masses? I know q to a
precision of

σ 2
q = π2c2

P 2K4
2

(
K2

2 σ 2
∆ + ∆t2

LTσ 2
K

)
. (8)

I now wish to see with what precision I can estimate the masses
from the observations. Doing standard error propagation,

∂M1

∂K2
=

(
PM2

2πG

)1/3 5 + q

(1 + q)
∣∣∣∣
∂M1

∂∆tLT

∣∣∣∣ =
(

4π2M2c3

P 2G

)1/3 1
(1 + q)

. (9)

These are the contributions of the σK and σ∆ to the uncertainty
on the mass, i.e., σ 2

M = σ 2
K |∂M/∂K|2 + σ 2

∆ |∂M/∂∆tLT|2. For
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Table 1
Double WDs That Will Merge Within a Hubble Time And May Be Eclipsing

Object POrb K2 M1 R1 M2 R2 ∆tLT Refs.
(hr) (km s−1) (M") (R") (M") (R") (s)

SDSS J1053+5200 1.02 265 0.26 >0.017 0.20 0.04 0.2 1,2
SDSS J1436+5010 1.10 347 0.45 0.014 0.22 0.04 0.7 1,2
SDSS J0849+0445 1.89 367 0.65 0.012 0.17 0.05 2.0 1
WD 2331+290 4.08 156 0.39 0.015 0.32 0.016 0.5 3,4,5
SDSS J1257+5428 4.55 323 0.92 0.009 0.15 0.04 4.7 6,7,8
NLTT 11748 5.64 271 0.74 0.010 0.15 0.04 4.6 9,10
SDSS J0822+2753 5.85 271 0.71 0.010 0.17 0.04 4.7 1

Notes. The values for M1 assume an edge on orbit, i.e., sin i = 1. The values for R1 were calculated from
those values assuming a cold C/O WD (Althaus & Benvenuto 1998). Additional double WD binaries
exist, but they have inclinations known to exclude eclipses.
References. (1) Kilic et al. 2010; (2) Mullally et al. 2009; (3) Marsh et al. 1995; (4) Nelemans et al. 2005;
(5) Liebert et al. 2005; (6) Badenes et al. (2009); (7) Kulkarni & van Kerkwijk 2010; (8) Marsh et al. 2010;
(9) Kawka & Vennes 2009; (10) Steinfadt et al. 2010b.

apart, but this is not the case. If the members of the binary are
of unequal mass, the finite speed of light will cause an apparent
shift in the phase of the secondary eclipse from P/2, where P
is the period of the binary (Loeb 2005; Fabrycky 2010). This
is similar to the shifts in eclipse timing caused by a perturbing
third body on a binary system (Schneider & Doyle 1995; Doyle
et al. 1998; Deeg et al. 2000; Sterken 2005a; Lee et al. 2009;
Qian et al. 2009), although here one only requires two bodies
and the frequency of the shift is known.

In the case of a planet with mass m # M orbiting a star with
mass M, one has a primary eclipse when the planet is in front
of the star. The light is blocked at time t = 0. However, that
light was emitted earlier by the star, at time t1 = 0 − a/c, since
it traveled a distance a (the semimajor axis). For the secondary
eclipse, the light is emitted by the planet at time t = P/2
but is blocked a/c later, at t2 = P/2 + a/c. The difference of
these times exceeds P/2 by ∆tLT = t2 − t1 − P/2 = 2a/c, the
sought-after quantity.

For two finite masses, I consider two objects orbiting their
center of mass with period P, masses M1 and M2, and the
semimajor axis a. The total mass of the system is M = M1 +M2,
and of course 4π2a3 = P 2GM; the first object orbits at a
radius a1 = a(M2/M) and the second object orbits at a radius
a2 = a(M1/M).

Near primary eclipse, the primary is at [x, y] =
[2πa1t/P, a1] and the secondary is at [−2πa2t/P,−a2] at time
t, with the observer at [0,−∞]. I project the image of the two
objects to the barycenter at y = 0. This gives xB,1 = 2πa1(t −
a1/c)/P and xB,2 = −2πa2(t + a2/c)/P . Eclipses occur when
these are equal, which has the solution t1 = (a1 − a2)/c. Near
secondary eclipse, the primary is at [−2πa1(t − P/2)/P, a1]
and the secondary is at [2πa2(t −P/2)/P,−a2]. Following the
same argument, eclipses occur when t2 − P/2 = (a2 − a1)/c.
So the eclipses differ by t2 − t1 = P/2 + 2(a2 − a1)/c. The
light-travel delay is again ∆tLT = t2 − t1 − P/2,

∆tLT =
(

2
c

)
(a2 − a1) =

(
2a

c

)(
M1 − M2

M1 + M2

)
, (1)

reaching 2a/c when M2 # M1, as expected. From Kepler’s
laws the mass function K3

2 P/2πG = M3
1 sin3 iM−2, where K2

is the radial velocity amplitude of object 2, and since it is a
transiting system, sin i ≈ 1. Substituting for a and the masses,
the time delay in terms of observables and the mass ratio q

(where q = M2/M1 ! 1) is

∆tLT = PK2

πc
(1 − q). (2)

2.1. Magnitude and Detectability

The eclipse duration for a circular orbit is roughly T ≈
2R2P/(2πa) ≈ 3 minutes (Winn 2010); the duration of ingress/
egress τ is decreased by a factor of R1/2R2 ≈ 8, τ ≈
R1P/(2πa) ≈ 20 s (numerical results are for NLTT 11748);
and ingress/egress are sharpest at inclinations of exactly 90◦.
The accuracy of the eclipse time determination largely depends
on the duration of the ingress/egress and the total number of
photons accumulated during ingress/egress, since the bottom
of the eclipse is only slightly curved (for the primary eclipse)
if not flat (secondary eclipse), and one can derive (e.g., Carter
et al. 2008)

σtc = σ

δ

τ√
2Nobs

, (3)

where the eclipse has fractional depth δ, each observation has
fractional uncertainty σ , and there are Nobs observations during
τ . This holds in the limit that the noise is uncorrelated (cf. Carter
& Winn 2009; Sybilski et al. 2010), which should be true at the
level discussed here (photometric precision of "mmag). So,
σtc scales as the duration of ingress/egress divided by the total
signal-to-noise ratio (S/N) accumulated during that portion of
the orbit. Since Nobs ∝ τ for a constant observing cadence,
σtc ∝

√
τ . A star with V = 16.5 mag like NLTT 11748 gives

roughly 0.1 photon s−1cm−2 or 2×105 photons detected during
a 20 s ingress/egress with a 4 m telescope. For an eclipse depth
of 5%, this means a precision on individual eclipse times of
<1 s.

For general binary systems, I can rewrite the expression for
∆tLT in terms of the primary mass M1, q, and P (eliminating K2):

∆tLT =
(

2GM1P
2

π2c3

)1/3 (1 − q)
(1 + q)2/3

. (4)

For systems with primaries that are typical C/O WDs and
with secondaries that are He WDs, with M1 = 0.5–1 M" and
q = 1/6–1/2, ∆tLT goes from 0.5 s to 7 s for periods of 0.5–10 hr
(Table 1).

Eclipse depths are functions of the radii and temperatures
of the WDs, as well as the bandpass, and are hard to predict
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Figure 6. Same as Figure 3, but for a noiseless, synthesized light curve with (top)
and without (bottom) pulsations. The model was constructed with secondary
eclipses occurring exactly halfway between primary eclipses. The presence of
the sdB’s pulsations inflates the distribution of eclipse measurements by a factor
of 9.7 but does not change the mean significantly.
(A color version of this figure is available in the online journal.)

reflects the true offset in the system, even though the distribution
of measurements is inflated significantly by the pulsations.
Thus, we report a time delay of ∆tSE = 2.06 ± 0.12 s for
the secondary eclipse, as measured from the midpoint between
primary eclipses. Note that this offset remains constant from
Q0 to Q5/Q6 (the bottom panel of Figure 2), in spite of the
seven-second phase shift from the period change.

4. DERIVATION OF THE MASSES

We can derive the masses of the hot subdwarf (Msd) and cool
companion (Mc) from the eclipse timings using the equations
presented by Kaplan (2010). In a binary system with exactly
circular orbits and unequal masses, secondary eclipses will not
occur at exactly 1/2 of the period after the primary eclipses due
to the extra light-travel time (LTT) required. This Rømer delay
(∆tLTT) is given by

∆tLTT = PKsd

πc

(
1
q

− 1
)

, (1)

where P is the orbital period, Ksd the sdB orbital velocity, and
q the mass ratio (Mc/Msd). Small eccentricities will affect the
relative timing of the primary and secondary eclipses through
an additive5 term ∆te, defined by

∆te " 2Pe

π
cos ω, (2)

5 Equation (1) should also be multiplied by an eccentricity term, but this
addition changes ∆tLTT by less than 1% for e < 0.1. We ignore it here.

where e is the eccentricity and ω the argument of periapsis
(Sterne 1940; Winn 2010; Kaplan 20106). Thus, for small
eccentricities, the total shift of the secondary eclipse with respect
to 1/2 of the orbital period after the primary eclipse is

∆tSE " ∆tLTT + ∆te. (3)

In Section 3, we found an average secondary eclipse time de-
lay of about 2 s with respect to the midpoint between primary
eclipses. This measurement represents ∆tSE in the above equa-
tion, and in order to use it to calculate the masses, the contribu-
tion from the eccentricity (∆te) must be identified. Surprisingly,
an eccentricity of only e = 0.0003 could shift the secondary
eclipse by the full amount we observe; to separate the Rømer
delay out from the total measured delay requires knowing the
system’s eccentricity to a level of precision better than this. The
radial velocity curve published by Ø10 only limits e to ∼0.02
or smaller.7 Theoretically, one could measure the eccentricity
by looking for the apsidal motion predicted by general relativity
and classical mechanics, which is straightforward to calculate.
The periastron advance (changing ω) induced by these effects
would give rise to oscillations in the eclipse timings, and in
particular ∆tSE, with known periods. The presence or absence
of such a signal in the data allows one to place upper limits on
the eccentricity. For typical eclipsing sdB+dM systems, unfor-
tunately, the expected precessional periods are several decades,
too long to be measured with the current data set.

Without knowing the eccentricity to the required precision,
we continue under the assumption of a circular orbit. Combining
the observed 2.06 s delay with P and Ksd (from Ø10), we derive a
mass ratio (via Equation (1)) of q = 0.2691±0.0018. This result
is independent of the orbital inclination angle. Upon assuming
a particular inclination, we can also solve for the individual
masses by combining Equation (1) with Kepler’s Third Law,
as done by Kaplan (2010) in his Equation (7). He assumes a
perfectly edge-on system in deriving this expression, and so
it must be modified by a multiplicative term (sin i)−3 for our
use. If we adopt the light-curve modeling result i = 69.45 ±
0.02 deg from Ø10, we derive masses of M1 = 0.372 ± 0.024 M$
and M2 = 0.1002 ± 0.0065 M$. Additional orbital parameters
calculated from the timing method are summarized in Table 3.

Our derived mass ratio does not agree with the light-curve
modeling results of Ø10, from which we infer q = 0.244 ±
0.008; the disagreement in the masses themselves is even more
pronounced. Their mass ratio predicts a time delay of 2.35 ±
0.10 s, which is 0.29 ± 0.16 s longer than our result. This
difference (significant at roughly 2σ ), can easily be explained
if the eccentricity is as small as e = 0.00004 ± 0.00002! We
cannot measure such a minuscule departure from the circular-
orbit case using the currently available data. Although non-zero
e likely explains the disagreement, shortcomings in the light-
curve modeling might also be at play. Presumably, a revised
light-curve analysis with q fixed at 0.2691 ± 0.0018 would
result in a slightly different inclination. Unfortunately, the brief
description of the light-curve modeling given in Ø10 does not
allow us to predict a revised inclination with confidence. Our
inferred masses are therefore provisional. We note, however, that
in order to get an sdB mass equal to 0.48 M$ (Ø10’s derived
value) using the observed P, ∆tLTT, and Ksd, the inclination

6 The Kaplan (2010) expression (his Equation (6)) is missing a factor of two.
7 As estimated from an F-test showing that e > 0.02 gives a significantly
worse fit than a circular-orbit solution.

5

e changes linearly with the secondary offset
Δte=1-10sec

⇓
e=0.00015-0.0015
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ΔtSE=2sec
⇓

MsdB=0.37M⦿

MdM=0.10M⦿

OR
⇓

e=0.0003
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Figure 2. Top panels: primary and secondary eclipse O − C diagrams (not on
the same scale) from the Q0, Q5, and Q6 Kepler light curves. Both plots show
evidence of a period decrease. The dotted line represents Ø10’s linear ephemeris
from Q0, while the solid line shows our quadratic ephemeris. Bottom panel: time
delay of the secondary eclipse with respect to one half period after the primary
eclipse, which does not significantly change from Q0 to Q5/Q6. The mean ∆tSE
is shown by a solid horizontal line.
(A color version of this figure is available in the online journal.)

decrease in the orbital period each year. The derived period
during Q5/Q6 does not agree with the Q0 result of Ø10, but
this is due to the non-zero Ṗ , which was unknown at the time.
Using our updated ephemeris to derive the period during Q0,
we find the same value they do. Orbital decays have been
observed for other sdB+dM systems (e.g., Qian et al. 2012)
and might be explained by tidal dissipation, magnetic braking,
and gravitational wave emission; the latter effect, however,
predicts a period change several orders of magnitude slower
than what we observe for 2M 1938. We note that a long-period
sinusoidal oscillation in the O − C diagram could mimic a Ṗ ;
only additional measurements over an extended baseline will
help discriminate between these possibilities.

As mentioned above, we do not expect the secondary eclipse
to occur exactly halfway between primary eclipses since the
mass ratio given by Ø10 is far from unity. In the bottom panel of
Figure 2, we plot deviations of the secondary eclipse times from
1/2 period after the primary eclipses (hereafter, ∆tSE). Even with
the large spread in ∆tSE values, the mean is visibly offset from
zero. The offset becomes clearer in a histogram of the measured
time delays, as shown in Figure 3. A Gaussian centered at 2.06 ±
0.12 s with a full width half maximum (FWHM) of 11 s fits the
distribution well. Its centroid agrees with the mean of all ∆tSE
values, 1.88 ± 0.13 s. Indeed, the secondary eclipse lags behind
the midpoint between primary eclipses, by approximately 2 s.

Before proceeding, we computed the Fourier transforms
(FTs) of the O − C and ∆tSE curves to identify and analyze
any periodic signals that might be present. Only Q5 and Q6
were considered in this exercise since the addition of Q0 and
the gap it introduces complicates the window function. The
upper panels of Figure 4 present the O − C diagrams next to
their amplitude spectra, which are plotted out to the Nyquist
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Figure 3. Histogram of the secondary eclipse time delays, measured with respect
to the midpoint between primary eclipses. The data represent 1493 pairs of
primary and secondary eclipses obtained in Q0, Q5, and Q6. The Gaussian
(solid line) that best fits the distribution is centered at 2.06 ± 0.12 s.
(A color version of this figure is available in the online journal.)

frequency (3.976 day−1 = 1/2P). The bottom panels show the
same diagrams for the secondary eclipse delay.

Several strong periodic signals are present in the eclipse
timings, all of which arise from the rapid pulsations of the
sdB star and inadequate emulation of the integration time of
the observations. The latter issue, which we refer to as a
“chunking” problem, stems from the finite sampling time of each
Kepler point, which distorts the light curve (see Kipping 2010).
Even though we attempted to avoid the effects of chunking by
taking integration into account in our model template, small
mismatches in the way our model and data were binned remain.
The same problem in accounting for chunking was encountered
by Kipping & Bakos (2011). The effects of the sdB pulsations on
the eclipse timings are even more pronounced. Although none of
the 55 pulsational frequencies detected by Ø10 has an amplitude
greater than 0.05%, the Kepler data are so precise that these
small oscillations also introduce noticeable asymmetries into
the eclipse profiles. The phasing of the distortions changes from
cycle to cycle, pulling around the best-fitting centroid values
on timescales related to the beating of the pulsations with the
orbital period. In some cases, such as the f = 0.26 day−1 signal,
the peak-to-peak amplitude about the mean approaches several
seconds.

To model the influence of pulsations and chunking on the
eclipse timings, we constructed a fake, noiseless light curve
using our binary maker 3.0 template with the same sampling
and integration as the Q5/Q6 Kepler data. We included all of
the known pulsations to the light curve, using the frequencies
and amplitudes given in Table D1 of Ø10. Their phases were
defined randomly since they were not provided by Ø10. We
forced the secondary eclipse to occur exactly halfway between
primary eclipses to determine whether the pulsations affect our
measurement of the mean time delay. A second model light
curve, identical to the first sans pulsations, was also constructed.
We repeated the entire analysis procedure for the synthesized
data; Figure 5 shows the resulting eclipse measurements and
their amplitude spectra.

The influence of pulsations and finite sampling on the eclipse
timings is drastic; the O − C diagram FTs reveal a large number
of periodicities, none of which represents a “real” signal in
the data. A comparison of Figures 4 and 5 shows that each
frequency in the observed timings corresponds to one of the
spurious signals generated by adding the finite sampling and the

3
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the same scale) from the Q0, Q5, and Q6 Kepler light curves. Both plots show
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is shown by a solid horizontal line.
(A color version of this figure is available in the online journal.)

decrease in the orbital period each year. The derived period
during Q5/Q6 does not agree with the Q0 result of Ø10, but
this is due to the non-zero Ṗ , which was unknown at the time.
Using our updated ephemeris to derive the period during Q0,
we find the same value they do. Orbital decays have been
observed for other sdB+dM systems (e.g., Qian et al. 2012)
and might be explained by tidal dissipation, magnetic braking,
and gravitational wave emission; the latter effect, however,
predicts a period change several orders of magnitude slower
than what we observe for 2M 1938. We note that a long-period
sinusoidal oscillation in the O − C diagram could mimic a Ṗ ;
only additional measurements over an extended baseline will
help discriminate between these possibilities.

As mentioned above, we do not expect the secondary eclipse
to occur exactly halfway between primary eclipses since the
mass ratio given by Ø10 is far from unity. In the bottom panel of
Figure 2, we plot deviations of the secondary eclipse times from
1/2 period after the primary eclipses (hereafter, ∆tSE). Even with
the large spread in ∆tSE values, the mean is visibly offset from
zero. The offset becomes clearer in a histogram of the measured
time delays, as shown in Figure 3. A Gaussian centered at 2.06 ±
0.12 s with a full width half maximum (FWHM) of 11 s fits the
distribution well. Its centroid agrees with the mean of all ∆tSE
values, 1.88 ± 0.13 s. Indeed, the secondary eclipse lags behind
the midpoint between primary eclipses, by approximately 2 s.

Before proceeding, we computed the Fourier transforms
(FTs) of the O − C and ∆tSE curves to identify and analyze
any periodic signals that might be present. Only Q5 and Q6
were considered in this exercise since the addition of Q0 and
the gap it introduces complicates the window function. The
upper panels of Figure 4 present the O − C diagrams next to
their amplitude spectra, which are plotted out to the Nyquist
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Figure 3. Histogram of the secondary eclipse time delays, measured with respect
to the midpoint between primary eclipses. The data represent 1493 pairs of
primary and secondary eclipses obtained in Q0, Q5, and Q6. The Gaussian
(solid line) that best fits the distribution is centered at 2.06 ± 0.12 s.
(A color version of this figure is available in the online journal.)

frequency (3.976 day−1 = 1/2P). The bottom panels show the
same diagrams for the secondary eclipse delay.

Several strong periodic signals are present in the eclipse
timings, all of which arise from the rapid pulsations of the
sdB star and inadequate emulation of the integration time of
the observations. The latter issue, which we refer to as a
“chunking” problem, stems from the finite sampling time of each
Kepler point, which distorts the light curve (see Kipping 2010).
Even though we attempted to avoid the effects of chunking by
taking integration into account in our model template, small
mismatches in the way our model and data were binned remain.
The same problem in accounting for chunking was encountered
by Kipping & Bakos (2011). The effects of the sdB pulsations on
the eclipse timings are even more pronounced. Although none of
the 55 pulsational frequencies detected by Ø10 has an amplitude
greater than 0.05%, the Kepler data are so precise that these
small oscillations also introduce noticeable asymmetries into
the eclipse profiles. The phasing of the distortions changes from
cycle to cycle, pulling around the best-fitting centroid values
on timescales related to the beating of the pulsations with the
orbital period. In some cases, such as the f = 0.26 day−1 signal,
the peak-to-peak amplitude about the mean approaches several
seconds.

To model the influence of pulsations and chunking on the
eclipse timings, we constructed a fake, noiseless light curve
using our binary maker 3.0 template with the same sampling
and integration as the Q5/Q6 Kepler data. We included all of
the known pulsations to the light curve, using the frequencies
and amplitudes given in Table D1 of Ø10. Their phases were
defined randomly since they were not provided by Ø10. We
forced the secondary eclipse to occur exactly halfway between
primary eclipses to determine whether the pulsations affect our
measurement of the mean time delay. A second model light
curve, identical to the first sans pulsations, was also constructed.
We repeated the entire analysis procedure for the synthesized
data; Figure 5 shows the resulting eclipse measurements and
their amplitude spectra.

The influence of pulsations and finite sampling on the eclipse
timings is drastic; the O − C diagram FTs reveal a large number
of periodicities, none of which represents a “real” signal in
the data. A comparison of Figures 4 and 5 shows that each
frequency in the observed timings corresponds to one of the
spurious signals generated by adding the finite sampling and the
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Mass estimation - our try
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How about the mid-times of eclipses?
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O-C diagram calculated from Q5-17
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Fig. 4. Top panel: the O–C diagram for primary minima based on mid-points derived with the KW method overplotted with the three fits we
applied. The blue line represents a parabola+sine fit, the red line represents a sine+sine+line fit, and the green one shows a sine+sine fit. Bottom
panel: residuals after the sine+sine+line fit removal.

derived a value of 1.7 sec, the only way to have a mass of the
sdB star in agreement with the spectroscopic gravity determi-
nation is to postulate that a non-zero eccentricity must also be
present, shifting the secondary minimum in the opposite direc-
tion. Using equation 2 from Barlow et al. (2012) we estimated
e cos!=0.00008, where ! is poorly determined for small eccen-
tricities, though the value of cos! must be negative. We stress
that in case of such small eccentricity, it is impossible to mea-
sure it from the currently available data (both photometric and
spectroscopic).

Our analysis clearly shows that a reliable determination of
the Rømer delay in the available Kepler data of 2M 1938+4603
is currently impossible. The derived value of this delay, without
accounting for a non-zero eccentricity, leads to unreliabling esti-
mating the properties of this binary system. Therefore, the mass
of the tertiary component can only be derived by adopting the
necessary parameters from Østensen et al. (2010). We adopted
the masses of the components M1 = 0.48 M� for the sdB star
and M2 = 0.12 M� for the M dwarf. We employed the third Ke-
pler law to estimate the size of the circular planetary orbit from
the barycenter of the binary stars, deriving 0.92(2) AU. Next, we
used the amplitude of the O–C variation of 1.30 sec and derived
the minimum planetary mass M3 · sin i= 1.8(1) Jovian masses.
Assuming that the planetary orbit is coplanar with the binary
orbit, the planetary mass will reach 1.9(1) Jovian masses. The
mass of a brown dwarf can only be reached if the inclination of
the planet’s orbit deviates substantially from the plane of the in-
ner binary and is as low as 7.1 deg. We provide the parameters of
the entire triple system under the coplanar assumption in Table 1.

We conclude that 2M 1938+4603 is an sdB+M system with
a circumbinary companion. A brown dwarf tertiary was found in
HS 0705+6700 (Qian et al. 2009, 2012), while planets were pro-
posed to orbit, for example, HW Vir (Kilkenny et al. 2003; Lee

et al. 2009; Beuermann et al. 2012), NSVS 14256825 (Almeida
et al. 2013; Hinse et al. 2014), and NY Vir (Qian et al. 2012).

6. Summary

We have presented our analysis of Q5-17 Kepler photometric
data of the triple system 2M 1938+4603, consisting of an sdB
star, an M dwarf, and a planet orbiting the binary. The light curve
shows both orbital effects from the inner binary and pulsations
from the sdB primary. We could not analyze both effects simulta-
neously, so we attempted to treat them separately. First we mod-
eled the binary variations, as described in Zola & Baran (2013).
As can be seen, the shape of the light curve is reproduced fairly
well, but the final model is unphysical, so the resulting system
parameters cannot be relied on. We made use of this model as a
first-order representation of the orbital light-curve variations to
remove them before analyzing the pulsations.

We calculated the amplitude spectrum from data spanning
more than 37 months, hoping to be able to make some astero-
seismic mode identification. We looked for multiplets as a con-
sequence of stellar rotation and gravity modes evenly spaced in
periods. Unfortunately, we found none. The lack of multiplets
has been already found in another sdB star observed with Ke-

pler (Baran et al. 2015). The Kolmogorov-Smirnov test gave no
clear evidence of gravity mode sequences that are evenly spaced
in period. In addition, there were problems with doing reliable
prewhitening, most likely because of amplitude/phase variabil-
ity. A complete list of peaks was therefore unfeasible, so we de-
cided to focus solely on the eclipse timing variations.

We used the midtimes of the primary minima to verify the
stability of the orbital period of the system. We removed the
highest amplitude pulsations and split the data into individual
minima. The O–C diagram of the orbital period clearly shows
that the period is not constant. We fitted both a parabolic and a si-
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Fig. 2. Amplitude spectrum calculated from rectified Q5-Q17 data limited to the frequency range with signal detected. The horizontal dashed line
denotes our arbitrarily adopted threshold for frequency removal.

handy tool for verifying period stability (further information on
the O–C analysis can be found in Sterken 2005).

As already shown by Barlow et al. (2012), the pulsations
present in the primary component distort the shapes of minima
significantly, leading to improper estimation of midtimes. By
adding pulsations to simulated light curves, Barlow et al. (2012)
demonstrated that many peaks between 3.6 days and 0.3 days are
caused by the pulsations and are not true orbital effects.

We used prewhitening to remove 58 pulsation periods with
amplitudes higher than 0.011 ppt from the data. We considered
the remaining flux variations having negligible effect on the mid-
times derivations. In fact, the spurious 3.7-day period did not
show up in the O–C diagram. We then used the method described
in Sect. 2 of Kwee & van Woerden (1956) (hereafter: KW) to
derive the eclipse mid-point times. We assigned each mid-point
to a proper epoch and fitted a linear regression to estimate the
average orbital period. The linear ephemeris is

Tprim = 2455 276.60843(3) + E · 0.125765282(5) d (1)

where E represents consecutive epochs, while prim stands for
primary.

In the top panel of Fig. 3 we present the O–C diagram of
the primary and secondary minima obtained by means of the
KW method. Although the secondary minima are noisier than
the primary ones, it is clear that the long-term variations follow
the same trend, which excludes an apsidal motion as the cause of
the O–C variation. To reject systematics as a potential source of
that variation, we calculated the O–C with alternative methods,
by applying the KW method to the mean of ten consecutive mid-
times, fitting parabolae to the minima and fitting the phase shift
parameter (defined in Wilson & Devinney 1971) in monthly sets
of data used for the binary modeling by Zola & Baran (2013).
The O–C diagrams obtained with a variety of methods are plot-
ted in the bottom panel of Fig. 3. As can be seen, all diagrams
provided consistent results, though with different levels of pre-
cision, therefore we assume that the O–C variations are intrinsic
to the binary system.

Sterken (2005) lists potential shapes of variations in an O–
C diagram and explained their astrophysical contexts. A shape
can be linear, which is indicative of a constant period that has
still not been correctly adopted. It can also be parabolic (or ir-
regular) as a consequence of evolutionary changes in the system
or sine-like, if caused by a companion(s) to a binary system. A

Table 1. Parameters of the triple system. The values of inclination, K1,
M1, and M2 were adopted from Østensen et al. (2010)

Binary system
reference epoch 2455276.60843(3) BJD
orbital period 0.125765282(5) days
period change rate 4.13(2)·10�11 s/s
inclination 69.45(20) deg
M1 0.48(3) M�
M2 0.12(1) M�
K1 65.7(6) km/s

Third body
orbital period 416(2) days
orbital radius 0.92(2) AU
M3 1.9(1) MJupiter

combination of many shapes may cause complexity in the inter-
pretation of possible sources of the O–C variation. In the case of
2M 1938+4603, we at first interpreted the O–C variation as a mix
of a parabola and a sinusoid. The parabola was open upward, an
indication that the orbital period is increasing. We had no ex-
planation of the source of this increase and it could also be that
the parabola was, in fact, a part of another long-term sinusoidal
variation. A similar behavior of an increasing period was found
in HS 0705+6700 (Qian et al. 2013), and since neither gravita-
tional waves radiation nor magnetic braking can lead to this, the
authors speculated about another companion to that system.

Then we fitted two sinusoidal components (with and with-
out a linear trend to account for an imperfect period estimation).
Since two sinusoidals with a linear term fit reproduces the shape
of the O–C well, and we have no explanation for an open-up
parabola, we followed Qian et al. (2013) and decided to accept
that fit as the best solution. It also turned out that this fit (among
all three we used) predicts Q0 data, which were not included in
our analysis so far, very well. In the final solution we included all
the data available to us, including Q0. To avoid any unnecessary
influence of one trend on another, we fitted both sinusoids simul-
taneously. We only used the primary minima, which are charac-
terized by lower noise. We stress that the longer-period sinusoid
should be considered with caution. Its amplitude and period in-
creased significantly, which is a consequence of the fact that not
even one cycle of this variation is covered. More data will likely
change this sine term even further, therefore, it is too early to
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object # of planets tool used

V391 Peg 1 pulsations

HW Vir 2 eclipse mid-times

NY Vir 1+1? eclipse mid-times

NSVS14256825 2 eclipse mid-times

HS0705+6700 brown dwarf eclipse mid-times

2M1938+4603 1+1? eclipse mid-times

KIC5807616 2 reflection effect

KIC10001893 3 reflection effect

Planets harbored by sdB stars


