Winds of hot subdwarfs: metallicity is the key

Jiří Krtička, Jiří Kubát, Iva Krtičková

Masaryk University, Brno, Czech Republic Astronomical Institute, Ondřejov, Czech Republic

Puls et al. (2008):

- supersonic flow from hot stars
- accelerated due to the absorption of radiation mainly in the resonance lines of heavier elements (C, N, O, or Fe)
- found in OBA stars, WR stars, CSPNs, and sdO stars

Puls et al. (2008):

- most important wind parameters are mass-loss rate \dot{M} and terminal velocity v_{∞}
- wind mass-loss rate \dot{M} depends on
 - the stellar luminosity L

$$M \sim L^{1/lpha'}$$
, $lpha' pprox 0.6$

Puls et al. (2008):

- most important wind parameters are mass-loss rate \dot{M} and terminal velocity v_{∞}
- wind mass-loss rate \dot{M} depends on
 - the stellar luminosity L

$$M \sim L^{1/lpha'}$$
, $lpha' pprox 0.6$

• mass fraction of heavier elements Z

$$\dot{M} \sim Z^{0.67}$$

Puls et al. (2008):

- most important wind parameters are mass-loss rate \dot{M} and terminal velocity v_{∞}
- wind mass-loss rate \dot{M} depends on
 - the stellar luminosity L

$$M \sim L^{1/lpha'}$$
, $lpha' pprox 0.6$

mass fraction of heavier elements Z

$$M \sim Z^{0.67}$$

• the terminal velocity v_{∞} proportional to the escape velocity $v_{\rm esc}$

$$V_\infty \sim V_{
m esc}$$

NLTE wind models

(Krtička & Kubát 2010)

- spherically symmetric stationary wind models
- level populations derived from kinetic equilibrium (NLTE) equations
- radiative force calculated using the comoving frame (CMF) radiative transfer equation
- wind density, velocity and temperature structure derived from hydrodynamical equations
- \Rightarrow enable to predict wind mass-loss rate \dot{M} , and terminal velocity v_{∞}

Model stars: $\log g$ vs. T_{eff}

- stellar mass $M = 0.5 \,\mathrm{M}_{\odot}$
- metallicity Z: $0.1 Z_{\odot}$, Z_{\odot} , $10 Z_{\odot}$
- helium content N(He)/N(H): 0.085

Example of wind model

wind radial velocity

• low luminosity \Rightarrow low mass-loss rate

Contribution of different elements

• relative contribution of individual elements to the radiative force for $Z = Z_{\odot}$

- different elements contribute at different T_{eff}
- mass-loss rate sensitive to the composition

mass-loss rate scales with stellar luminosity

- mass-loss rate scales with stellar luminosity
- mass-loss rate depends on metallicity

- mass-loss rate scales with stellar luminosity
- mass-loss rate depends on metallicity
- higher than for main-sequence B stars with the same luminosity

• mass-loss rate recipe

$$\begin{split} \log \left(\frac{\dot{M}}{1 \,\mathrm{M}_{\odot} \,\mathrm{year}^{-1}} \right) &= -12.6 + 1.4 \log \frac{Z}{Z_{\odot}} + \\ &+ \left(3.8 - 1.4 \log \frac{Z}{Z_{\odot}} \right) \log \left(\frac{L}{10^2 L_{\odot}} \right) + \\ &+ \left(-1.1 + 0.6 \log \frac{Z}{Z_{\odot}} \right) \log^2 \left(\frac{L}{10^2 L_{\odot}} \right) + \\ &+ 1.1 \log \left(\frac{T_{\mathrm{eff}}}{10^4 \,\mathrm{K}} \right) \end{split}$$

Wind domains: $\log g$ vs. T_{eff}

- wind possible only in white areas $(g^{rad} > g)$
- forbidden (red) region with $g^{rad} < g$

Stars with winds: T_{eff} vs. $\log g$

stars with observed wind in the allowed region

Test against observations: M

 mass-loss rates: Jeffery & Hamann (2010), Lanz et al. (1997), Gruschinske et al. (1983)

Test against observations: L_x

 X-ray luminosities: La Palombara et al. (2012), Montez et al. (2010), Mereghetti et al. (2013), La Palombara et al. (2014)

Test against observations: L_x

• X-rays may be produced in the wind $(\frac{1}{2}\dot{M}v_{\infty}^2 > L_x)$

Test against observations: L_x

 X-ray luminosity corresponds to O stars (Nazé 2009)

X-ray emission: $\log g$ vs. T_{eff}

• X-ray emission only in the wind domain

No X-ray emission: CD –30° 11223

- CD –30° 11223: sdB+WD binary
- Bondi-Hoyle-Lyttleton accretion of the wind on WD companion
- X-ray luminosity (a is the orbital separation)

$$L_{\rm X} = G \frac{M_{\rm WD} M_{\rm acc}}{R_{\rm WD}} = \frac{1}{4} \frac{G M_{\rm WD}}{R_{\rm WD}} \dot{M} \left(\frac{r_{\rm acc}}{a}\right)^2,$$

the accretion radius is $r_{\rm acc} = 2GM_{\rm WD}/v^2$

(Mereghetti et al. 2014)

No X-ray emission: CD -30° 11223

- CD –30° 11223: sdB+WD binary
- Bondi-Hoyle-Lyttleton accretion of the wind on WD companion
- X-ray luminosity (a is the orbital separation)

$$L_{\rm X} = G \frac{M_{\rm WD} M_{\rm acc}}{R_{\rm WD}} = \frac{1}{4} \frac{G M_{\rm WD}}{R_{\rm WD}} M \left(\frac{r_{\rm acc}}{a}\right)^2,$$

the accretion radius is $r_{\rm acc} = 2GM_{\rm WD}/v^2$

- no X-rays detected from CD –30° 11223: $L_x < 1.5 \times 10^{29} \text{ erg s}^{-1}$
- upper limit for the mass-loss rate $\dot{M} < 3 \times 10^{-13} \,\mathrm{M}_{\odot} \,\mathrm{year}^{-1}$ (Mereghetti et al. 2014)

No X-ray emission: CD –30° 11223

- CD –30° 11223: sdB+WD binary
- $\dot{M} < 3 \times 10^{-13} \,\mathrm{M_{\odot} \, year^{-1}}$

(Mereghetti et al. 2014)

no wind from the simulations

Test against observations: v_{∞}

- wind terminal velocity v_{∞} proportional to v_{esc}
- decreases with T_{eff} due to decrease of v_{esc}
- observations: Jeffery & Hamann (2010)

Cherry on top: φ Per

- member of a rare group of sdO+Be binaries (Gies et al. 1998, Koubský et al. 2014)
- sdO star orbits in the disk of Be star

Cherry on top: φ Per

- member of a rare group of sdO+Be binaries (Gies et al. 1998, Koubský et al. 2014)
- sdO star orbits in the disk of Be star
- sdO star mass-loss rate $1.1 \times 10^{-9} \,\mathrm{M_{\odot}} \,\mathrm{year^{-1}}$
- Be star disk mass-loss rate 10⁻⁹ M_☉ year⁻¹ (Granada et al. 2013)
- the disk and wind collide: momentum condition

$$ho_{\mathsf{disk}} v_{\mathsf{disk}}^2 =
ho_{\mathsf{wind}} v_{\mathsf{wind}}^2$$

- this occurs at 0.1 0.3 a (orbital separation)
- \Rightarrow radiative and mechanical interaction

Conclusions: subdwarf winds

- driven by lighter elements (similarly to early B stars)
- stars with low effective temperatures and high surface gravities do not have any wind
- metallicity is one of the key wind parameters
- fair agreement with observations (mass-loss rates, X-ray luminosities, terminal velocities)