SPECTRAL DECOMPOSITION OF HOT SUBDWARF BINARIES

Simon Kreuzer

P. Németh, A. Irrgang, U. Heber

Dr. Karl Remeis Sternwarte Bamberg

INTRODUCTION AND MOTIVATION

STRATEGY: SPECTRAL DISENTANGLING

EXAMPLES

OUTLOOK & SUMMARY

HOT SUBDWARFS IN BINARY SYSTEMS

SINGLE-LINED SD

50% short period (P < 30d) (Maxted et al., 2001) DOUBLE-LINED SD

 $\begin{array}{l} \mathsf{P}\approx 1000d\\ e\approx 0.11-0.16\\ \text{(Vos et al., 2013)} \end{array}$

Formation channels:

- stable RLOF
- CE-phase

HOT SUBDWARFS IN BINARY SYSTEMS

SINGLE-LINED SD

50% short period (P < 30d) (Maxted et al., 2001)

Formation channels:

- stable RLOF
- CE-phase

DOUBLE-LINED SD

 $P \approx 1000d$ $e \approx 0.11 - 0.16$ (Vos et al., 2013)

- theory predicts circular orbit after stable RLOF
- phase dependent RLOF + circumbinary disk (Vos et al., 2015)

HOT SUBDWARFS IN BINARY SYSTEMS

SINGLE-LINED SD

50% short period (P < 30d) (Maxted et al., 2001)

Formation channels:

- stable RLOF
- CE-phase

DOUBLE-LINED SD

 $P \approx 1000d$ $e \approx 0.11 - 0.16$ (Vos et al., 2013)

- theory predicts circular orbit after stable RLOF
- phase dependent RLOF + circumbinary disk (Vos et al., 2015)

Spectrum of SD: No constraints concerning progenitor

 \Rightarrow Cool companion provides information

MOTIVATION

Color-color-diagram of the sample, over-plotted with lines of constant log g, and log g for constant temperature, according to Castelli & Kurucz (2004).

Red crosses may indicate SD binaries with G/F-type companion

POSTER RECOMMENDATION: DIFFERENT APPROACH

Johannes Schaffenroth Spectral energy distributions of binary sdB stars

SPECTRAL DISENTANGLING

- flux calibrated spectra from Sloan Digital Sky Survey
- spectral range: 3800-9200 Å / 3650-10400 Å

THE LIBRARIES

SUBDWARF LIBRARY

(P. Nemeth, 2013)							
non-LTE							
	lower limit	stepsize	upper limit				
T _{eff} [K]	20000	1000	56000				
log g	5.0	0.1	6.3				
[He/H]	0.0005	×2	100				

Spectral range: 3200 - 7200 Å

PHOENIX LIBRARY

(T. Husser et al., 2013)

	lower limit	stepsize	upper limit
T _{eff} [K]	2300	100/200	12000
log g	0	0.5	6.0
log [Fe/H]	-4	1 (± 0.5)	1

Spectral range: 500 - 55000 Å

IMPLEMENTATION

9 free parameters:

- generate synthetic composite spectrum
- determine χ^2
- change parameters and try to minimize χ² using standard simplex routine
- reinitialize simplex to ensure global minimum was found
- global fit at once
- code written from scratch in C++

- extended subdwarf library needed to include CAII-IR-triplet in the fit
- huge impact of the quality of flux calibration
 ⇒ Split spectrum into small parts
- error treatment
- large impact of low RV-shifts
 - \Rightarrow Good startvalues

GALEXJ1602+0725

MS			sdO		
T _{eff}	log g	[Fe/H]	T _{eff}	log g	[He/H]
5576 K	4.05 dex	-1.09 dex	49000 K	5.76 dex	-1.95 dex

PG 1104

APPLICATIONS AND GOALS

GOALS

- fast, simple yet powerful fitroutine
- application to large sample (SDSS)
- disentangle SD + MS binaries to unravel their formation history

LONG TERM GOALS

- more parameters like abundances
- extension to disentangle triple or multiple star systems

WIDE FIELD OF USE

- libraries easily exchangeable
- disentangle all kinds of binaries in all spectral regimes
- constrain orbital parameters of binaries due to RV-shifts

OUTLOOK & SUMMARY

SUMMARY

- simple and fast fitroutine
- ability to fit binary spectra
- adaptive software for a variety of use cases

OUTLOOK

- automated search for binaries in a large sample
- find systems with special characteristics for follow-up observations
- application to high resolution spectra

Flux [arbitrary units]