The Extreme Horizontal Branch Stars in w Cen: a population apart?

Suzanna Randall (ESO)

Marilyn Latour, Annalisa Calamida, Stephan Geier, Sabine Moehler, Gilles Fontaine, Pierre Brassard, Betsy Green, Valérie Van Grootel, Stéphane Charpinet

Our w Cen survey

Motivated by the serendipitous discovery of a candidate rapid EHB pulsator based on 2 hours of SUSI2@NTT data in 2008

Why o Cen?

 Has a known spread of metal abundances, likely the remnant of a dwarf galaxy

- One of the closest GCs, with low reddening
- (m–M)∨=13.97, the EHB is found around V~17.5–19.5
- Most massive GC with a huge sample of ~900 EHB stars
- WFI/ACS catalogue available – can use this to select EHB stars (Castellani+ 2007)
 - FLAMES-GIRAFFE spectroscopy available for a sub-sample of EHB stars (Moehler+ 2011)

Our w Cen survey

1) Fast time-series photometry observations with EFOSC2 (2009, 2013) and ULTRACAM (2011) @NTT

2) Medium-resolution spectroscopy from FORS (2008, 2011, 2013) & FLAMES (2005, 2006) @ VLT

3) Radial velocity survey with VIMOS (2014,2015) @VLT

Time-series photometry: observations

- EFOSC2:
 - Bessel B
 - cycle time 40 s
 - 45 h total: 2.5-11h per field
- ULTRACAM:
 - u'g'r'
 - cycle time 6 s
 - 50 h total

Time-series photometry: EHB statistics

- Selection of EHB stars based on colourmagnitude cut in combined ACS/WFI catalogue
 - Detected total of 293/441 EHB candidates
- Useful light curves for 142 EHB stars
- Can exclude pulsations down to 0.5% for 57 targets
 - 5 short-period pulsators

Pulsators

Longer time-series -> more fine structure in FT

Randall+ 2011 Frequency (mHz)

Pulsators

Strong amplitude variations!!!

	Period (s)	Frequency (mHz)) Amplitude (%)	
V 1				$=$ $\underset{\aleph}{\otimes}$ 1.8 $ ^{\vee 1}$ 130 h time
1	115.0	8.70	2.4	g series
2	114.7	8.72	2.2	
3	84.7	11.81	0.60	Щ 0.6 — — —
4	114.4	8.74	0.47	and the first of the second state of the secon
5	84.3	11.86	0.36	
V2				- k 18 V2
1	101.7	9.83	2.5	e la
2	107.8	9.28	1.2	
3	101.2	9.88	1.4	
\$71				
<u></u>				
f_1	114.705 ± 0.0	$005 8.7180 \pm 0.0$	$0.004 0.88 \pm 0.07$	7
f_{1+}	113.727±0.0	005 8.7930±0.0	004 0.91±0.07	7 😥 V1
f_{1-}	115.300 ± 0.0	011 8.6730±0.0	004 0.43±0.07	7 g 0.8
f_2	119.11±0.0	012 8.3955±0.0	009 0.41±0.07	7 1 0.4
f_5	84.652±0.0	06 11.8131±0.	0009 0.40±0.07	7 12 And the man addition of the second day of the second day is t
V2				 № V2 15 (
f_1	115.413±0.0	006 8.6645±0.0	005 0.86±0.08	8 g = 0.8
f_2	101.168±0.0	007 9.8845±0.0	007 0.54±0.08	
f_3	107.898±0.0	9.2602 ± 0.0	009 0.45±0.08	

Pulsators Strong amplitude variations!!! Period (s) Amplitude (%) Frequency (mHz) 130 h time-V1 (%) **V**1 1.8 nplitude series 115.0 1 114.98 and 114.92 s peaks 1.2 114.7 2 114.69, 114.64 and 114.57 s peaks 84 73 84 59 s neaks 3 84.7 114.4 4 Main peaks show fine frequency splitting in the FT – 5 84.3 caused by amplitude variations? V2 %) 1.8101.68 and 101.63 s peaks 1 101.7 Amplitude 107.78 and 107.77 s peaks 2 107.8 1.2 101.27 and 101.22 s peaks 3 101.2 0.6 **V**1 2.4 114.705 ± 0.005 8.7180 ± 0.0004 0.88 ± 0.07 f_1 1.2 113.727±0.005 8.7930 ± 0.0004 0.91 ± 0.07 f_{1+} 8 V1 0.8 115.300 ± 0.011 8.6730 ± 0.0004 0.43 ± 0.07 Amplitude f_{1-} 119.111±0.012 8.3955 ± 0.0009 0.41 ± 0.07 f_2 0.4 84.652 ± 0.006 11.8131±0.0009 0.40 ± 0.07 f_5 in the second design of the second second of the second second second second second second second second second 1.2 V2 200 V215.00.8 Amplitude 115.413 ± 0.006 8.6645 ± 0.0005 0.86 ± 0.08 f_1 101.168 ± 0.007 0.54 ± 0.08 9.8845 ± 0.0007 f_2 0.4 107.898 ± 0.010 0.45 ± 0.08 f_3 9.2602 ± 0.0009

Medium-resolution spectroscopy

- Spectra for 97 EHB star candidates analysed in a homogeneous way (solar CNO in models)
 - FORS2.6: 38 targets
 - FORS1.6: 17 targets
 - FLAMES: 48 targets (0.7 A resolution)
 - Only "clean" noncontaminated spectra retained, small overlap between samples

Atmospheric parameters

- Dominated by H-sdBs ~25,000-35,000 K
- Clustering of He-rich stars ~40,000-50,000 K
- Hot H-sdOs at log g ~ 5.7

- Dominated by He-rich sdOBs
- Clustering of He-rich stars ~30,000-40,000 K
- Absence of VERY He-rich stars
- Hot H-sdOs at log g ~ 5.9

Distribution more complex in the field

No very He-rich stars!

Appear to have a ~linear relationship between Heabundance and log g

0.0

log N(He)/N(H) -5:0

-4.0

20000

Some counterparts to the omega Cen He-rich sdOBs also found in the field – could these be the halo stars? Similar population of He-rich stars found for NGC 2808 (Moehler+ 2004)

40000 Teff (K Flames
Fors 2.6
Fors 1.6

Omega Cen

0.0

-2.0

-6.0, 11...

log N(He)/N(H)

~75% of H-sdBs are found along a well-defined sequence in He-abundance/T_{eff} space, ~25 % are found on a "secondary" sequence (e.g. Geier+ 2012) In omega Cen, it is the "secondary" He-poorer sequence that is more populated

50000

Teff (K)

30000

Omega Cen

70000

60000

A distinct class of pulsator

- Pulsators in omega Cen are a homogeneous group of H-rich sdOs at ~50,000 K with periods ~80-120 s
- No counterparts found among the field population (Johnson+ 2014)
- No counterparts to field pulsators found in omega Cen
- No counterparts among NGC2808 variables (Brown+ 2014)

The ω Cen instability strip

The w Cen instability strip

 T_{eff} (K)

- Montreal 2nd generation models: Fe levitating in a pure H-background
- *p* mode instability strip shows a jaw-like shape, extending to higher temperatures
- ω Cen pulsations likely
 also driven by Fe related κ-mechanism
- Problems at the quantitative level – likely due to other heavy elements like Ni not being included in models

84000. 74000. 64000. 54000. 44000. 34000. 24000. 14000.

New models with Fe levitating in a pure Hebackground

- sdO instability strip slightly closer to to that observed in ω Cen
- But what about SDSS – a He-rich star – pulsations can no longer be excited!?

 T_{eff} (K)

Radial velocity survey: motivation

- From radial velocity surveys of the field population 40-70% of sdBs are in close binaries (P~0.05-30 d) (e.g. Maxted+ 2001)
- These are post-common envelope systems with mostly white dwarfs, some late-type MS companions and sub-stellar companions
- A smaller fraction (30–40%) of sdOBs are thought to be in wide binaries (P~100+ days) with F-K type MS companions
- Searches for EHB binarity in Globular Clusters NGC 6752, M 80, NGC 5986 (Moni Bidin+ 2008, 2009) reveal a "low" binary fraction (just two binary candidates)

Radial velocity survey

- VIMOS HR blue spectra gathered at several epochs (<4 in 2014 & <6 in 2015)
 - Each epoch: 3x10 mins on-source
 - 102 EHB candidates (33 FLAMES/FORS overlap)

Radial velocities

Conclusion

- ω Cen pulsators present new challenge for both theorists and observers
 - ω Cen EHB stars show a different $T_{\rm eff}$ / log g / He distribution to field sample need to disentangle populations using kinematic analysis

ω Cen binary fraction may not turn out
 to be as low as expected... identified at
 least one candidate for a close binary