SPECTRAL ÁNALYSIS OF HD188112: A Low Mass SdB / Pre He-core WD

PRESENTED BY:

MARILYN LATOUR (DR KARL-REMEIS STERNWARTE, BAMBERG MARILYN.LATOUR@FAU.DE)

COLLABORATORS :

Uli Heber Andreas Irrgang Veronika Schaffenroth

7TH MEETING ON HOT SUBDWARFS AND RELATED OBJECTS OXFORD JULY 2015

INTRODUCTION HD 188112

- Radial velocity variable, close binary system
- Teff = 21 500 K log g = 5.66 log N(He)/N(H) = -5.0 (weak He I 5876) (Heber et al. 2003, A&A 411)
- Odd position below the EHB
- M ~ 0.23 M_{\odot} according to evolutionary tracks (Driebe et al. 1998, A&A 339)
- Low mass sdB star / pre-helium core WD

OBSERVATIONS UV Spectra

- HST STIS observations, R = 114 000
- NUV Time-Tag mode (to create short exposures) \rightarrow 2660 2935 Å
- FUV short exposures (22x 120 s) → 1242 1440 Å
- Radial velocity measurements and correction before co-adding all the exposures to get the final spectra

Binary system

New radial velocity analysis combining UV RVs with published optical ones.

 P = 0.606586 ± 0.000007 d K₁ = 188.7 ± 0.2 km/s γ₀ = 26.6 ± 0.2 km/s
 Circular orbit, e < 6e-5

Mass of the sdB
 Hipparcos parallax → spectroscopic mass 0.245^{+0.075}-0.055 M_☉
 Evolutionary sequence (Althaus et al. 2013, A&A 557) → 0.211 ± 0.018 M_☉
 M_{comp} ≥ 0.70 M_☉

Model atmospheres

- Model atmospheres and synthetic spectra (ADS) Hybrid non-LTE approach (Nieva & Przybilla 2006, 2007, 2008)
 - Atlas12 (Kurucz 1996) for a LTE atmospheric structure
 - Detail to compute NLTE population numbers (radiative transfert and statistical equilibrium)

- Surface to compute the final synthetic spectrum

- Hybrid approach appropriate for the low temperature of the star
- Computation is faster than fully non-LTE models
- 2 goals: Measure the rotational broadening (v_{rot} sin i) Abundance analysis

Rotational Broadening

- Mg + Si + Fe lines \rightarrow v_{rot} sin i = 7.9 ± 0.3 km/s
- Assuming synchronous rotation $(P_{rot} = P_{orb})$: $i = 55^{\circ} \pm 6^{\circ}$

 M_{comp} = 1.13 ± 0.2 M_{\odot}

Metal Abundances

- Many elements identified and fitted in the FUV spectrum : Mg II – Al III – Si II-III-IV – S II – Fe II-III (NLTE) P III – Ti III – Cr III – Mn III – Ni II-III – Zn III (LTE) Trans-iron elements : Ga II-III – Sn III-IV – Pb IV
- Upper limits for C, N, O
 C upper limit very low: log N(C)/N(H) < -9.6
- ο Found a weak Ca II κ line in high-resolution optical spectra

Previous claim that all ELM WDs with log g < 5.9 shows Ca lines (Hermes et al. 2014, MNRAS 444 Gianninas et al. 2014, ApJ 795)

ized flux 0.9

Metal Abundances

- Many elements identified and fitted in the FUV spectrum : Mg II – Al III – Si II-III-IV – S II – Fe II-III (NLTE) P III – Ti III – Cr III – Mn III – Ni II-III – Zn III (LTE) Trans-iron elements : Ga II-III – Sn III-IV – Pb IV
- Huge mismatch of Sn III vs the 2 Sn IV resonnance lines
- Sn IV $\rightarrow \log N(Sn)/N(H) = -8.4$
- Sn III $\rightarrow \log N(Sn)/N(H) = -10.6$

Metal Abundances

- Many elements identified and fitted in the FUV spectrum : Mg II – Al III – Si II-III-IV – S II – Fe II-III (NLTE) P III – Ti III – Cr III – Mn III – Ni II-III – Zn III (LTE) Trans-iron elements : Ga II-III – Sn III-IV – Pb IV
- Huge mismatch of Sn III vs the 2 Sn IV resonnance lines
- Sn IV $\rightarrow \log N(Sn)/N(H) = -8.4$
- Sn III $\rightarrow \log N(Sn)/N(H) = -10.6$

Metal Abundances

 Many elements identified and fitted in the FUV spectrum : Mg II – Al III – Si II-III-IV – S II – Fe II-III (NLTE) P III – Ti III – Cr III – Mn III – Ni II-III – Zn III (LTE) Trans-iron elements : Ga II-III – Sn III-IV – Pb IV

Non-LTE Effects

- LTE abundances can be consider reliable only for the main ionization stage, III in the case of HD 188112
- LTE approximation for population numbers gives inconsistent results for non-dominant ionic species

CONCLUSION Results

- HD 188112 is a *metal-poor* low mass sdB star / pre ELM-WD
- Detailed chemical composition only known for 3 others ELM WD so far (1 UV, 2 optical):
 PSR J1816 (Kaplan et al. 2013, ApJ 765) & SDSS J0745 (Gianninas et al. 2014) are metal-rich
 GALEX J1717 (Hermes et al. 2014), metals between 10x and 1/10x solar, also very depleted in C
- HD 188112 is on a circular orbit, if tidally locked rotation is assumed, then $M_{comp} = 0.92 1.33 M_{\odot}$ otherwise $M_{comp} > 0.7 M_{\odot}$
- Non-LTE effects on population numbers affect the line-strength of non-dominant ions, even at ~21,000 K, $\log g \sim 5.6$.
- Choose carefully your lines for abundance determination !!!