
Five Lectures on the Large Scale Structure of the Universe 1

Astrophysics (4th year):
5 Lectures on the Large Scale Structure of the Universe

Pedro G. Ferreira and Christopher Gordon
Astrophysics

University of Oxford,
DW Building, Keble Road

Oxford OX1 3RH, UK
astroc1@astro.ox.ac.uk

last modified October 6, 2010

Preamble

These are a set of short notes which accompany the 5 lectures that I give within the 4th year
Astrophysics course. They are an almost direct transcription of what I write on the board
and therefore cannot be considered a complete text on the subject, merely a guide. All class
problems and exam questions will be based on the material I present in class (and therefore in
these notes). I apologize for the multiple typos.

I have followed quite a few books on cosmology and galaxies to prepare these lectures. These
are

[L]: A. Liddle, An Introduction to Modern Cosmology, Wiley

[P]: J. Peacock, Cosmological Physics, CUP

[D]: S. Dodelson, Modern Cosmology, Academic Press

[KT]: E.Kolb & M. Turner, The Early Universe, Addison Wesley

[LL]: D. Lyth & A. Liddle, The Primordial Density Perturbation: Cosmology, Inflation and
the Origin of Structure.

In each section I will suggest where to best study any given topic. Note that there are a number
of good websites on cosmology. Just pick a topic and google it.
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1 Evolution Equations of Cosmological Perturbations

Our current understanding of the expanding Universe is based an extraordinary simplifying
assumption- that at any given time, it looks the same everywhere and any direction we may
wish to look. This assumption of homogeneity and isotropy is borne out by our observations of
the cosmic microwave background which we find to be isotropic to within one part in a hundred
thousand. Yet we know that the observable is remarkably smooth and isotropic but it is not
perfectly so. We see a plethora of structures, from clusters, filaments and walls of galaxies to
large empty voids that can span hundreds of millions of light years. Indeed, the fact that there
are galaxies, stars and planets indicate that the Universe is not at all smooth as we observed
it on smaller and smaller scales. Hence to have a complete understanding of the dynamics and
state of the Universe and to be able to accurately predict its large scale structure, we go beyond
describing it just in terms of a scale factor, overall temperature., density and pressure.

If we are to explore departures from homogeneity, we must study the evolution of energy
density, ρ, pressure, P and gravity, Φ in an expanding universe in a more general context,
allowing for spatial variations in these various contexts. We will restrict ourselves to Newtonian
gravity which will give us the qualitative and quantitative behaviour of perturbations that we
would find in a proper, general relativistic treatment. It is an accurate approximation on scales
much smaller than the Hubble radius. Let us focus on the evolution of pressureless matter,
appropriate for the case of massive, non-relativistic particles1.

The evolution of a gravitating pressureless fluid is governed by a set of conservation equations
known as the Euler equations. We have that conservation of energy is given by

∂ρ

∂t
+ ∇ · (ρ#V ) = 0 (1)

while conservation of momentum is given by

∂V

∂t
+ (#V ·∇)#V = −∇Φ −

1

ρ
∇P (2)

Note that we have had to introduce the fluid velocity, #V into our system. These conservation
equations are complemented by the Newton-Poisson equation

∇2Φ = 4πGρ (3)

1It is possible to generalize the Euler equations to a relativistic fluid on Minkwoski space. They will be
replaced by a conservation of energy equation of the form

∂ρ

∂t
+ ∇ · [(ρ + P )#V ] = 0,

a conservation of momentum equation of the form

∂V

∂t
+ (#V ·∇)#V = −

ρ

ρ + P
∇Φ−

1

ρ + P
∇P

and modified Newton-Poisson equation of the form

∇2Φ = 4πG(ρ + 3P )
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which gives us how this system behaves under gravity.
We can clearly see that these set of equations are strictly valid for a universe dominated by

pressurless matter if we attempt to solve for the mean density ρ0 and mean expansion #V0 = H#r
corresponding to a homogeneous and isotropic universe. Solving Equation 1 we have that

∂ρ

∂t
= −∇ · (ρ0

#V0) = −ρ∇ · #V0 = −3Hρ

which gives us ρ ∝ a−3.
The Euler equations are, in general, difficult to solve. We can, however, study what happens

when the Universe is mildly inhomogenous, i.e. we can consider small perturbations around
these values so that the total density, pressure, velocity and gravitational potential at a given
point in space can be written as ρ = ρ0 + δρ, P = P0 + δP , #V = #V0 + δ#v, Φ = Φ0 + δΦ, where
δρ/ρ$ 1, δP/P $ 1 and so on. This approach is known as Cosmological Perturbation Theory-
it involves study of small perturbations to a FRW universe and we will find that the evolution
equations greatly simplify in this regime. We can first start off with the conservation of energy
equation

∂(ρ0 + δρ)

∂t
+ ∇ · [(ρ0 + δρ)(#V0 + δ#v)] = 0

which we can expand to give us:

∂ρ0

∂t
+ ∇ · (ρ0

#V0) +
∂δρ

∂t
+ ∇ · (ρ0δ#v) + ∇ · (δρ#V0) + ∇ · (δρδ#v) = 0

The first two terms satisfy the conservation equations as seen above while we the last term is
a product of two very small quantities and hence is negligible. It is possible to further simplify
the equations using ∇ · #V0 = 3H and defining δ ≡ δρ/ρ0. If we convert the partial derivative in
time to a total time derivative

dδ

dt
=
∂δ

∂t
+ #V0 ·∇δ

we then find that the first order conservation of energy equation reduces to

dδ

dt
+ ∇ · δ#v = 0 (4)

The same can be done to the conservation of momentum equation,

dδ#v

dt
+ Hδ#v = −c2

S∇δ −∇δΦ (5)

where we have defined the speed of sound of this fluid to be c2
s = ∇δP

∇δρ and the perturbed

Newton-Poisson equation2 becomes

∇2Φ = 4πGρ0δ (6)

2In a homogeneous and isotropic Universe we can assume that Φ0 = 0
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The system has now been simplified to a set of linear differential equations with time dependent
coefficients which can be solved either numerically or approximately using Fourier transforms.

There is a further transformation we can do to simplify the system. First of all it is
important to note that we have been working in physical coordinates, #r, and that it is much
more convenient to switch to conformal coordinates, #x (i.e. coordinates that are defined on the
space-time grid); we then have #r = a#x so that gradients between the two coordinate systems
are related through ∇r = 1

a∇x and the velocity perturbations are related through δ#v = a#u. If
we make a further simplifying assumption that there are no vortical flows in the fluid, we can
define a new variable Θ = ∇ · #u. We then have that Equation 5 becomes

Θ̇ + 2HΘ = −
c2
s

a2
∇2δ − 4πGρ0δ

Combined with Equation 4 we can rewrite the perturbed Euler equation as a 2nd order linear
partial differential equation δ:

δ̈ + 2H δ̇ −
c2
s

a2
∇2δ = 4πGρ0δ (7)

We have derived a partial differential equation for δ which is more easily studied and solved
in Fourier space. If we take the Fourier transform3 , δ → δk, Equation 7 becomes

δ̈k + 2H δ̇k =

(

−
c2
s

a2
k2 + 4πGρ0

)

δk (8)

2 The evolution of large scale structure

A cursory glance at Equation 8 allows us to identify a number of features in the evolution
of δ without actually solving the system. For a start, it is quite clearly the equation for a
damped harmonic oscillator with time dependent damping coefficient and spring constant. The
damping is due to the expansion of the Universe and will tend to supress growth. The spring
constant will change sign depending on whether k is large or small. If the positive part of the
spring constant, c2

sk
2/a2, dominates then we should expect oscillatory behaviour in the form of

acoustic waves in the fluid. If the negative term, 4πGρ0 dominates, then the evolution will be
unstable and we should expect δ to grow. The physical (as opposed to conformal) wavelength,
λJ , that defines the transition between these two behaviours is given by

λJ = cs

(

π

Gρ0

)
1

2

and is known as the Jeans wavelength. For λ > λJ gravitational collapse dominates and
perturbations grow. For λ < λJ pressure will win out and perturbations will not grow. We

3The Fourier transform is taken to be

δ(t, #x) =
1

(2π)3/2

∫

d3kδk exp(−i#k · #x)
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can have a rough idea of how a given system of particles will behave if we note that c2
s ∼

(KBT )/(Mc2) where T is the temperature of the system, M is the mass of the individual
particles, KB is Boltzmann’s constant, and c is the speed of light. We can then rewrite the
Jean length as

λJ =

(

πKBT

GMc2ρ0

)1/2

It is clear that a hot system made up of light particles will have a large λJ ; a cold system with
heavy particles will have a small λJ .

It is often convenient to write the evolution equation for density perturbations in terms of
conformal time η; recall that dt = adη so we can solve for η =

∫ dt
a and we now denote X ′ = dX

dη .
Equation 8 now becomes

δ′′k +
a′

a
δ′k + (c2

sk
2 − 4πGρa2)δk = 0 (9)

It is now useful to find solutions for specific scenarios.

2.1 Pressureless fluid in the matter dominated era.

In this situation we have that c2
s ( 0 and hence λ ) λJ . We can therefore discard the term

which depends on pressure to get:

δ̈ + 2H δ̇ −
3

2
H2δ = 0 (10)

where we have used the Friedmann equation

H2 =
(

ȧ

a

)2

=
8πG

3
ρ0 . (11)

As we derived earlier, in this case ρ ∝ a−3 and so it follows from the Friedmann equation that
a = (t/t0)2/3. Therefore, H = 2/3t and the solutions to Equation 10 are then

δ = C1t
2

3 + C2t
−1 (12)

The second term decays and becomes subdominant very fast and we are left with the first term
which can be rewritten as δ ∼ a. If we repeat the same calculation now using conformal time
we find δk ∝ η2 and η−3. Hence we find that in this situation, perturbations grow due to the
effect of gravity; the growing solution, δk ∼ a is normally called the growing mode.

2.2 Pressureless matter in the Λ dominated era.

The growth rate of perturbations will depend on the expansion rate of the Universe. If we wish
to study the growth rate during a period in which the cosmological constant dominates, we
have that

H2 = Λ/3
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and therefore a ∝ exp(Ht). We also have that Equation 6 will be modified to include two
components:

∇2Φ = 4πG(ρΛδΛ + ρM)δM = 4πGρΛ(δΛ +
ρM

ρΛ
δM) =

3

2
H2(δΛ +

ρM

ρΛ
δM)

where ρΛ = Λ/(8πG). The energy density of the cosmological constant (which is constant in
space, i.e. δΛ = 0) dominates so ρM $ ρΛ and we find

δ̈ + 2H δ̇ =
3

2

ρM

ρΛ
δM ( 0

where H is a constant. The solutions are δ ∼ exp(−Ht) and ∼ constant. Clearly a faster rate
of expansion inhibits growth.

2.3 Relativistic fluid in the radiation dominated era.

The characteristic properties of the fluid will also affect how it evolves under gravity in an
expanding universe. Consider the growth of perturbations of a relativistic fluid with pressure.
An example of this scenario is of radiation interacting strongly with baryons before recombina-
tion. During this epoch, baryons are dissociated into protons and electrons which interact with
photons through Thomson scattering. The net result is that radiation behaves as a gravitating
fluid with pressure. The sound speed is c2

S = 1/3. As was mentioned above, the Euler equations
are modified in the case of a relativistic fluid and pressure will play a significant role. Equation
8 is now replaced by

δ̈k + 2H δ̇k =

[

−
c2
s

a2
k2 +

16

3
πG(ρ0 + 3P0)

]

δ

It is easier to solve the corresponding equation in conformal time, where (taking P0 = ρ0/3) we
have

δ′′k +
a′

a
δ′k +





k2

3
− 4

(

a′

a

)2


 δk = 0

The scale factor in the radiation era evolves as a =
√

t/t0 and hence, with a ( η, we find that

δ′′k +
1

η
δ′k +

(

k2

3
−

4

η2

)

δk = 0

This equation can be solved exactly and we find that a well-behaved solution (such that δk → 0
as η → 0), is given by

δk = AJ2(
kη√

3
) (13)

in which J2(y) is a Bessel function and A is an arbitrary normalizing constant. From the
assymptotic behaviour we can probe the large and small scale behaviour. On large scales, i.e.
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when kη $ 1 we have that δk ∝ η2, very much like the growing mode in matter during the
matter dominated era. On small scales, i.e. for kη ) 1 we have that

δk →
√

3

kη
cos

(

kη√
3
−

5π

4

)

.

The solution corresponds to a damped acoustic wave which oscillates and decays slightly over
time. The length scale of the transition between the two regimes is given roughly by kλH

2π ( 1

where λH = 2πη/
√

3 is the sound horizon of the fluid- the furthest distance a soundwave can
propagate from the Big Bang until η. The solution neatly sums up the competition between the
two main effects: on large scale gravity wins and perturbations tend to grow, on small scales
pressure dominates and we have “sound” waves. Clearly the sound speed c2

S plays a crucial role
in the dynamics.

2.4 Pressureless matter in the radiation dominated era

An interesting situation arises when we have pressureless matter in the radiation era which
is decoupled from the baryons and radiation; a notable example is cold dark matter. In this
situation, the pressureless matter will not only play a subdominant role in the expansion of
the Universe but will also make a negligible contribution to the Newton-Poisson equation. We
then have

∇2Φ = 4πG(ργδγ + ρMδM) ( 4πGργδγ

We can then rederive Equation 9 for this multi-fluid case to get

δ′′M,k +
a′

a
δ′M,k − 4πGργa

2δγ,k = 0 (14)

where we have dropped the negligible sound speed of the matter component. We have solved
for δγ in Equation 13 and we can replace it in Equation 14 to obtain

δ′′M,k +
1

η
δ′M,k ∝

1

η2
J2(

kη√
3
)

Once again, we will have two regimes. On scales larger than the sound horizon, we have that
δM,k ∝ η2 while on small scales we have that δM,k ∝ ln(η). So even though perturbations in
the dominant fluid (the radiation) don’t grow, perturbations in a subdominant component of
pressureless matter will but at a much slower rate compared to their growth during the matter
dominated era, Equation 12.

2.5 Damping of cosmological perturbations

There are two further situations we should examine which do not fit exactly into the formalism
we have been using. These occur when there is imperfect coupling between different fluid
elements or when the system cannot be described purely in terms of a density field and one
must resort to a distribution function.
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2.5.1 Damping during recombination

For a brief period during recombination, the mean free path of photons will not be negligible
nor will it be infinite. The strength of the interaction between the photons and the baryons is
given by aσT ne where ne is the number density of free electrons. As the Universe recombines at
around a z ( 1100, ne will plummet over a redshift change of ∆Z ( 80 and the mean free path
will be finite. Because the photons and electrons aren’t perfectly coupled, the photons will be
able to random walk out of overdensities as they scatter off free electrons. In doing so they will
shift matter from over densities to underdensities and damp out perturbations on small scales.
The damping scale (known as the Silk damping scale) is approximately given by

λS ( 2.6c

√

t

σT nec

and fluctuations below this scale will be washed out.

2.5.2 Massive neutrinos during any era

Massive neutrinos cannot be described as a fluid- they do not interact with each other and
their evolution must be studied using the Boltzmann equation. On very large scales they will
tend to cluster just like matter and radiation but on small scales, they will tend to free-stream
i.e. move relativistically from one region of space to another. This will lead an overall damping
effect, wiping out structure on small scales. The damping scale will depend on their mass and
is roughly given by

λFS ( 40
(30eV

Mν

)

Mpc

3 Building models of large scale structure

Thus far we have studied the evolution of structure in a variety of scenarios and we should, by
now, have a qualitative understanding of how cosmological perturbations may evolve. We now
need complete this analysis by defining the initial conditions, i.e. the seeds of structure, then
characterizing how perturbations of different length scales evolve and and finally identifying
how we should ultimately characterize large scale structure today.

Over the decades there have been a plethora of proposals for the initial conditions of struc-
ture formation. One set of possibilities is that the Universe started off in a quasi-chaotic initial
state and that the thermal initial state smoothed out the large inhomogeneities leaving a residue
of fluctuations when then evolved to form structure. Clearly this is not a viable proposal unless
we severely modify the nature of the Universe at those early time- as we saw in the previous
section, structure on very large scales (larger than the Jean wavelength) will tend to grow under
the force of gravity. Furthermore, there is a limit to how much the Universe could homogenize
set by causality so it is in fact physically impossible to implement such a simple idea.

We do, however, have a proposal that tends to smooth out the Universe and that changes
the causal structure of space-time. Inflation will take a microscopic patch of the Universe which
is in thermal equilibrium and is well within the Jeans wavelength at that time, and expands
it to macroscopic, cosmological proportions. In doing so, Inflation solves the problem of how
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to homogenize but also provides a mechanism for seeding structure. We expect that, due to
the quantum nature of space-time and matter, that the Universe will be riven by quantum
fluctuations on microscopic scales. A period of Inflationary expansion will amplify and stretch
these quantum fluctuations to macroscopic scales which will be many times larger than the
cosmological horizon by the time Inflation ends. As the Universe resumes its normal expansion
in the radiation era, the fluctuations will seed structure in the cosmological fluid which will
then evolve in the manner described in the previous sections.

The form of the intial conditions arising from Inflation have a deeply appealing feature: they
will correspond to a random field which has a scale invariant gravitational potential. In this
context, a random field is a three-dimensional function which can be generated through some
random process; this should not come as a surprise given that the source of the fluctuations is
a quantum process. And if you think about what we are trying to do, and look at the structure
of the sky, you will realize that there must be an element of randomness. Our theory won’t
tell us if a cluster of galaxies, or a filament of galaxies or more generally an overdensity or
underdensity is going to be at an exact position in space. All we can talk about is how much
more probable structures of a given size are going to be relative to others. For example, we
may expect to see more structure of 1 Mpc than of 100 Mpc, but we don’t know exactly where
they will be. Hence we talk about our density contrast, δ, or gravitational potentials being a
random fields for which we can calculate their statistical properties.

We characterize a random field in much the same way we would characterize any other
random process. For example we will have that the density contrast, δ satisfies

〈δ(#x)〉 = 0

and that we can characterize its variance in terms of a correlation function, ξ(r) through

ξ(|#x − #x′|) ≡ 〈δ(#x)δ(#x′)〉

or alternatively in terms of its power spectrum

P (k) ≡ 〈|δ(k|
2〉

By defining ξ(r) or P (k) we can characterize the statistical properties of the random field4 It
is often useful to consider the dimensionless version of the power spectrum, the mass variance
which is given by

∆2(k) =
k3P (k)

2π2

At early times the dimensionless power spectrum of the gravitational potential Φ can be pa-
rameterized as

k3〈|Φ(k|
2〉

2π2
∝ kn−1 (15)

where n is known as the spectral index. If n = 1 the spectrum is known as scale invariant.

4This is only strictly true of the random process is Gaussian. For non-Gaussian processes one has to go
further and characterize such quantities as 〈δ(#x1)δ(#x1)δ(#x1)〉 and higher order products. It turns out the
Inflation predicts that the random fields are, to a very good approximation, Gaussian.
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Figure 1: The power spectrum of a universe with baryons and photons compared to that of the
real universe

Using the Newton-Poisson equation, the early time spectrum of the density field can then
be written as

Pi(k) ∝ kn

Choosing scale invariant initial conditions for the density field corresponds to picking the am-
plitude of the density field but is given by |δ(t,#k)| ∝ k1/2.

Having chosen a set of initial conditions we can predict what the large scale structure of the
Universe for different sets of assumptions. We will do so for three model universes: a universe
where matter is solely of baryons and known as the Baryonic Dark Matter (BDM) universe ; a
universe which also contains pressureless dark matter and is known as the Cold Dark Matter
(CDM) universe; and a universe in which matter is dominated by massive neutrinos and is
known as the Hot Dark Matter (HDM) universe.

3.1 A Baryonic Dark Matter Universe

Consider the simplest scenario we can imagine with the tools we have been given: a flat Universe
consisting solely of photons, atoms (i.e. Baryons) and a cosmological constant. There is a limit
on how much of the Universe can be made of baryons: the abundance of light elements restricts
Ωbh2 ( 0.024. With our current constraints on the Hubble constant, this means that fractional
energy density in baryons must be around 5% and given that we are considering a Universe
with Ω = 1 we must have ΩΛ = 0.95. In Figure 1 we plot the mass variance, ∆2(k) of such a
theory and we can clearly identify the main features. On very large scales (i.e. on scales larger
than the sound horizon at equality between matter and radiation) perturbations will grow until
they reach the Λ era, after which they will be constant. On scales below the sound horizon,
perturbations will initially grow, then oscillate acoustically. Once the Universe recombines, all
scales will grow equally until the freeze in during the Λ era. Hence we see a series of peaks and
troughs on intermediate to small scales. On very small scales, i.e. on scales which are smaller
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than the Silk damping scale at recombination, perturbations are severely supressed and we can
see exponential damping.

Putting all the pieces together, we find that the mass variance for this theory is roughly
described by

∆2(k) ∝ k4 if kηeq < 1

∆2(k) ∝
cos2(kη∗√

3
)

k
e[−(kλS)1.5] if kηeq > 1

(16)

We can also consider a Universe in which, for some reason, we have underestimated the
density of baryons. If we assume that the majority of baryons are dark (in the form of dark
nuggets of matters, brown dwarfs or even black holes) we can choose ΩB = 0.25 and ΩΛ = 0.75.
We call this the Baryonic Dark Matter scenario (or BDM for short) and it has the same gross
qualitative features we identified above.

3.2 A Cold Dark Matter Universe

An interesting scenario arises if we consider a Universe in which, once again, we have radiation,
baryons and Λ but now add a component of pressureless, non-relativistic matter that does not
interact with the radiation. We shall call this the Cold Dark Matter scenario (or CDM) and
has a qualitatively different behaviour to the BDM case. There are effectively two regimes that
will define the shape of the power spectrum. On very large scales, i.e. scales such that kη $ 1
for all times before equality between radiation and matter, the density contrast will grow as
η2 until it reaches the Λ dominated era. For scales that cross this threshold, i.e. such that
kηeq < 1, the density contrast will have its evolution surpressed to logarithmic growth; this
surpression in growth will last between the time the wavelength of the perturbation has the
same size as the sound horizon and the transition from radiation to matter domination. During
the matter era, perturbations will grow again until Λ domination sets in.

A rough estimate of the mass variance, ∆2(k) gives us

∆2(k) ∝ k4 if kηeq < 1

∆2(k) ∝ (ln(k))2 if kηeq > 1

(17)

The overall shape can be clearly seen in Figure 2.

3.3 A Hot Dark Matter Universe

There is yet another simple model we can consider. If we now replace the pressureless matter
in the CDM model by light massive neutrinos, we will have an altogether different cosmology.
The motivation is clear: we know that neutrinos exist and there is even evidence that they
may have a mass. As we saw in the previous section, neutrinos will not evolve as a fluid and
will free stream while they are relativistic, exponentially damping all perturbations on small
scales. The neutrinos are weakly interacting, dark (i.e. they don’t interact strongly with light)
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Figure 2: The power spectrum of inhomogeneities with cold dark matter, baryons, and a
cosmological constant compared to the real universe

and move relativistically so can be considered a ”hot” component of the Universe. For these
reasons, a Universe in which neutrinos make up the bulk of the energy density today is called
the Hot Dark Matter scenario (or HDM). The mass variance can be roughly approximated to

∆2(k) ∝ k4 exp(−kλFS) (18)

4 Comparing to observations

Furthermore, we have been talking about δ, a continuous field defined over all of space. But
what we actually see are galaxies, bright dots in the sky. We must relate our theory, the theory
of how δ arises and evolves with our data, a catologue of positions of galaxies in the sky. Once
again let us take as our starting point, the mean density, ρ0 and expand it in terms of the
density contrast:

ρ = ρ0

(

1 +
δρ

ρ

)

= ρ0(1 + δ)

The galaxies must trace this density somehow. For example, if the density is high (i.e. where
there is an overdensity) we expect to see more galaxies, more bright dots. If the density is low,
we expect to see less galaxies, a void. We can make this comparison more quantitative.Take
the distribution of galaxies in the Universe and lay down balls of radius λ all over. Calculate
the mass contained in each ball (i.e. add up the mass in all the galaxies contained in each ball).
We have that

M(λ) =
∫

Sλ

d3xρ(#x)
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Figure 3: A survey of galaxies over the sky illustrates there are inhomogeneities spanning a
wide range of scales (2dF Galaxy Redshift Survey -based at Oxford)

where Sλ is a sphere of radius λ. We can find the average over all balls to get

M̄(λ) ≡ 〈M(λ)〉 =
4π

3
λ3ρ0

Suppose we now calculate the variance

[δM(λ)]2 ≡ 〈[M(λ) − M̄(λ)]2〉

Some balls will be heavier and others will be lighter. There should be a scatter. One can show
that the mass variance is given by

∆2(k) ≡
[

δM(λ)

M̄(λ)

]2

(
k3

2π2
P (k) with k ≈ 1

λ

So P (k) gives you the fluctuations in mass of balls with a given radius. Different types of
clumping will lead to different P (k) and these can be compared to the clumping that we see in
the distribution of galaxies.

A typical survey of galaxies will be like the image in Figure 3 If we were to consider a
universe with baryons and radiation, as described above, we would find a power spectrum as
in Figure 1. Quite clearly it does not fit the data well. There is much more power at large k in
the real Universe than in the model. Clearly the problem is that perturbations in the baryons
are prevented from growing because of the way they link up to radiation. One solution is to
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Figure 4: The evolution of the ionization fraction as a function of redshift

have a different form of non-relativistic matter that doesn’t interact with radiation. It won’t
feel that baryon pressure and will have its Jean’s length equal to zero. Because this matter
does not interact with light, it can be called “dark matter”. An example of the power spectrum
is shown in Figure 2.

Anisotropies in the Cosmic Microwave Background

We have focused on the evolution of perturbations in the density field and how we can connect
them to the distribution of galaxies. There is, of course, another very important component to
the Universe, which plays a significant role at early times: radiation.

Let us briefly recall the history of radiation in the Universe. At very early times the
universe is highly ionized, Hydrogen is dissociated into free electrons and protons and the mean
free path of photons is effectively 0. The universe is opaque. At late times, the universe is
neutral, protons and electrons are in Hydrogen atoms and photons are free to propagate. The
Universe is transparent. The transition from one state to another is naturally related to the
binding energy of hydrogen and the evolution of the ionization fraction

X ≡
np

np + nH
(19)

At sufficiently early times we will find that X = 1, i.e. the Universe is completely ionized. As
it crosses a certain threshold, electrons and protons combine to form Hydrogen. This happens
when the temperature of the Universe is T ( 3570K or 0.308eV, i.e. when it was approximately
380, 000 years old, at a redshift of z ( 1100. We would naively expect this to happen at 13.6eV.
One way to think about why this isn’t so is that, at a given temperature there will always be
a few photons with energies larger than the average temperature. This energetic photons only
become unimportant at sufficiently low temperatures.

We can now reconstruct the history of a photon left over from recombination. We know
that, post recombination, a photon has been travelling along a straight path from then until
now. It has travelled a distance d∗ ( η0 − η∗ where η0 (η∗) is the conformal time today (at
recombination). Before recombination, the mean free path of the photon was negligable, it was
effectively standing still. So we can think of recombination as the time when these photons
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were released to travel through space. When we look from a fixed point in the sky, we will
received photons that have travelled straight towards us since η∗, the point at which they are
released will map out a two dimensional sphere, of radius d∗ which is known as the surface
of last scattering. We can think of this light as an image of the the surface of last scatter, a
photograph of a spherical slice of the universe at η∗.

Recall that the Universe was in thermal equilibrium and hence the radiation should have
a black body spectrum. And given that it is approximately homogeneous on large scales, the
black body will be the same in all directions, with the peak at the same temperature in all
directions. But we also know that its perturbed and hence we should see deviations. These
deviations will have various contributions.

For a start, we have the Stefan-Boltzman law: ργ = σT 4 where σ is the Stefan Boltzman
constant. But we then have

δT

T
=

1

4

δργ
ργ

.

This seems quite easy to understand: the more compressed the radiation is, the hotter it is.
So points on the surface of last scattering which have denser radiation will look hotter. This is
known as the intrinsic term

When the photons are released at the surface of last scattering, the will collide with one
last electron or proton before they propagate towards us. That proton or electron may have
a peculiar velocity, #vB. This will impart a Doppler shift on the photon, i.e. the observed
temperature will be T ′ = T (1 − #vB · #n) so that

δT

T
= −#vB · #n

This is known as the Doppler term.
There will be gravitational effects too. If the photon is caught in a gravitational well at the

surface of last scatter, it will be held back, i.e. gravitationally redshifted. The bigger the well,
the colder the photon becomes:

δT

T
= −Φ

This is known as the Sachs-Wolfe term. Finally, as the photon propagates towards us through
empty space, space time is changing and warping as it evolves. The photon will be redshifted
or blue shifted according to:

δT

T
= −2

∫ η0

η∗
dηΦ̇ (20)

This is known as the Integrated Sachs-Wolfe term.
Let us put all this together now. Recall: the surface of last scatter is a sphere with radius

d∗. Suppose we look in a give direction n̂. We will see

δT

T
(n̂) =

1

4
δ(η∗, d∗n̂) − [#vB · n̂](η∗, d∗n̂) − Φ(η∗, d∗n̂)

−2
∫ η0

η∗
dη′Φ̇[η′, (η0 − η′)n̂] (21)
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Figure 5: The power spectrum of the CMB (red line) and the latest WMAP7 data (Obtained
from http://lambda.gsfc.nasa.gov/).

In summary, a measurement of δT
T is a snapshot of the universe at t∗, it is related to quantities

that we know from studying large scale structure and we can use it to do “archeology”of the
Universe.

What do we expect to see? First of all, recall the we looked at how perturbations in the
radiation and baryons evolve in the radiation era, before recombination. On small scales, there
should be a series of acoustic oscillations. We found a solution, δγ ∝ J2(kη/

√
3). We also know

that #∇ · #v = −δ̇ So if δγ ∝ cos(kη/
√

3) then #vB · n̂ ∝ sin(kη/
√

3). We should see an oscillatory
pattern in δT

T with the spacing between peaks and troughs set by the angular projection of

kη∗/
√

3. On very large scales we expect it to be relatively featureless.
On small scales, an altogether different phenomenon kicks in. During recombination, as the

photons decouple from the baryons, they will slowly start to propagate. They will move around
a little and in doing so, they will leak energy from high density regions to low density regions.
The net effect is to reduce high density regions, fill in low density regions and effectively smooth
out perturbations. Features on small scales will be smoothed out.

How do we analyse a map of the cosmic microwave background? We need to take the
equivalent of the fourier transform except now it is on the surface of the sphere. You will recall
from mathematical methods and quatum mechanics that there is a useful basis to this in, the
Spherical Harmonic functions. So we can take

δT

T
(n̂) = Σ)ma)mY)m(n̂). (22)

and plot the powerspectrum

C) =
1

2*+ 1
Σm|a)m|2 (23)

In Figure 5 you can see the structure of the power spectrum. There is clear evidence of the
oscillatory structure as well as of the damping on very small scales.


