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1 Basics of Radiative Transfer

1 Basics of Radiative Transfer

1.1 Introduction

In this Lecture course, we will be learning about radiative transfer theory: the theory of how
light propagates through an absorbing and emitting medium. We will use this theory in order
to calculate the spectrum of astrophysical objects, including understanding the formation and
strength of emission and absorption lines. In order to understand spectral lines, we must
understand ionization and recombination of atoms/ions, and we must also of course understand
excitations and de-excitations of electrons between bound energy levels in atoms/ions.

We will be applying our theory to several classes of astrophysical object:

Stars: We all know what stars are, so no need for an introduction!

Planetary Nebulae: A planetary nebula is a slowly expanding shell of gas that has been lost
from a red giant star (i.e., on the asymptotic giant branch of the Hertzsprung-Russell diagram).
This is a relatively short-lived (∼ 10s of thousands of years) phase of stellar evolution for
∼ 1 − 8 M� stars. When the star runs out of fuel for nuclear fusion, its envelope expands to
form a red giant and eventually this material is lost to the surroundings via a stellar wind. This
di�use material is then ionized by the remaining core, which becomes hotter as it fuses the
remaining light elements into heavier elements. The ionized gas then glows with a spectrum
dominated by strong emission lines. Examples of planetary nebulae are shown in Fig 1.1.
Eventually, the central star will become a white dwarf and the gas will expand so much that
it recombines and becomes invisible to us. Planetary nebulae play an important role in the
chemical evolution of galaxies, since they expel the heavy elements that were created inside the
star into the surrounding interstellar medium (ISM). As we will see, we can also use planetary
nebulae to measure chemical abundances, because they exhibit strong emission lines – including
‘forbidden’ lines that are only produced in very tenuous environments. Note that the term
‘planetary nebula’ is a misnomer – these objects are nothing to do with planets. The term is
just historical, since the �rst nebulae observed in the ∼1700s looked spherical and a little like
planets. As often happens in astronomy, the original, incorrect, name stuck!

Active Galactic Nuclei (AGN): An AGN is a supermassive black hole at the centre of a galaxy
accreting material via an accretion disc (see Fig 1.2). During this course, we will only really be
considering AGN as background sources of light, but we will cover them in a lot more detail in
the following High Energy Astrophysics course. It is important to note that there are lots of
di�erent names for AGN. According to the uni�cation theory, many di�erent classes of objects
are just AGN viewed from a di�erent angle. During this course, I will talk most about quasars.
These were originally called quasi-stellar objects, because they were optical point sources and
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1 Basics of Radiative Transfer

Figure 1.1: Examples of planetary nebulae. Left: Cat’s Eye Nebula (NGC 6543), X-ray / optical
composite image. Right: NGC 6326, here the central star is a binary.

therefore not e.g. galaxies or nebulae, but it later became apparent that they are actually very far
away and very intrinsically bright. Galaxies that can be resolved as larger than a point source,
but with a similar optical spectrum to that of quasars, were called Seyfert galaxies. These are
just AGN that are close enough for us to spatially resolve. Consequently, the most distant (and
therefore most intrinsically bright) objects that we can see in the Universe are quasars.

1.2 Radiative flux

Radiation theory applies when the scale of the system greatly exceeds the wavelength of
radiation – e.g. shining a torch through a keyhole. In this case, we can consider light to travel
along rays. If a detector of area dA faces a light source for a time interval dt , the amount of
energy passing through the detector is F dA dt , where F is the energy �ux. In the simplest
case, we can consider an isotropic source of radiation emitting energy equally in all directions
(e.g. a spherically symmetric, isolated star). If we put imaginary spherical surfaces around the
source with radii r0 and r , we know from simple energy conservation that the total energy
passing through one sphere must be equal to the total energy passing through the second sphere.
Therefore

F (r0) 4πr 2
0 = F (r ) 4πr 2. (1.1)

Re-arranging gives
F (r ) =

constant
r 2 , (1.2)

which is the well-known inverse square law.

6



1 Basics of Radiative Transfer

Figure 1.2: Schematic diagram of an active galactic nucleus (AGN). According to the uni�cation
theory, many di�erent classi�cations of object are actually AGN viewed from a
di�erent angle.
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1 Basics of Radiative Transfer

1.2.1 Intensity

We can express the �ux crossing the detector in a di�erent, ultimately more useful way (although
admittedly, much more confusing initially). Fig 1.3 illustrates a source element with area dAs
radiating energy dE in a time interval dt . A detector with surface area dAdet located a distance
r from the source faces the source. We see from the sketch that rays with polar angle in the
range θ − dθ/2 → θ + dθ/2 and azimuthal angle in the range ϕ − dϕ/2 → ϕ + dϕ/2 hit the
detector, and all other rays miss the detector. From polar coordinates, we can see that

dAdet = r
2 sinθ dθ dϕ = −r 2 d cosθ dϕ = r 2 dΩdet. (1.3)

Here, dΩdet is the solid angle subtended by the detector. It is useful to de�ne the intensity, which
is the energy �ux per unit solid angle:

I =
dE

dA⊥ dt dΩ
=

dE

dAs cosθ dt dΩ , (1.4)

where dA⊥ = dAs cosθ is the area of the source element projected onto the trajectory of the
ray. But why is this useful? Well, it is because the �ux corresponds to the energy carried by all
rays passing through a given area. Since there are many, many rays, the energy carried by an
individual ray is essentially zero. We must therefore consider bundles of rays; i.e. all of the rays
oriented within some solid angle of one central ray.

The total energy �ux emitted by the source is related to the intensity as

F =

∫
dE

dAs dt dΩ
dΩ =

∫
I cosθ dΩ =

∫ 2π

0

∫ 1

−1
I cosθ d cosθ dϕ . (1.5)

For an isotropic source radiating from only the upper surface, this becomes F = I π . Therefore
a fraction dΩdet/π of the rays emitted from the source cross the detector and the rest miss. The
energy �ux crossing the detector is therefore

Fdet =
dΩdet
π

dE

dAdet dt
. (1.6)

We can make this expression much simpler by appreciating that the solid angle subtended by
the source according to the detector is dΩs = dAs/r

2 (see Fig 1.4), giving rise to the reciprocity
theorem:

dAdet
dΩdet

=
dAs

dΩs
. (1.7)

We therefore �nd that the detected �ux is

Fdet =
dΩs dAdet
π dAs

dE

dAdet dt
=
dΩs

π

dE

dAs dt
= I dΩs . (1.8)

Even though this expression was derived for a �at isotropic source, it is true in general.

Intensity is very useful because it is an invariant quantity. Whereas �ux always depends on
what surface area we are considering, intensity is measured to be the same by any observer.1

1Except there is a modi�cation to this in relativity, but that is beyond the scope of this course.
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1 Basics of Radiative Transfer

x

y

z

θ

ϕ

dϕ

dΩdet = sin θ dϕ dθ

dAs

dθ

dAdet

Figure 1.3: A source of surface area dAs (yellow) radiates light that crosses a detector with
surface area dAdet placed a distance r away (blue). The detector subtends a solid
angle dΩdet = dAdet/r

2.

We can see this quite simply from the above equation: the intensity is just de�ned by how
the source radiates, and the �ux observed by an observer just depends on the intensity and
the apparent size of the source on the observer’s sky. We can also recover the inverse square
law from the above equation by imagining two detectors with the same area dA, one placed a
distance r0 from the source and detecting a �ux F0 and the other at a distance r detecting a �ux
F . It is simple to show from Equation (1.8) that F ∝ 1/r 2.

1.2.2 Specific intensity

The speci�c intensity (sometimes referred to as the surface brightness) is simply the intensity per
unit photon frequency, Iν = dI/dν = dE/[dAdt dΩ dν ]. We could alternatively think in terms of
wavelength, Iλ = dI/dλ, or even photon energy IE = dI/(h dν ). Traditionally, di�erent notations
tend to be employed in di�erent branches of astronomy. Optical and infrared astronomers tend to
use wavelength, X-ray and γ−ray astronomers tend to use photon energy, and photon frequency
is normally preferred in radio astronomy, multi wave-length and theoretical studies. These
di�erences often re�ect the di�erent detection techniques employed for di�erent wavelengths
of radiation, but ultimately the three can be used interchangeably as long as you are careful. I’m
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1 Basics of Radiative Transfer

dΩdet dAdet
dΩs

dAs

Source

Detector
r

Figure 1.4: Demonstration of the reciprocity principle. A source and detector are a distance r
from one another. The detector has a surface area dAdet and subtends a solid angle
dΩdet. The source has a surface area dAs and subtends a solid angle dΩs .

mainly an X-ray astronomer, so naturally think in terms of photon energy, but photon energy
can be too easily confused with the radiated energy (and the radiated energy is the photon
energy multiplied by the number of photons) and so I will use photon frequency or wavelength
throughout this course. In general, the word speci�c can just be used to mean ‘per unit photon
frequency’, such that e.g. speci�c �ux is Fν = dF/dν , or ‘per unit wavelength’ (e.g. Fλ = dF/dλ).
The speci�c �ux in terms of frequency and wavelength can be related by starting with their
de�nitions: ∫ ν=∞

ν=0
Iνdν =

∫ λ=∞

λ=0
Iλdλ. (1.9)

Since λ = c/ν , dλ = −cν−2dν = −(λ/ν )dν , therefore∫ ν=∞

ν=0
Iνdν = −

∫ ν=0

ν=∞
Iλ
λ

ν
dν =

∫ ν=∞

ν=0
Iλ
λ

ν
dν . (1.10)

We therefore see that
Iν =

λ

ν
Iλ . (1.11)

Speci�c intensity is a very useful quantity to work with because it is something intrinsic to the
source that we can actually measure. For instance, say we observe a galaxy to have an angular
diameter on the sky θ . If the projected shape of the galaxy on the sky is circular, then the solid
angle it subtends is dΩs = π (θ/2)2. The raw quantity we measure with our telescope is the
speci�c �ux crossing the detector, F det

ν . It is straight forward to then derive the speci�c intensity
of the source, Iν = F det

ν /dΩs . Even if the source is unresolved (i.e. appears as a point source

10



1 Basics of Radiative Transfer

and therefore we only have an upper limit on it’s angular extent), we can estimate the speci�c
intensity if we have some idea of the physical size of the source and its distance from us.

1.2.3 Radiative energy density

The speci�c energy density uν – a quantity we will need in the following lecture – is de�ned as
the energy per unit volume per unit frequency range. We can derive the relation between this
quantity and the speci�c intensity by imagining a cylinder with cross-sectional area dA and
length c dt . The speci�c energy density per unit solid angle relates to the radiated energy as

dE = (duν /dΩ) dA c dt dΩ dν . (1.12)

Light travels at speed c , therefore we also have that dE = Iν dA dΩ dt dν . Equating the two
expressions for dE and integrating over the full range of solid angles gives

uν =
1
c

∫
IνdΩ. (1.13)

1.3 Thermal radiation

Thermal radiation is radiation emitted by matter in thermal equilibrium. This means, for
instance, that the speed distribution of the free electrons in the matter is the Maxwellian
distribution. That is, the fraction of electrons with speed in the range v to v + dv is

f (v) dv = 4π
[

me

2πkTe

]3/2
v2 exp

(
−
me v

2

2kTe

)
, (1.14)

where Te is the electron temperature (or kinetic temperature), me the electron mass and k is the
Boltzmann constant. However, even if the particles in the medium are in thermal equilibrium,
the photons radiated from the medium do not necessarily need to be in thermal equilibrium.

1.3.1 Blackbody radiation

Blackbody radiation is radiation which is itself in thermal equilibrium; i.e. the photons are in
thermal equilibrium with one another. The speci�c intensity of blackbody radiation is given by
the familiar Planck function

Iν = Bν =
2hν3/c2

exp(hν/kT ) − 1 , (1.15)

where T is the photon temperature. Examples of the Planck function for di�erent temperatures
are shown in Fig 1.5. For brevity, we will not derive this function, but I point interested students
to Rybicki & Lightman (Section 1.5).

One important property of blackbody radiation is that the speci�c intensity is a universal
function of T , which we can see from the above equation (i.e. Bν depends only on T and
fundamental constants). We can understand this with a thought experiment illustrated in Fig 1.6.

11



1 Basics of Radiative Transfer

Figure 1.5: Examples of black body spectra at various temperatures (reproduced from Rybicki &
Lightman; originally taken from Kraus 1966).
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1 Basics of Radiative Transfer

I′�νIν

TT

Figure 1.6: Two containers, both at temperature T , separated by a �lter (grey).

Imagine we keep two containers at temperature T , and we do not let radiation in or out until
equilibrium has been achieved separately in each container. Let’s denote the speci�c intensity
of radiation in the left and right hand containers Iν and I ′ν respectively. These two containers
can have di�erent shapes or any other properties for that matter, but importantly they are the
same temperature. We now place a �lter between the two containers that enables photons in a
narrow frequency range centered on ν0 to pass between the two containers. If Iν0 , I ′ν0 , energy
will �ow spontaneously between the two enclosures. Since the two are of the same temperature,
this would violate the second law of thermodynamics. Therefore Iν = I ′ν and thus the speci�c
intensity of blackbody radiation is a function of temperature only.

There are a number of other important characteristics of black body radiation, such as the
Stefan-Boltzmann law

F = σ T 4, (1.16)
where σ is the Stefan-Boltzmann constant. We can also simplify Planck’s law for very low and
very high frequencies. In the hν << kT limit, the exponential can be Taylor expanded to give
the Rayleigh-Jeans law:

Iν =
2ν2

c2 kT . (1.17)

We indeed see in Fig 1.5 that the function is simply a power-law at small ν . In the hν >> kT
limit, the exponential can be assumed to completely dominate the denominator, giving the Wien
law:

Iν =
2hν3

c2 exp
(
−
hν

kT

)
. (1.18)

Again comparing with Fig 1.5, we see that the function drops o� very quickly with frequency at
the high end. Finally, it is straightforward to show that the peak of Bν is at frequency ν = νmax,
where

hνmax = 2.82 kT . (1.19)
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1 Basics of Radiative Transfer

This is the Wien displacement law.

1.3.2 Characteristic temperatures

It is useful to de�ne a number of characteristic temperatures related to the Planck spectrum.
The �rst is the brightness temperature. Say we measure the speci�c �ux of an astrophysical
object, Iν , in one narrow frequency range. The brightness temperature, Tb , is the temperature
of the blackbody function that has that speci�c intensity at that frequency:

Iν = Bν (Tb ). (1.20)

The brightness temperature is often used in radio astronomy, since the Rayleigh-Jeans law is
often applicable, giving

Tb =
c2

2ν2k
Iν (1.21)

for hν << kT . Often, of course, the spectrum of the object is wildly di�erent from a blackbody
function (e.g. synchrotron radiation, Compton scattering etc). As an example, the quasar 3C
273 has a �ux density of 12 Jy at 100 GHz, and subtends an angular diameter on the sky of 0.1
milli-arcseconds (data from Greve et al 2002). Since 1Jy = 10−26 W Hz−1 m−2 and the solid angle
subtended by 3C 273 is related to the angular diameter dθ as dΩ = (π/4)θ 2, this means that the
speci�c intensity at 100 GHz is Iν = 6.9 × 10−7 W Hz−1 m−2 St−1, where St is a steradian (see
Fig 1.7). It can be shown (and you will be showing this yourself in the coming problem set) that
the brightness temperature for this speci�c intensity at this frequency is Tb = 1010 K, which is
enormous! The �gure shows the unique blackbody function that gives the measured �ux density
at 100 GHz, and for reference also a blackbody function with T = 2.4 K. The conclusion is that
the spectrum of 3C 273 is not described by a blackbody function. In the coming High Energy
Astronomy course, we will see many examples of objects with spectra very di�erent from a
that of a blackbody.

Colour temperature can instead be measured from the shape of the spectrum. For example, the
spectrum of a source may be the shape of a blackbody, but we may not know the distance to the
source and/or the source may be spatially unresolved. We therefore cannot measure Iν , only
the �ux crossing our detector. Alternatively, the source spectrum may be only approximately
blackbody – for instance an initially blackbody spectrum may be modi�ed by scattering in an
atmosphere. We can still, however �t a blackbody function to the observed spectrum. The
temperature of that blackbody function is the colour temperature, Tc . A cruder measurement of
Tc can be obtained by measuring the peak frequency of the spectrum and applying Wien’s law.

Finally, the e�ective temperature of a source, Te� , is derived from the total amount of �ux
integrated over all frequencies radiated at the source:

F =

∫
cosθ Iν dν dΩ ≡ σ Te� . (1.22)

Again, this is useful if the source spectrum is only approximately blackbody.
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1 Basics of Radiative Transfer

Figure 1.7: Speci�c intensity of quasar 3C 273 at 100 GHz (triangle) alongside the unique Planck
function that passes through this data point, a Planck function with T = 2.4 K, and
the true spectrum of the source. The brightness temperature of 3C 273 is so large,
we can cnclude that it’s spectrum is not described by Planck’s law.
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1 Basics of Radiative Transfer

Figure 1.8: Bundle of rays (solid angle dΩ) passing through a medium of absorbers, each with
absorption cross-section σν . Reproduced from Rybicki & Lightman.

1.4 Radiative transfer

So far, we’ve been thinking about light rays propagating through free space. Now we need to
move on to thinking about light propagating through a medium. This medium can, in general,
generate further emission and can also absorb existing emission.

1.4.1 Emission

The spontaneous speci�c emission coe�cient, jν , is de�ned as the energy emitted by a medium
per unit time per unit solid angle per unit volume:

jν =
dE

dV dΩ dt dν
. (1.23)

When a beam of cross section dA moves a distance ds , it travels through a volume dV = dA ds .
Thus the intensity added to the beam by spontaneous emission in the medium is

dIν = jν ds . (1.24)

Therefore, if a beam has speci�c intensity Iν (s = 0) upon entering a purely emitting medium,
the speci�c intensity of the beam after travelling a distance s through the medium is given by

Iν (s) = Iν (0) +
∫ s

0
jν (s

′) ds ′. (1.25)

The increase of brightness is equal to the emission coe�cient integrated along the line of sight.

1.4.2 Absorption

Intensity will also, in general, be taken out of the beam as it propagates through a medium by
absorption. The absorption coe�cient αν (units: 1/distance) is de�ned by the equation

dIν = −αν Iν ds, (1.26)

and by convention αν is positive if net energy is taken out of the beam. It is useful to understand
this law by imagining a cylinder with cross-section dA and length ds that contains n randomly
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1 Basics of Radiative Transfer

distributed particles per unit volume. Each particle has an absorbing cross-section σ 2
ν (dimension:

[distance]2). The number of absorbers in the cylinder is n ds dA and so the total absorbing area
for photons with frequency ν is σν n ds dA. The energy absorbed out of the beam is

− dIν dA dΩ dt dν = Iν (n σν ds dA) dt dΩ dν, (1.27)

therefore
dIν = −n σν Iν ds . (1.28)

And so we can see from Equation (1.26) that the absorption coe�cient is related to the absorption
cross-section of the individual absorbers as

αν = n σν . (1.29)

We will be using the absorption coe�cient in this course, but there are a lot of di�erent
conventions. One common one is to use the opacity coe�cient κν (also known as the mass
absorption coe�cient), which relates to the absorption coe�cient as αν = ρ κν , where ρ is the
mass density. It is important to mention this, as it is common to talk about the opacity of a
medium or ‘the sources of opacity’ in a medium. We can see from these equations that the
opacity is simply a slightly di�erent de�nition of absorption.

From the de�nition of the absorption coe�cient (Equation 1.26) we can see that if a beam has
speci�c intensity Iν (0) upon entering a purely absorbing medium, the speci�c intensity of the
beam after travelling a distance s through the medium is given by

Iν (s) = Iν (0) exp
{
−

∫ s

0
αν (s

′) ds ′
}
. (1.30)

The brightness decreases along the ray by the exponential of the absorption coe�cient integrated
along the line of sight.

1.4.3 The Radiative Transfer Equation

It is fairly straightforward to combine the previous discussions on emission and absorption into
one equation. This is the radiative transfer equation:

dIν
ds
= −αν Iν + jν . (1.31)

In the next lecture, we will solve this equation to calculate the intensity of a beam of light
propagating through an emitting and absorbing medium as a function of photon frequency.
Of course, all of the complicated physics comes in calculating the correct forms for αν and jν ,
which we will discuss next time.

Adam Ingram
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2 Formation of Emission Lines

2.1 Introduction

Last lecture, we derived the radiative transfer equation (Equation 1.31):

dIν
ds
= −αν Iν + jν ,

Which describes how the speci�c intensity of a beam of light is modi�ed when it passes through
a medium with absorption coe�cient αν and emission coe�cient jν . This time, we will solve
this equation and use it to determine whether we will see emission lines or absorption lines
when a beam of light passes through a medium with given properties. We will then consider
the case of emission lines and ultimately calculate the relative �ux of di�erent emission lines.

2.2 Solving the radiative transfer equation

2.2.1 Optical depth and source function

Equation (1.31) already looks fairly simple, but it simpli�es even further when we introduce a
few more key quantities (I promise the frequency that I de�ne new quantities will reduce soon
– radiative transfer theory is fairly heavy on de�nitions). A very important quantity that we
can use in place of the path length s is the optical depth, τν , de�ned by

dτν = αν ds, (2.1)

or
τν (s) =

∫ s

0
αν (s

′) ds ′. (2.2)

Here we are de�ning the optical depth along the path of a travelling ray, and so τν = 0 when
the beam enters the medium. Note that the optical depth is dimensionless. A medium is said
to be optically thick or opaque when τν integrated along a typical path length is τν > 1. When
τν < 1, the medium is said to be optically thin. Basically, in an optically thick medium, a typical
photon can pass through the medium without being absorbed.

We can additionally de�ne the source function Sν = jν /αν to re-write the radiative transfer
equation as

dIν
dτν
= −Iν + Sν . (2.3)
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2.2.2 The formal solution

We can use our newly de�ned quantities to solve the equation. Multiplying the above equation
by eτν and using the chain rule gives

dIν
dτν

eτν + Iν eτν = Sν eτν

d[Iν eτν ]
dτν

= Sν eτν , (2.4)

which has the solution

Iν (τν ) = Iν (0) e−τν +
∫ τν

0
eτ ′ν−τν Sν (τ ′ν ) dτ ′ν . (2.5)

The two terms can be interpreted as: the initial intensity diminished by absorption plus the
integrated emission from the medium diminished by absorption. As an illustrative example,
let’s consider a medium with a constant source function. For such as medium, illustrated in Fig
2.1, a beam of light with initial speci�c intensity Iν (0) is incident on some medium, travels a
total optical depth of τν through that medium, and emerges with speci�c intensity Iν (τν ). Since
the source term is constant, our solution to the radiative transfer equation becomes:

Iν (τν ) = Sν + e−τν [Iν (0) − Sν ]. (2.6)

We therefore see that the speci�c intensity emerging out of a medium with optical depth τν = 0
is simply Iν (0) – i.e. just the speci�c intensity that went in to the medium. In the opposite case
of τν →∞, we see that the emergent speci�c intensity is Sν – i.e. all of the initial intensity has
been absorbed, and what emerges is the radiation that was produced in the medium, diminished
by absorption.

2.2.3 Mean Path Length

The optical depth can be understood a little better in terms of mean free path, `: the mean
distance that a photon can travel in a medium before being absorbed. From the formal solution
to the radiative transfer equation, we see that the probability of a photon traveling at least an
optical depth τν without being absorbed is e−τν . The mean optical depth travelled is therefore:

〈τν 〉 =

∫ ∞

0
τν e−τνdτν = 1. (2.7)

Therefore photons in a given medium travel on average an optical depth of τν = 1 before being
absorbed. Since dτν = ανds , we see that the mean path length is ` = 1/αν . This perhaps gives a
more intuitive interpretation of the absorption coe�cient.

2.2.4 Formation of emission and absorption lines

Fig 2.2 is a sketch illustrating the frequency dependence of the absorption coe�cient αν . Two
types of absorption are considered here: bound-bound, whereby the absorbed photon excites a
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Iν(0) Iν(τν)

τ′�ν = 0 τ′�ν = τν

Sν

Figure 2.1: Schematic sketch of a beam of radiation passing an optical depth τν through a
medium that has source function Sν .

bound electron to a higher bound state, and bound-free, whereby the photon gives an initially
bound electron enough energy to escape the atom entirely (i.e. photo-ionisation). The cross-
section for bound-bound transitions, σbbν , is a narrow spike centered at hν equal to the energy
di�erence between levels (with the width due to quantum e�ects we will brie�y discuss later).
The cross-section for a given bound free transition, σbfν , is zero for hν below the ionisation
potential energy and drops o� as ν−3 for hν above that energy, such that a photon has no
hope of liberating an electron in a given shell if it has energy less than the relevant ionisation
potential but always has a chance of liberating the electron if its energy is greater than the
ionisation potential. The absorption coe�cient for a particular species of a particular element
in the medium is

αν =
∑
i

[∑
j>i

ni (σ
bb
ν )i j + ni (σ

bf
ν )i

]
, (2.8)

where ni is the number density of electrons in the ith energy level. We then need to sum the
absorption coe�cients for each ionic species of each element in order to get the absorption
coe�cient for the medium. As is illustrated in Fig 2.2, this means that the absorption coe�cient
has a number of narrow spikes from bound-bound absorption and a number of ‘edges’ from
bound-free interactions.

The spikes in the absorption coe�cient will imprint narrow dips in the emergent spectrum
– absorption lines. However, electrons decaying from a higher to a lower energy level in the
medium will emit �uorescence lines at the same frequency as the absorption lines. So, when
do we see absorption lines and when do we see emission lines? Well, we can get an intuitive
handle on this by considering the optically thin case: τν << 1, such that e−τν ≈ 1 − τν . In this
case, Equation 2.6 becomes:

Iν (τν ) = Iν (0) + τν [Sν − Iν (0)]. (2.9)
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log
(α ν

)

log(ν)

photo-excitation

(bound - bound)

photo-ionisation

(bound - free)

Figure 2.2: Sketch of the frequency dependence of the absorption coe�cient. Bound-bound
absorption results in a narrow line for each electron transition in each ionisation
species of each element. The cross-section of bound-free absorption for a given
bound electron energy level is zero for hν below the ionisation potential and drops
o� as ν−3 for hν above the ionisation potential.

21



2 Formation of Emission Lines

log(ν)

ανIν(0)

jν

Absorption lines

log(ν)
ανIν(0)

jν

Emission lines

Figure 2.3: Cases whereby the emergent spectrum includes absorption (left) or emission (right)
lines.

This form of the equation makes it very easy to see that when Sν > Iν (0), the beam increases in
brightness as a result of passing through the medium and when Sν > Iν (0), the beam decreases
in brightness. Therefore:

If Sν > Iν (0): Iν (τν ) has emission lines;

If Sν < Iν (0): Iν (τν ) has absorption lines.

Therefore, for there to be emission lines, we need jν > αν Iν (0), and for absorption lines
jν < αν Iν (0). Fig 2.3 is a sketch of a speci�c illustrative example. In this example, the incident
spectrum is a blackbody, and the spectrum emitted by the medium has a continuum with a nearly
blackbody spectral shape (but, crucially, not exactly blackbody) plus �uorescence lines. In this
case, whether we see emission or absorption lines simply depends on the relative temperature
of the initial emitter and the absorbing material. If the absorber is hotter than the emitter (right)
we get emission lines, and if it is cooler (left), we get absorption lines. In the case of planetary
nebulae, jν is the gas is dominated by emission lines, and so the spectrum we see has many
strong emission lines (Fig 2.4).

2.3 Excitation and De-excitation mechanisms

Now we have some understanding of the basics of radiative transfer, we can start to think
about the detailed physics. Eventually, the goal is to calculate the expected �ux of emission
and absorption lines, and ultimately use line �ux ratios to measure things such as elemental
abundance, electron density and electron temperature in astrophysical objects such as stars,
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Figure 2.4: Examples of spectra from planetary nebula showing strong emission lines (from
Stanghellini, Kaler & Shaw 1994).

planetary nebulae, quasars etc. In order to do this, we must calculate the relative populations in
di�erent atomic energy levels. As a �rst step, let’s consider the simplest case: a 2-level atom. As
is illustrated in Fig 2.5, there are a number of excitation and de-excitation mechanisms, and
these mechanisms can be quanti�ed by the Einstein coe�cients. You will have already covered
some of these mechanisms (i.e. the Einstein A and B coe�cients), but some will be new to you
(i.e. the C coe�cients). Let’s �rst summarise these mechanisms one by one.

2.3.1 Spontaneous radiative decay

An electron in level 2 has some probability of decaying to level 1 and emitting a photon with hν
equal to the energy di�erence between the two levels: ν12 = ∆E12/h. The probability of decay
per second is given by the Einstein A coe�cient: A21. Therefore, n2A21 electrons transition from
level 2 to level 1 per second per unit volume. This produces a spectral line with luminosity

L21 = hν12

∫
V
n2 A21 dV , (2.10)

where n2 is the number density of electrons in the second energy level (electrons per unit
volume) and the integral is over the volume of the emitting region. The observed �ux of the
emission line for isotropic emission is therefore

F21 =
hν12
4πd2

∫
V
n2 A21 dV , (2.11)

where d is the distance to the emitting region. During this course, it will be common to assume
that the emitting region is homogeneous, dispensing with the need for the integral.
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A21 B12 B21

C12 C21

n1

n2

Figure 2.5: 2-level atom.

2.3.2 Absorption and stimulated emission

As already discussed, bound-bound absorption occurs when a photon with ν = ν12 is absorbed
and promotes an electron from level 1 to level 2. The probability of this happening is proportional
to the density of incident photons with frequency ν12. The Einstein B coe�cient is de�ned such
that the probability per unit time of excitation from level 1 to level 2 through photon absorption
is

Transition probability per second = B12

∫ ∞

0
uν ϕ(ν ) dν, (2.12)

where the line pro�le ϕ(ν ) is a narrow function centred on ν12 and uν is the speci�c energy
density de�ned last time. Since ϕ(ν ) is narrow, we can approximate it as a δ−function so that
the probability per unit time simply becomes B12uν12 .

An incident photon with frequency ν12 may, instead of being absorbed, increase the probability
of an electron decaying from level 2 to level 1 though quantum mechanical e�ects. This is called
stimulated emission: before the interaction, there is an incident photon with energy hν12 and an
electron with energy E1 + ∆E12, after the transition there is still the initial photon, an electron
with energy E1 and a new photon with energy hν12. Therefore, although the mechanism is
rather counter-intuitive, we can at least appreciate that it conserves energy! The probability
per second of stimulated emission is B21uν12 , where B12 is another Einstein coe�cient (and
we have again assumed a δ−function line pro�le). The overall number density of electrons
transitioning from level 1 to level 2 per second due to the incident photon �eld is therefore
uν12(n1B12 − n2B21), meaning that the luminosity taken out of the incident spectrum (i.e. the
luminosity in the absorption line) is

L12 = hν12

∫
V
uν12 [n1B12 − n2 B21] dV . (2.13)
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2.3.3 Collisional Excitation and De-excitation

Bound electrons can also transition between energy levels when a free electron is scattered as
it passes the atom. Collisional excitation occurs when the scattered electron gives up enough
energy to excite an electron from level 1 to level 2, and collisional de-excitation occurs when
the electron gains energy from the bound electron decaying from level 2 to level 1. Note, no
photons are absorbed or emitted in this process, it is simply an exchange in energy between
a free electron and a bound electron. The probability per second of collisional excitation or
de-excitation is unsurprisingly proportional to the free electron density ne – since the more
free electrons there are, the greater the chance that one is going to scatter in the right way. The
constants of proportionality are the Einstein C coe�cients, C12 and C21. Speci�cally, the rate of
collisional de-excitations per unit volume is given by

R21 = nen2

∫ ∞

0
σ col21 (ve ) ve f (ve ) dve = nen2C21, (2.14)

where σ col21 (ve ) is the cross section andve is free electron velocity, which has a distribution given
by the function f (ve ). If the electrons are in thermal equilibrium (as will always be assumed to
be the case in this course), then f (ve ) is given by the Maxwellian distribution (Equation 1.14).
It is useful to de�ne the dimensionless collision strength, Ω21(ve ):

σ col21 (ve ) =
h2

4πm2
ev

2
e

Ω21(ve )

д2
, (2.15)

where д2 is the statistical weight of level 2 (you should have already covered this, but we will
brie�y summarise the most important atomic physics during the next lecture). Assuming a
Maxwellian distribution, the C21 coe�cient becomes

C21 =

(
2π~4

km3
e

)1/2
T −1/2
e

д2

∫ ∞

0
Ω21(Θe )e−ΘedΘe = 8.6 × 10−12 Ω̄21

д2
T −1/2
e m3 s−1, (2.16)

where Θe ≡mev
2
e/(2kTe ) is the kinetic energy of an electron as a fraction of kTe . Here

Ω̄21 ≡

∫ ∞

0
Ω21(Θe )e−ΘedΘe (2.17)

is the Maxwellian averaged collision strength – and this is a constant for a given transition.

Now what about the Einstein coe�cient for collisional excitation, C12? The equation for the
excitation rate per unit volume has a similar form to that of the de-excitation rate, except only
free electrons with kinetic energy ≥ ∆E12 can excite bound electrons from level 1 to level 2.
Therefore the rate per unit volume is

R12 = nen1

∫ ∞

∆E12

σ col12 (ve ) ve f (ve ) dve = nen1C12. (2.18)

Again re-writing the cross section in terms of a collision strength

σ col12 (ve ) =
h2

4πm2
ev

2
e

Ω12(ve )

д1
, (2.19)
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gives

C12 = 8.6 × 10−12 Ω̄12
д1

T −1/2
e e−∆E12/kTe m3 s−1, (2.20)

where the average collision strength is

Ω̄12 ≡

∫ ∞

0
Ω12(Θe + ∆E12/kTe) e−ΘedΘe . (2.21)

Note that this is also a constant for a given transition.

2.4 Statistical Equilibrium

In statistical equilibrium, dn1/dt = 0 = dn2/dt . Therefore the number of electrons entering
level 1 is equal to the number of electrons leaving level 1:

n2 (A21 + uν12B21 + neC21) = n1 (uν12B12 + neC12). (2.22)

Statistical equilibrium will almost always hold – for example in stars and nebulae. From Equation
(2.22), we can in principle calculate the relative populations of the two levels n2/n2, and from
that ultimately calculate the luminosity of the emission line. In general this is fairly di�cult,
even for the two level atom, but in practice there are many situations in which we can make
approximations and ignore terms in the above equation.

2.4.1 Thermodynamic equilibrium and Detailed balance

In Thermodynamic equilibrium (TE) (also known as detailed balance), all atomic processes
(excitation vs de-excitation and ionisation vs recombination) are exactly balanced by their
thermodynamically inverse process. This means that the rate of de-excitations via spontaneous
decay is equal to that of excitations via absorption minus de-excitations via stimulated emission.
For this condition to hold, the radiation �eld must be isotropic (i.e. in thermal equilibrium with
itself). TE also means that the collisional excitation and de-excitation rates are balanced. For
this condition to hold, the free electron population must be in thermal equilibrium, i.e. ve f (ve )
is a Maxwellian distribution. If both of these conditions are met, the radiation �eld is also in
equilibrium with the particles so the radiation temperature is equal to the electron temperature,
T = Te . Therefore, in TE, the radiation �eld is a blackbody: Iν = Bν . This is a limit you have
met before; for example it can be used to derive the Saha equation describing ionization balance
in the core of stars.

From the above equation of statistical equilibrium (equation 2.22), we can see that in TE we
have

n2 (A21 + uν12B21) = n1 uν12B12 (2.23)

and
n2 C21 = n1 C12. (2.24)
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In previous courses, you have learned that the population of electron energy levels in TE is
described by the Boltzmann distribution:

n2
n1
=
д2
д1

exp
(
−
hν12
kTe

)
, (2.25)

where дi is again the statistical weight – or degeneracy – of energy level i . We can use the limit
of TE to derive the relation between the average collision strengths Ω̄12 and Ω̄21. From before
(Equations 2.16 and 2.20), we know that

C12
C21
=
д2
д1

Ω̄12

Ω̄21
exp

(
−
hν12
kTe

)
. (2.26)

This equation is true in general. In the case of TE, since we have detailed balance and the
electron levels are described by the Boltzmann distribution, we also have the relation:

C12
C21
=
n2
n1
= exp

(
−
hν12
kTe

)
, (2.27)

therefore we see that Ω̄12 = Ω̄21. Note that Ω̄12 and Ω̄21 are constants, and therefore they are
equal to each other regardless of TE, we have just used the limit of TE to derive the relation
between them. From now on, we will simply start referring to Ω̄12 as the collision strength and
drop the bar.

The conditions for TE are often not met. For example, the photosphere of a star is de�ned as the
region where photons can �rst escape freely into space. Once photons can escape, the conditions
for TE are not strictly met (since TE is achieved by every photon having many collisions before
it leaves the medium and therefore sharing its energy with the electrons – in other words, the
medium must be optically thick). However, the concept of local thermodynamic equilibrium
(LTE) can be used. This holds providing the conditions in the absorbing/emitting medium
do not change signi�cantly over the course of the photon mean free path. There are many
situations in which we cannot even use LTE: for instance the region above the photosphere
in stars (the chromosphere), in which Te >> T (here Te is the temperature of the electrons in
the chromosphere, but T is the temperature of the photons streaming out of the photosphere –
because the chromosphere is optically thin, photons from the photosphere do not have enough
interactions in the photosphere to adjust to the new, higher electron temperature). We are
very much interested in these situations in this course, since this is when we get emission and
absorption lines in the spectrum!

2.4.2 Weak radiation field

If the radiation �eld is weak (B21uν << neC21 + A21 and B12uν << neC12), the equation of
statistical equilibrium simpli�es to

n2 (A21 + neC21) = n1 + neC12. (2.28)
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This is a very good approximation if we have strong emission lines (e.g. in nebulae), since in
this case we know L21 >> L12, and so

n2A21 >> [n1B12 − n2B21]uν12 . (2.29)

Typically n1B12 >> n2B21, and so the limit of weak radiation �eld is justi�ed for an emission
line region.

The Coronal Approximation

If the radiation �eld is weak and the density is not too high (e.g, in the upper chromosphere and
corona in the sun where ne . 1018m−3, neC21 << A21) we can make the coronal approximation:

n2
n1
= C12

ne
A21

(2.30)

In the coronal approximation, the dominant processes are collisional excitation and spontaneous
emission. This does not give detailed balance as neC12 and A21 are not thermodynamically
inverse processes. Note that in this case, n2/n1 is not given by the Boltzmann distribution (but
we can still use Ω12 = Ω21).

In the coronal approximation, the emission line luminosity L21 becomes

L21 = hν12

∫
V

n2A21dV = hν12

∫
V

n1 ne C12dV , (2.31)

so that whenever the coronal approximation applies (most UV and X-ray lines as it turns out), the
emitted line �ux depends on the collision rate rather than the spontaneous emission coe�cient.

Critical Density

The coronal approximation is applicable if neC21 << A21. We can therefore de�ne a critical
density

n∗e =
A21
C21
. (2.32)

Therefore:

If ne << n∗e : collisional excitation is unimportant (coronal approximation)

If ne >> n∗e : the level populations are set by the C terms.

Adam Ingram
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3 Emission Line diagnostics: 2 level atom

3.1 Introduction

In the last lecture, we solved the radiative transfer equation to see intuitively when we may
expect emission or absorption lines in the spectrum, before studying statistical equilibrium in a
two level atom. In this lecture, we will use our model of the two level atom to measure atomic
abundances in astrophysical objects using emission line �uxes. In order to do this though, we
must �rst quickly revise everything we need to know about atomic physics. There should be
nothing new here, but it is important to summarise in the interest of being self-contained.

3.2 Atomic physics revision

3.2.1 Occupation rules

The occupation rules are set by the Pauli exclusion principle: no two electrons can be in exactly
the same state. The electron state is set by quantum numbers: n = the principle quantum number,
` = the azimuthal quantum number, and s = the electron spin quantum number. The azimuthal
quantum number can only take values

0 ≤ ` < n.

Therefore each shell (i.e. a given value of n) can have n sub-shells (i.e. given values of `). A
sub-shell contains electrons with di�erent values of the magnetic quantum number,m` , which
can take the values

|m` | ≤ `,

and di�erent values of ms , which is also called the spin quantum number and can take the
values

|ms | ≤ s .

Therefore the number of electron states in a sub-shell is

Sub − shell degeneracy = (2s + 1)(2` + 1),

with each electron having a di�erent combination of ms and m` quantum numbers (a combina-
tion of the ` and s quantum numbers is also referred to as a term). Since there are n sub-shells
in a shell, we know that the number of electron states in a shell must be

Shell degeneracy =
n−1∑̀
=0
(2s + 1)(2` + 1) = (2s + 1)

n−1∑̀
=0
(2` + 1) = (2s + 1)n2.
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We can further split a sub-shell with the total angular momentum quantum number, j, which
can take the values

|` − s | ≤ j ≤ |` + s |,

in integer steps. Similar to above, we can de�ne a further quantum numbermj , which can take
the values

|mj | ≤ j, (3.1)

meaning that for a given value of j there are (2j + 1) possible states. Therefore the number of
states per term must be

Sub − shell degeneracy =
|`+s |∑

j= |`−s |

(2j + 1).

This has to be equal to (2s + 1)(2` + 1) because we already showed that this is the degeneracy
of a sub-shell (term). The easiest way to satisfy ourselves of this is by using an example; e.g.
` = 1, s = 1/2. In this case, we see that (2s + 1)(2` + 1) = 6, and the same value of 6 is returned
by the above equation.

3.2.2 Nomenclature

It is traditional (and, yes I know, not discernibly sensible) to symbolically represent ` =
0, 1, 2, 3, 4, ... sub-shells with the letters s,p,d, f ,д, and so on in alphabetical order. For in-
stance a sub-shell with n = 1 and ` = 0 can be referred to as a 1s sub-shell. We can represent
all of the possible states for a given element in this way. For instance, phosphorus (atomic
number 15) is: 1s,2s,2p,3s,3p. From the above selection rules, and given that s = 1/2, we can
calculate that these sub-shells respectively contain 2, 2, 6, 2 and 6 possible electron states.
Altogether this is 18, but phosphorus only has 15 electrons. Therefore the �nal sub-shell only
contains 3 electrons when the maximum would be 6. We can also label as a subscript how
many electrons are actually occupying the levels. Again for the case of phosphorus, this gives
1s2, 2s2, 2p6, 3s2, 3p3.

Another way to label electron levels is using a term symbol:

n(2s+1)Lj . (3.2)

Heren, s and j are the same quantum numbers described above and L is replaced by a capital letter
representing the quantum number `; i.e. ` = 0, 1, 2, 3, 4 is now represented by L = S, P,D, F ,G.
Therefore an electron with n = 2, ` = 1, s = 1/2 and j = 1/2 would be labeled as 22P1/2. The n
value is often missed from the start.

3.2.3 Energy levels

The ionization potential of a bound electron depends most sensitively on the principle quantum
number. For example, in Hydrogen, the ionization potential energy is to a good approximation
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Figure 3.1: Energy levels of the hydrogen atom (from https://commons.wikimedia.org/w/
index.php?curid=6273602).

En ≈ −13.6 eV/n2. Fig 3.1 illustrates the n = 1 to n = 6 shells in a hydrogen atom. Transitions
between two levels are all part of named series: transitions to or fromn = 1 are part of the Lyman
series, transitions to or from n = 2 are part of the Balmer series and transitions to or from n = 3
are part of the Paschen series. Not shown are the Brackett (n = 4), Pfund (n = 5) and Humphreys
(n = 6) series. The wavelength of the emission line caused by electrons decaying from the
higher level to the lower level is shown (this is of course also the wavelength of absorption
lines due to electrons being excited from the lower to the higher level). All transitions in the
Lyman series have their own names: the transitions between n = 1 and n = 2, 3 and 4 are called
respectively Lyman α (Lα , line wavelength 122 nm), Lyman β (Lβ , line wavelength 103 nm),
and Lyman γ (Lγ , line wavelength 97 nm) – and so on alphabetically. Similarly for the Balmer
series, the transitions between n = 2 and n = 3, 4 and 5 are respectively Hα (656 nm), Hβ (486
nm), Hγ (434 nm), and again so on alphabetically.

However, spin-orbit coupling – an interaction between the electron orbital angular momentum
and the electron spin angular momentum – means that the energy level associated with each
value of n is split, such that the state with the higher j value has a slightly higher (less negative)
energy. This is called �ne structure splitting, and it is illustrated in Fig 3.2. Here we see that
there is no �ne structure splitting in the n = 1 level, because there is only one possible value
of j according to the occupation rules: j = 1/2. However, there is splitting of the n = 2 level,
between j = 3/2 and j = 1/2. The splitting is very small: whereas the Lα transition from n = 2
to n = 1 is 10.2 eV, the energy di�erence between j = 3/2 and j = 1/2 levels within the n = 2
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Figure 3.2: Fine and hyper�ne structure splitting in the lowest two levels of the hydrogen atom.

shell is only ∼ 4.5 × 10−5 eV. Still, this means that the Lyman α line is a very closely spaced
doublet, although very good resolution is required to see this. As is also shown in Fig 3.2, these
energy levels modi�ed by �ne structure splitting are further split themselves. This is known as
hyper�ne structure splitting, and it results from the interaction between the electron spin angular
momentum and the nuclear spin angular momentum. Representing the nuclear spin angular
momentum with the quantum number i , the hyper�ne splitting level depends on the quantum
number f , which can take the values f = |j − i | to |j + i | in integer steps. Hyper�ne structure
splitting is an even smaller e�ect than �ne structure splitting, with the n = 1 transition from
f = 1 to f = 0 having an energy di�erence of ∼ 5.9 × 10−6 eV. This corresponds to a frequency
of 1420 MHz and a wavelength of 21 cm. This 21 cm line can be seen both in emission and
absorption by radio telescopes, and provides an important astrophysical diagnostic (although
regrettably there will be no time to cover it in detail during this course).

3.2.4 Selection Rules

The selection rules determine which electric dipole transitions are possible (allowed transitions)
and which are not (forbidden transitions). The physics of the selection rules is very much not our
concern here, and so I will skip over a lot of detail to say that allowed transitions have: ∆j = 0,±1
(but no j = 0 to j = 0 transitions) and ∆mj = 0,±1. There are also semi-forbidden transitions that
obey the other selection rules but have ∆s , 0. However, electric dipole interaction with light
is merely a �rst-order approximation, and therefore forbidden transitions may be permitted
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by higher order e�ects such as electric quadropole or magnetic dipole interactions. Because
they are higher order, they are less likely than permitted transitions and therefore have much
lower Einstein A coe�cients. However, if a system is excited into a state whereby the only
means of decaying is via a forbidden transition, this will eventually occur. For our purposes,
all we really care about is that an allowed transition has a large Einstein A coe�cient and a
forbidden transition has a small Einstein A coe�cient. As an example, the hyper�ne structure
transition is forbidden, and it’s associated Einstein A coe�cient is ∼ 3 × 10−15s−1, compared to
the A coe�cient for the Lyman α line of ∼ 6.3 × 108s−1!

3.2.5 Nomenclature of spectral lines

As the �nal bit of nomenclature before going on to do something more interesting, we must
de�ne our labelling convention for spectral lines. Fig 3.3 shows a composite spectrum of 2,200
quasars, showing a number of lines. We see Lα and Hα here, but also a number of other lines.
These lines are all labelled with the atomic symbol of the atom they originate from and a Roman
numeral to denote the ionization state: I is neutral, I I once ionized, I I I twice ionized and so
on. Therefore OII is O1+ and OIII is O2+. Note that the actual transition that caused the line is
not labelled, only the ionic species of the element. Lines with no square brackets are allowed
lines, lines with two square brackets are forbidden lines, and one bracket means semi-forbidden.
Therefore, e.g., CIV is allowed, [OIII] forbidden and CIII] semi-forbidden.

3.3 Measuring Elemental Abundances with a 2 level Atom
Model

An atom with a split ground state and a large interval to the next available energy level can
be well approximated as a 2-level atom, providing the electron temperature is not so high that
a signi�cant number of electrons populate the next level (which is very reasonable since the
temperature would have to be extremely high for this). The neutral halogens are good examples
of such atoms: e.g. FI and ClI and ions in their isoelectronic sequence, e.g. NeII and ArII. Lines
from the transition between the split ground state level are in the infrared (IR), and their �ux is
given by

F21 =
hν12
4πd2

∫
V
n2A21 dV , (3.3)

assuming isotropic emission. Assuming a uniform density, we can simplify to F21 = hν12V n2 A21/(4πd2),
which we can re-arrange to estimate the mass of ions in the upper �ne structure level from a
measured emission line �ux:

M2 =ma n2 V =
ma F21 4πd2

hν12 A21
, (3.4)

wherema is the mass of the atom.

In order to estimate the total mass of a given ionic species, we must also calculate the mass of
ions in the lower state, M1, and add to M2 (i.e. we are assuming that, at this Te , the number
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Figure 3.3: Composite quasar spectrum, constructed from over 2,200 quasars in the Sloan Digital
Sky Survey data release 1. The dotted line indicates power law �ts to the estimated
continuum spectrum (From Perlman E.S. (2013) Active Galactic Nuclei; originally
from Van den Berk et al. 2001).
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of electrons in higher levels is negligible). In order to determine the fraction of electrons in
the upper level, we must return to the equation of statistical equilibrium in a weak radiation
�eld. The key question is: is the density above or below the critical density n∗e = A21/C21? Well,
�ne structure transitions are forbidden and therefore A21 is small (< 10−2s−1), meaning that the
critical density can be quite low for electron temperatures typical of e.g. a planetary nebula,
n∗e ∼ 105 − 107cm−3. Therefore, we can often assume that ne >> n∗e , and therefore that the
equation of statistical equilibrium reduces to: n2C21 = n1C21 – i.e. the population levels are set
by the C coe�cients, which we know are related by

C12
C21
=
д2
д1

exp
(
−
hν12
kTe

)
, (3.5)

and therefore we know that:
n2
n1
=
д2
д1

exp
(
−
hν12
kTe

)
. (3.6)

Now, we know that hν12 is very small, and so we can either assume hν12 << kTe , giving

n2
n1
≈
д2
д1
, (3.7)

or use some reasonable estimate ofTe , safe in the knowledge thatn2/n1 is only weakly dependent
on Te in this limit.

If we are instead in the low density limit (ne << n∗e ), then statistical equilibrium becomes
n2A21 = n1neC12 and we can express C12 in therms of the collision strength to get

n2
n1
= 8.6 × 1012 neΩ12

д1A21T
1/2
e

exp
(
−
hν12
kTe

)
. (3.8)

Therefore, in the low density regime, the level populations depend on both electron density and
temperature, whereas in the high density regime the level populations are independent of ne
and depend only weakly on Te .

In general, IR lines are advantageous for a number of reasons:

• IR lines are relatively immune to the e�ects of interstellar extinction, which falls steeply
as a function of wavelength, and so they can probe regions that are invisible at optical
wavelengths or where only the front, lightly obscured regions are detected. They sample
the whole volume of a nebula except for the densest, most obscured objects.

• They provide some diagnostics of species that usually have weak or nonexistent transitions
at other wavelengths (e.g. Ne II).

• As we have just seen, the ground state �ne-structure lines are insensitive to ne .

However, IR observations have their challenges: ground based observations are hampered by
the large thermal background and molecular absorption by the Earth’s atmosphere. Space
telescopes such as Spitzer, AKARI, Herschel and JWST circumvent these problems.
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3.3.1 Example - Supernova 1987A

SN1987A exploded in the Large Magellanic Cloud (LMC) in February 1987. Because it was in
the LMC, it’s distance was well determined to 50 kpc. This was the �rst supernova visible to
the naked eye in ∼ 400 years! Because it was very bright and had a well determined distance, it
could be studied in great detail. Roche, Aitken & Smith (1993), amongst other things, were able
to estimate the mass of a number of ionic species of a number of elements in the ejecta using
forbidden IR lines. Fig 3.4 shows the IR spectrum evolving in time. Early after the explosion,
everything was completely optically thick and so no lines were seen. Eventually, lines became
observable as the outer shell became optically thin. For example, very strong emission lines
are observed on day 465 since the explosion, two of which are [Cl I] at 11.3 µm and [Ne II] at
12.8 µm. These are both the sort of IR �ne structure lines that can be treat with our 2-level atom
model in the ne > n∗e regime. Starting from Equation (3.4), we can adopt a distance of d = 50
kpc in order to write a formula for the mass of ions in the upper state

M2
M�
= 1.25 × 1011 kg−1m−1s2 F21 Am

λ21
A21
, (3.9)

where Am is the mass number (i.e. ma = 1.66 × 10−27Am kg). The day 465 12.8 µm [Ne II] line
strength was F21 = 4.1 × 10−14Wm−2, the mass number of neon is Am = 20 and the transition
probability isA21 = 9.5×10−3 s−1. Using an estimated electron temperature ofTe = 3200 K on day
456, and using the ratio of statistical weights д1/д2 = 2 gives M1/M2 = д1/д2 exp(hν/kTe ) = 2.84.
Therefore the total mass of singly ionized neon is M1 + M2 = 5.3 × 10−4 M� . Using exactly
the same reasoning, the mass of neutral Chlorine can be estimated from: A21 = 1.24 × 10−2s−1,
Am = 35.45, F21 = 2.7 × 10−14Wm−2, д1/д2 = 2 to get M = 3.6 × 10−4 M� .

By tracking how the line strengths evolved with time, it was possible to see the evolution of the
abundances of di�erent ionic species of elements and compare with models for the ionization
balance and radioactive decay of cobalt and Nickel as the supernova ejecta expanded and cooled.

3.3.2 Relative abundances

Often we don’t know the distance and so we can’t estimate the mass of di�erent ionic species.
We can however estimate relative abundances by comparing line strengths of di�erent ions.

Adam Ingram
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Figure 3.4: IR spectra of supernova 1987A.
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4 Emission Line diagnostics: 3 level atom

4.1 Introduction

Last time we investigated the diagnostics accessible with a 2 level atom model. However, in a
two level atom, there is only one emission line per atom/ion. Diagnostics of properties such
as electron density and temperature rely on comparing �uxes of di�erent lines from the same
atom. In order for there to be more than one line, the atom needs to have at least three levels,
and so we must extend our simple 2 level atom model to a three level model.

4.2 3 Level Atom

Fig 4.1 shows a sketch of a 3 level atom. Now statistical equilibrium becomes two equations:

Electrons leaving level 3 = Electrons entering level 3, (4.1)

and
Electrons leaving level 2 = Electrons entering level 2. (4.2)

In general, these equations are:

n3[A32 +uνB32 + neC32 +A31 +uνB31 + neC31] = n1[uνB13 + neC13] + n2[uνB23 + neC23], (4.3)

and

n2[A21 +uνB21 + neC21 +uνB23 + neC23] = n1[uνB12 + neC12] + n3[A32 +uνB32 + neC32]. (4.4)

By solving these equations, we can calculate line ratios, F32/F31 or F31/F21. Clearly this is a
fairly di�cult problem in general, but we can often consider limits of the above equations in
which a few terms dominate over the others. In particular, we will continue to consider cases
with a weak radiation �eld (e.g. nebulae), in which we can ignore the B coe�cients. The line
ratio then depends on known quantities such as the A coe�cients and the collision strengths,
and two properties of the nebula: ne and Te . The trick is then to �nd particular atoms/ions in
which the above equations are in a limit in which the dependence on ne or Te is weak for a
typical nebula (ne . 1010 m−3 and Te ∼ 104 K). In this way, we can measure the temperature
and density of nebulae from their emission lines.
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Figure 4.1: Sketch of a three level atom.
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[N II]

3P

1D2

1S0

level 1:

level 2:

level 3:

Figure 4.2: Energy levels of N II. The bottom level is split onto 3, but can be approximated as
one level. Adapted from Osterbrock & Ferland, ‘Astrophysics of Gaseous Nebulae
and Active Galactic Nuclei’ (Fig 3.1 on pg 59).
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Figure 4.3: Transitional probabilities of N II and other similar ions. From Osterbrock & Ferland,
‘Astrophysics of Gaseous Nebulae and Active Galactic Nuclei’ (Table 3.12 on pg 56).

4.3 Temperature diagnostics

Ions that can be modelled as a 3 level atom, emit optical/UV lines and have very high critical
densities for all transitions turn out to have F32/F31 line ratios that only really depend on Te
and not on ne . [OIII] and [NII] lines are classic examples. Fig 4.2 shows the energy levels of
[NII]. The most prominent transitions are shown. Any transitions not labelled have very low
Einstein A coe�cients (see the table in Fig 4.3). We see that there are actually 5 levels here, but
we can treat the split 3P level as a single level. In order to do this, we just need to sum up all
the spontaneous emission coe�cients of transitions that end up in the 3P level to get A31 and
A21. The statistical weight of the 3P level is just given by д = (2s + 1)(2` + 1). Alternatively, we
can add up the degeneracy of each of the three sub-levels, (2j + 1). Of course we get the same
answer either way: д1 = 9. Instead of a single F21 line, we will see a doublet if we can resolve it:
one at 658.3 nm and the other at 654.8 nm. We simply need to sum up the �uxes from these
lines: F21 = F658.3nm + F654.8nm. The �ux ratio is:

F32
F21
=

F575.5nm
F658.3nm + F654.8nm

=
n3A32hν23
n2A21hν12

=
n3A32λ12
n2A21λ23

. (4.5)

Since the radiation �eld is weak, the equations of statistical equilibrium are:

n3[A31 +A32 + neC31 + neC32] = ne [n1C13 + n2C23], (4.6)

and:
n2[A21 + neC23 + neC21] = ne [n1C12 + n2C32]. (4.7)

The gaps between energy levels are fairly large compared with kTe , so n3 << n2 << n1, and we
can simplify to:

n3[A31 +A32 + neC31 + neC32] = nen1C13, (4.8)
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Figure 4.4: Collision strengths of N II and other similar ions. From Osterbrock & Ferland,
‘Astrophysics of Gaseous Nebulae and Active Galactic Nuclei’ (Table 3.6 on pg 53).

and:
n2[A21 + neC21] = nen1C12. (4.9)

I said that the critical density is large, meaning that we will be able to use the coronal approxi-
mation. In order to show that, we need the values for the spontaneous emission coe�cients
(Fig 4.3) and the collision strengths (Fig 4.4). From this, we can see that for [NII]:

A32 = A(1S0 →
1 D2) = 1 s−1, (4.10)

A31 = A(1S0 →
3 P0) +A(

1S0 →
3 P1) +A(

1S0 →
3 P2) ≈ 3.3 × 10−2 s−1 (4.11)

A21 = A(1D2 →
3 P0) +A(

1D2 →
3 P1) +A(

1D2 →
3 P2) ≈ 4 × 10−3 s−1, (4.12)

and:

Ω23 = Ω(1D,1 S) = 0.83 (4.13)
Ω13 = Ω(3P,1 S) = 0.29 (4.14)
Ω12 = Ω(3P,1 D) = 2.64. (4.15)

Finally, note that the statistical weights are д1 = 9, д2 = 5, д3 = 1. As an example, the critical
density for the 2→ 1 transition is:

n∗e =
A21
C21
=

4 × 10−3

8.6 × 10−12(Ω12/д2)T
−1/2
e

. (4.16)

For Te = 104 K, this gives n∗e ≈ 9 × 1010 m−3. This is larger than the density of a typical nebula
and so we can indeed employ the coronal approximation to get:

n3[A31 +A32] = ne n1 C13, (4.17)
n2A21 = nen1C12. (4.18)
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Therefore the energy level population ratio is

n3
n2
=

C13A21
C12[A31 +A32]

, (4.19)

which we see is independent of ne . The line ratio is

F575.5nm
F658.3nm + F654.8nm

=
λ12
λ23

C13A32
C12[A31 +A32]

. (4.20)

Now, we know that

C13
C12
=

Ω13
Ω12

exp
[
−
∆E12 − ∆E13

kTe

]
=

Ω13
Ω12

exp
[
−
hν23
kTe

]
. (4.21)

Subbing this in, we get

F575.5nm
F658.3nm + F654.8nm

=
Ω13
Ω12

λ12
λ23

A32
[A31 +A32]

exp
[
−
hν23
kTe

]
= 0.13 exp

[
−

2.5 × 104 K
Te

]
, (4.22)

which we can re-arrange to measure the temperature of a nebula from the observed line ratio.

4.4 Density diagnostics

To estimate density, we again consider a 3-level atom, but now we want a con�guration sensitive
to ne and insensitive to Te . For this, the following properties turn out to be useful:

• A very forbidden 3→ 2 transition (A32 ∼ 0),

• n3 << n2 << n1 for the full range of typical nebula temperatures and densities,

• Collisional transitions between levels 3 and 2 can be ignored,

• The energy gap between levels 2 and 3 is very small.

In this regime, level 3 and level 2 balance become respectively

n3[A31 + neC31] = n1neC13 (4.23)
n2 [A21 + neC21] = n1neC12. (4.24)

The line ratio is therefore:

F31
F12
=
λ12
λ13

A31
A21

n3
n2
=
λ12
λ13

A31
A21

C13
C12

A21 + neC21
A31 + neC31

. (4.25)

The prime examples of density diagnostics are [O II] and [S II], and other examples are [N I],
[Cl III], [Ar IV], [K V] and [Ne IV].

Let’s take a look at one of the prime examples: [O II]. Fig 4.5 shows the energy levels for
[O II] and [S II]. The two transitions shown are both forbidden lines: A31 = 1.8 × 10−4 s−1,
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A21 = 3.6×10−5 s−1, and their wavelengths are very similar (λ12 = 372.9 nm and λ13 = 372.6 nm,
converting from Angstroms to nanometers). The statistical weights are: д1 = 4, д2 = 6, д3 = 4.
The collision strength for transitions from 4S to 2D is Ω = 1.34, and the exact energy level that
electrons end up in when they are collisionally excited to the 2D sub-shell depends on the relative
statistical weights of the two sub-sub-shells in that sub-shell. We can therefore assign e�ective
collision strengths of Ω12 = 1.34 × д2/(д2 + д3) = 0.804 and Ω13 = 1.34 × д3/(д2 + д3) = 0.536.

Now, the line ratio is given by Equation (4.25). The �rst thing we can do is show that the ratio
C13/C12 is more or less independent of temperature because the energy gap between levels 2
and 3 is so small:

C13
C12
=

Ω13
д1

e−hν13/kTe д1
Ω12

ehν12/kTe =
Ω13
Ω12

e−hν23/kTe ≈
Ω13
Ω12
=
д3
д2
. (4.26)

We can then evaluate the line ratio in low and high density regimes. Forne << n∗e , the collisional
de-excitation terms are much less important than the spontaneous emission terms and the line
ratio becomes

F31
F12
=
λ12
λ13

A31
A21

C13
C12

A21
A31
=
λ12
λ13

C13
C12
≈

Ω13
Ω12
=

2
3 , (4.27)

where we have used λ13 ≈ λ12. For ne >> n∗e , the collisional de-excitation terms are dominant
and so Equation (4.25) instead becomes

F31
F12
=
λ12
λ13

A31
A21

C13
C31

C21
C12
=
λ12
λ13

A31
A21

д3
д1

e−hν13/kTe д1
д2

ehν12/kTe =
λ12
λ13

A31
A21

д3
д2

e−hν23/kTe ≈
A31
A21

д3
д2
=

10
3 .

(4.28)
Therefore the line ratio is constant at very low and high densities with a transition for ne ∼ n∗e ,
as is shown in Fig 4.6. For [O II] and [S II], the critical density happens to be ne ∼ 109−10 m−3

for typical nebula temperatures making them very good density diagnostics for nebulae. Fig 4.7
shows real examples of [O II] line doublets, with one near the low density limit and the other
near the high density limit.

4.5 Diagnostic diagrams

In reality, we don’t actually need line ratios that depend only on temperature or only on
density. All we need is to measure line ratios for di�erent atoms, for which the dependence
on temperature and density is di�erent. Fig 4.8 shows a sketch of a diagnostic diagram. Here,
we have measured line ratios for [N II], [O II] and some other ion. The ratio for [N II] is more
or less independent of density and [O II] is more or less independent of temperature. The line
ratio for the other ion depends on both – but this doesn’t matter because we can just compare
all of our line diagnostics from the same spectrum and see where they cross.

Fig 4.9 shows an example of a diagnostic diagram constructed for a real planetary nebula. In
this case, we see that the principle doesn’t pan out – the lines do not intersect at one point,
or in one small region of the diagram. This indicates that di�erent lines are predominantly
emitted from regions of di�erent density and/or temperature. We can see this directly with
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Figure 4.5: Energy levels of O II and S II. From Osterbrock & Ferland, ‘Astrophysics of Gaseous
Nebulae and Active Galactic Nuclei’ (Fig 5.7 on pg 122).
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Figure 4.6: Line ratio as a function of electron density for [OII] at Te = 104 K (although the
temperature dependence is weak). Dashed lines show the low and high density limits
of 2/3 and 10/3.
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Figure 4.7: [O II] doublets in two planetary nebulae. Solid lines are observed and dashed lines
are a �tted double Gaussian model. LMC N110 is near the high density limit (line
ratio ∼ 2.6), and SMC J2 is near the low density limit (line ratio ∼ 0.68). From Barlow
et al (1987).
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4 Emission Line diagnostics: 3 level atom

log(ne)

T e
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Some other 
atom/ion

Figure 4.8: Sketch of a diagnostic diagram showing how line ratios from a region can in principle
be combined to constrain the density and temperature of that region.
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4 Emission Line diagnostics: 3 level atom

Figure 4.9: Diagnostic diagram for the planetary nebula IC 4997. From Hyung, Aller & Feibelman
(1994).
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4 Emission Line diagnostics: 3 level atom

Figure 4.10: M57, the Ring Nebula. Red: [N II] 658.4 nm, Green: [O III] 500.7 nm, Blue: Helium
468.6 nm.
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4 Emission Line diagnostics: 3 level atom

good enough spatial resolution. Fig 4.10 is a particularly spectacular example – the Ring Nebula.
We see that the collisionally excited [N II], [O III] and He II lines are emitted predominantly
from di�erent regions of the nebula. We can understand this a little more quantitatively by
writing out the equation for the �ux of an emission line from a given ion without making the
usual assumption of everything being uniform within the entire emitting volume:

F21 =
hc

λ12

A21
4πd2

∫
n2 dV . (4.29)

Remember that this is for a given ion of a particular element, so we can express this in terms of
the fraction of atoms of the element that are in this particular ionization state:

F21 =
hc

λ12

A21
4πd2

∫
n2
nion

nion
nE

nE dV . (4.30)

Here, nE is the number density of element E and nion is the number density of a particular ionic
species of element E. Modelling the nebula as spherical and de�ning the ionization fraction
ζ ≡ nion/nE gives

F21 =
hc

λ12

A21
d2

∫ rout

0

n2
nion
(r ) ζ (r ) nE r 2 dr . (4.31)

Therefore, if the nebula is radially strati�ed in terms of ionization fraction, or in terms of energy
level populations (e.g. if the temperature is not uniform), this will e�ect the line strengths. We
in particular expect the ionization fraction to be radially strati�ed. As we will see next time, the
central star of the nebula is more easily able to ionize the inner regions. Radial strati�cation is
also present in stars, as the density and temperature change dramatically with distance from
the core. To bring this back to the Ring Nebula, we can for example understand why the [N II]
lines are only present in the outskirts of the nebula: maybe the inner regions are hot enough
for N III and higher ionization species to be more common there than N II.

Finally, we can also use the relative line strengths from di�erent elements to measure relative
abundances. We can manipulate the above equation to become

F21 =
hc

λ12
X
A21
d2

∫ rout

0

n2
nion
(r ) ζ (r ) nH r 2 dr , (4.32)

where X ≡ nE/nH is the chemical abundance of element E relative to hydrogen and nH is the
number density of hydrogen. If we can solve for ionization balance in the nebula, we can then
use line ratios from di�erent elements in order to measure elemental abundances.

Adam Ingram
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5 Ionization and Recombination

5.1 Introduction

So far, we have calculated the expected emission line strengths for various transitions in various
ionic species of various elements. Now we will think about the balance between ionization
and recombination, which governs the relative populations of di�erent ionic species for each
element. Similarly to excitation and de-excitation, we will consider two di�erent types of
ionization and recombination: photo- and collisional.

5.2 Photo-ionization and Photo-recombination

5.2.1 Photoionization

Photo-ionization is simply a photon with energy greater than the ionization potential being
absorbed to liberate an electron. The process can be written as

X i + hν → X i+1 + e, (5.1)

where X i is the atom (or ion) being ionized, hν is the incident photon, X i+1 is the resulting
ion and e is the liberated electron. The free electron now has the energy that the absorbed
photon had, minus the ionization potential of the atomic level it has been liberated from; e.g.
Eγ = 15 eV, Ebound = −13.6 eV gives Efree = Eγ + Ebound = 1.4 eV. The free electron may then
have collisions with other free electrons, leading to the electron energy distribution becoming
Maxwellian. The photoionization rate for ionization of X i

Φi =

∫ ∞

ν0

4πσbfi (ν )
Jν
hν

dν, (5.2)

where σbfi (ν ) is the bound-free absorption cross-section, hν0 is the ionization potential of X i

and Jν is the average speci�c intensity

Jν =
1

4π

∫
IνdΩ. (5.3)

The number of ionizations of X i per unit volume per unit volume per unit second is then niΦi ,
where ni is the number density of X i ions.
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5.2.2 Radiative recombination

This is the thermodynamic inverse of photoionization, so the process can be described by
reversing the arrow in Equation (5.1):

X i+1 + e → X i + hν . (5.4)

Therefore, a free electron (energy Efree) recombines with an ion. It now has (negative) energy
Ebound in its new bound state, and a photon is emitted with energy Eγ = Efree − Ebound. For
example, we can exactly reverse the previous example: Ebound = −13.6 eV, Efree = 1.4 eV means
that the produced photon has Eγ = Efree − Ebound = 1.4 + 13.6eV = 15 eV. The number of
recombinations to a given energy level per unit volume per unit time is then

Recombination rate density = nI+1 ne

∫ ∞

0
σf b (ve ) f (ve )ve dve = nI+1 ne αr , (5.5)

where σf b (ve ) is the free-bound cross-section for capture to a given energy level of a given ion
and αr is the recombination rate coe�cient. If f (ve ) is Maxwellian, then αr ∝ T −1/2

e .

5.3 Collisional ionization and recombination

Collisional ionization takes place when an electron is scattered as it passes an ion, giving up
su�cient energy to liberate a bound electron; i.e.:

X i + e → X i+1 + e + e . (5.6)

The rate of collisional ionizations of X i from energy level Ej is nineQi (j), where ni is again the
number density of X i and Qi (j) is the collisional ionization rate coe�cient:

Qi (j) = 2 × 10−14 ξ j

E2
j
T 1/2
e e−Ej /kTe , (5.7)

where ξ j is the number density of electrons in the jth bound energy level. We therefore see that
Qi is only important for high temperatures: kTe > |Ej |.

Collisional recombination is the thermodynamic inverse of collisional ionization:

X i+1 + e + e → X i + e . (5.8)

Since this only happens when two free electrons scatter o� X i+1 at the same time, it is only
relevant in very dense environments. We will not need to consider collisional recombination in
this course; although, as an aside, it is probably important in accretion discs around stellar-mass
black holes, which can be very dense (as we will see in the High Energy Astrophysics course).
This is currently a bit of a headache for accretion disc models.

The ionization state of a population of ions can be calculated by balancing the ionization and
recombination rates.
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5.4 Hydrogen Recombination

In the case of hydrogen, free electrons recombine with ions and rapidly cascade down from
whatever energy level they �rst recombined to down to the ground state, radiating emission
lines at each step of the cascade. The �ux ratio of emission line i → k to emission line k →m
is simply

Fik
Fkm

=
niAikhνki
nkAkmhνmk

, (5.9)

where i > k and k > m. Therefore this ratio depends on the ratio of the level populations, which
is determined by excitations and de-excitations within each H atom (as before with our 2 level
atom) and ionizations and recombinations. We therefore need to write down a steady state
equation in which the number of electrons leaving each energy level is equal to the number of
electrons entering that level (exactly the same as the statistical equilibrium we have already
considered, but only now we also must account for ionization and recombination!).

In general, this is an extremely di�cult problem, but it simpli�es enormously for hydrogen
when ne . 1016m−3 and Te . 104 K because:

• Collisional de-excitations can be ignored in hydrogen for ne . 1016m−3 because the
spontaneous emission coe�cients are so large (A > 106s−1),

• Collisional excitations are unimportant for Te . 104 K because the energy di�erence
between the ground state and level 2 is high (∆E = 10.2eV >> kTe ),

• Collisional ionization and recombination are also unimportant for the same reasons,

• Electrons can cascade all the way down to the ground state before they are photo-ionized,
again because the A coe�cients are so large.

The energy level balance can therefore be calculated by considering only radiative recombination
and spontaneous emission. Therefore, we can write down the following equation between
electrons entering level k and electrons leaving level k :

ne nH α rk + ni
∑
i>k

Aik = nk
∑
m<k

Akm, (5.10)

where nH is the number density of hydrogen atoms. The �rst term on the LHS is electrons
recombining to level k , the second is electrons decaying to level k from a higher bound level,
and the RHS is electrons decaying from level k to a lower level. This forms a set of coupled
equations (i.e. one equation for each value of k) called the capture-cascade equations. To solve
them, we can pick some high energy level I and assume that the electron population above that
level is zero:

ne nH α rI = nI

I−1∑
m=1

AIm, (5.11)

and re-arrange to get

nI =
ne nH α rI∑I−1
m=1 AIm

∝ ne nhT
−1/2
e , (5.12)
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where the �nal step comes from α rI ∝ T
−1/2
e , which as we saw earlier comes from assuming a

Maxwell distribution of electron velocities. We can then move on to level I − 1:

ne nH α rI−1 + nIAI (I−1) = nI−1

I−2∑
m=1

A(I−1)m . (5.13)

Re-arranging gives

nI−1 =
ne nH α rI−1 + nIAI (I−1)∑I−2

m=1 A(I−1)m

=
α rI−1/α

r
I +AI (I−1)/

∑I−1
m=1 AIm∑I−2

m=1 A(I−1)m
ne nH α rI . (5.14)

We could stay here all day working through all the other levels, but hopefully you can already
see that we will get expressions with more and more ratios of recombination coe�cients and
a �nal factor of ne nH α rI . Now, the ratio of recombination coe�cients α rm/α rk is only weakly
dependent on ne and Te . If we assumed for illustration that every α rm/α rk is constant, then we
would end up with nk ∝ ne nH T −1/2

e for each level k , and the �ux ratio between any two lines
would be constant. The relative �ux of two Balmer lines (e.g. Hα �ux / Hβ �ux) is called the
Balmer decrement and is only weakly dependent on electron temperature. More accurately:

F (Hα )

F (Hβ )
= 2.86

(
Te

104K

)−0.07
, (5.15)

which is accurate to within 1% over the range 108 . ne . 1010m−3 and 5 × 103 . Te . 1.2 × 104

K – and can therefore be used for most planetary nebulae. Simple relations between Brackett
and Balmer lines can also be used in the same limit

F (Brα )

F (Hβ )
= 0.079

(
Te

104K

)−0.36
, (5.16)

F (Brγ )

F (Hβ )
= 0.028

(
Te

104K

)−0.24
. (5.17)

Another useful relation that is valid in the same range of density and temperature is that the
ratio of ionizing photons ÛNγ to photons in the Hα line is ÛNγ / ÛNHα = 2.2. You will use this ratio
in one of the problem sets in order to calculate the rate of ionizing photons from the �ux in the
Hα emission line, and the distance to the nebula emitting the line. Note that, if we can measure
the bolometric luminosity by integrating the spectrum over a wide range of wavelengths, we
can compare it with the inferred ÛNγ in order to constrain an e�ective temperature of the star;
i.e. ÛNγ depends on both the bolometric luminosity and spectral shape of the star. Assuming
that the star’s spectrum is a Planck function with temperature Tef f , this temperature Tef f can
be constrained by comparing the inferred values of ÛNγ and Lbol .

Note: (hc = 1.99 × 10−25Jm = 1.24 × 10−6 eV m)
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5.5 Stromgren Sphere

The Stromgren sphere is a very simple model for ionization balance. Imagine we have a nebula
made of pure hydrogen gas with a central star. The star radiates ionizing photons, which are
absorbed by HI atoms to create HII ions and free electrons. These HII ions in time recombine
with free electrons. The nebula is in equilibrium, so the number of ionizations is equal to the
number of recombinations. The Stromgren sphere is the spherical region in which nearly all of
the hydrogen is ionized. This is called an HII region.

To calculate the radius of the Stromgren sphere, we start o� by setting the ionization rate equal
to the recombination rate. The recombination rate per unit volume is α rnenHI I . For a spherical
region of radius R with a uniform density across its volume, the recombination rate is therefore

Recombination rate = α rnenHI I
4
3πR

3 (5.18)

If the rate of ionizing photons per second being radiated by the central star is ÛNγ , and if every
photon from the star is eventually absorbed by an HI atom, then the ionization rate is simply
ÛNγ . Therefore, in equilibrium we have:

α rnenHI I
4
3πR

3 = ÛNγ . (5.19)

Now, we want to de�ne the size of the region in which the HII content approaches 100%. In
this limit, we have ne = nHI I . Subbing this into the above equation and re-arranging gives the
radius of the HII region (the Stromgren sphere):

R3
s =

(
3 ÛNγ

4πα rn2
e

)1/3

. (5.20)

The emission rate of ionized photons can then be calculated e.g. from the �ux of the Hα line
measured from the nebula using the ÛNγ / ÛNHα = 2.2 relation, providing the distance to the
nebula is known.

The above is very simpli�ed. In reality, the photo-ionization rate (from earlier on in the lecture)
for isotropic radiation (so that Jν = Iν ) is:

ΦHI =

∫ ∞

ν0

4π Iν
hν

σbf (ν ) dν . (5.21)

Now, the Einstein A coe�cients are very large for hydrogen, and so if a hydrogen atom re-
combines to an excited state, the electron will very quickly cascade down to the ground state,
usually before there is time for the atom to be once more ionized. We can therefore assume
that the bound free cross section is only the cross-section for photoionization from the ground
state. This also means that photons must all have energy ≥ 13.6 eV to ionize HI, and therefore
in the above integral ν0 = 13.6eV/h. Before, we just simply assumed that the ionization rate
is ΦHI = ÛNγ . We can make this approximation because the absorption cross section is large
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Spectral Type ÛNγ (s−1) R (pc)
G2V 1039 6.7 × 10−5

B0V 4 × 1046 1.6 × 10−2

O6V 1049 0.1

Table 5.1: Typical Stromgren sphere radii for a ne = 1010m−3 nebulae with central star of
di�erent spectral type.

(note that 4π Iνσ (ν )dν is a photon rate). By setting ΦHI = ÛNγ , we are simply assuming that all
photons ionize HI atoms, and none �y out of the nebula. The above equation is therefore more
accurate and we see we will get ΦHI < ÛNγ .

There is also a subtlety with recombination. That is, any time a HI atom recombines directly
to the ground state, an ionizing photon will be emitted. Note that the energy of the emitted
photon (called a Lyman α continuum photon) in this case will be equal to the energy that the
captured electron had plus 13.6 eV, and therefore all photons emitted due to recombination to
the ground state will be energetic enough to ionize another HI atom. This photon will be quickly
absorbed, and so recombinations directly to the ground state contribute no net recombinations!
This means that the recombination coe�cient for recombinations to the ground state must be
ignored, and the α r we must use in our formula for the radius of the Stromgren sphere is the
sum of the recombination coe�cients for all other levels: α r (Te ) =

∑∞
k=2 α

r
k (Te ). At Te = 104 K,

α r = 2.6 × 10−19 m3s−1.

Table 5.1 shows some typical values for the Stromgren sphere radius assuming central stars of
di�erent spectral type. We see that for a very hot central star, the HII region may be resolvable if
the nebula is close enough to us. Fig 5.1 shows a particularly spectacular example of a resolvable
HII region: the Rosetta nebula. The hole in the centre of the red emission is the HII region and
is almost 1 degree across (note that, instead of a central star, here there is a central star cluster).

5.5.1 Ionization Timescales

Now let us consider how the HII region formed. In the simplest case, we had a nebula made
up entirely of bound H atoms, when suddenly a star formed at the centre and began to emit
ionizing photons. This leads to an ionization front moving out from the star as the newly formed
HII region gets bigger until it eventually becomes the size of the Stromgren sphere and stops
expanding. To calculate the expansion rate, we can imagine the HII region at a given point in
time to be a sphere (radius R) and consider a shell (width ∆R) of neutral H atoms immediately
outside of that sphere. In the ionized sphere, we have ne (R) = nHI I (R), nH (R) = 0 and in the
neutral shell we have nHI I (R) = ne (R) = 0, and nH (R) in the shell is equal to nHI I (R) in the
sphere. The number of H atoms in the shell is

H atoms in the shell = 4πR2nH (R)∆R. (5.22)

The number of ionizing photons being provided by the star in a time interval ∆t is ÛNγ∆t . Not
all of these photons are available to ionized H atoms in the shell though, because some ionize H
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Figure 5.1: The Rosetta nebula.

atoms within the sphere. The only photons that are available to ionize H atoms in the shell are
the ones that escape the sphere. In other words, the number of ionizing photons in the shell is
ÛNγ∆t minus the number of ionizations within the sphere in time interval ∆t . The sphere is in

equilibrium, so the number of ionizations in the HII region equals the number of recombinations.
We therefore have that the number of ionizing photons available to the shell is

Ionizing photons in the shell = ÛNγ∆t −
4
3πR

3α rn2
HI I (R)∆t . (5.23)

If each photon in the shell ionizes an H atom, we have:

4πR2nH (R + ∆R)∆R = ÛNγ∆t −
4
3πR

3α rn2
HI I (R)∆t

4πR2nH (R)
dR

dt
= ÛNγ −

4
3πR

3α rn2
H (R), (5.24)

Where nH (R) refers to the density of H atoms in the shell (= number of HII atoms in the sphere).
We can simplify this equation by subbing in the variables λ = R/Rs and τ = t/tr ec , where
tr ec = 1/(α rnH ) and Rs is the Stromgren sphere radius. This gives

4πnhλ2 R3
s

tr ec

dλ

dτ
= ÛNγ −

4
3πλ

3R3
sα

rn2
h . (5.25)

Multiplying by tr ec/R
3
s gives

3λ2dλ

dτ
= 1 − λ3. (5.26)
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We can solve this with the substitution y = λ3, which simpli�es the equation to dy/dτ = 1 − y.
Since λ = 0 when τ = 0, the solution becomes

λ3(t) = 1 − e−τ . (5.27)

Assuming uniform density, we can convert λ back to R to get

R(t) = Rs
[
1 − e−t/tr ec

]1/3
. (5.28)

This makes sense: the ionization front moves out with some characteristic e-folding recom-
bination timescale, tr ec = 1/(α rnH ), and asymptotes at R = Rs . Fig 5.2 shows a particularly
dramatic example of a propagating ioization front in the ‘pillars of creation’.

5.6 Electron temperature from balance of heating and cooling

We can now appreciate that the electron temperature of a nebula or star, or basically anything
in statistical equilibrium, is set by a balance of heating and cooling. Heating is set by the
photoionization rate and cooling is set by the rate of photons leaving the nebula. Fig 5.3 shows
the electron temperature dependence of the heating rate (dashed line) for di�erent temperatures
of the central star, T∗, and of the overall cooling rate (solid line).

Since most emission from a nebula is in the form of lines, line emission dominates the cooling
rate. The plot also shows contributions from various lines to the cooling rate. We see that they
all increase rapidly with temperature. This is because they are all collisionally excited lines, and
so higher temperature means that more electrons are in the excited states required for these
lines to form.

The heating rate, on the other hand, decreases fairly slowly with electron temperature. This
is because 1) the photo-recombination rate decreases with temperature, and 2) collisional
ionizations become more important for high Te , and they ionize neutral hydrogen, leaving less
neutral hydrogen to be photo-ionized.

This thermostatic process gives most H II regions temperatures of around 104 K.

Adam Ingram
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Figure 5.2: The Pillars of creation in the Eagle Nebula. Image taken by the Hubble Space
Telescope in 1995.
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Figure 5.3: Balance of heating from photo-ionization and cooling from line emission in a nebula.
From Osterbrock & Ferland, ‘Astrophysics of Gaseous Nebulae and Active Galactic
Nuclei’ (Fig 3.3 on pg 63).
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6 Absorption Lines

6.1 Introduction

We have spent the last few lectures thinking about emission lines, which happen when Sν >
Iν (τ = 0); i.e. the medium in our line of sight to a light source is hotter than the source itself.
Now we’re going to think about the opposite case of Sν < Iν (τ = 0); i.e. the medium in our line
of sight is colder than the source. This can happen when cool gas lies between the observer and
a hot source such as a quasar or a star. This is the context we will consider for the this lecture,
but note that absorption lines also occur in stars from the outer layers absorbing radiation from
the optically thick core.

In the cool absorbing gas, the atoms (or ions) will typically be in a low-lying state (precisely
because the gas is cool), such that absorption occurs predominantly from the ground state.
For hydrogen, almost all atoms are in n = 1, so we only see Lyman series absorption from
interstellar matter (although note that this may not be the case in e.g. stellar atmospheres).
Since absorbing atoms tend to be in their ground state, we will be able to model absorption
lines due to the level 1→ 2 transition in a 2-level atom.

6.2 Equivalent width

When we see an absorption line in an observed spectrum, the �rst thing we will want to do is
measure its strength. A useful measurement of the line strength is the equivalent width (EW),
Wλ . Fig 6.1 shows that the EW is the width that the line would have if it had the same area as
the observed line, but only it saturates to have a purely rectangular line pro�le. One useful
property of the equivalent width is that it is normalized to the continuum �ux, and so we do
not need to know the exact level of the continuum in order to de�ne the strength of the line
(therefore we do not need good absolute �ux calibration for example). The equivalent width is
typically de�ned to be a wavelength:

Wλ =

∫ λ=∞

λ=0

I contλ − Iλ

I contλ
dλ, (6.1)

where I contλ is the continuum level, which can be determined either by measuring the �ux in a
region with no lines or �tting a model etc. Obviously, it is also possible to de�ne an analogous
expression for the EW in frequency unitsWν . Here, we will useWλ , but we can still work with
photon frequencies instead of wavelengths by using the relations c = νλ and Iν = (λ/ν )Iλ from
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Figure 6.1: Illustration of the equivalent width of an absorption line.
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Lecture 1. This gives

Wλ =

∫ ν=∞

ν=0

I contν − Iν

I contν

λ

ν
dν . (6.2)

We can then use the formal solution of the radiative transfer equation, Iν = I contν exp(−τν ), to
�nd

Wλ =

∫ ν=∞

ν=0
[1 − e−τν ] c

ν2 dν . (6.3)

Note that this is the optical depth of the 1→ 2 transition, and so τν here is a narrow function
centered on ν = ν12.

Since the optical depth governs the strength of the line, it is convenient to de�ne the integrated
optical depth of the line:

τ12 =

∫ ν=∞

ν=0
τν dν . (6.4)

From the de�nition of the optical depth in terms of the absorption coe�cient, this becomes

τ12 =

∫ ν=∞

ν=0

∫
s
αν ds dν =

∫
s
n1

[∫ ν=∞

ν=0

αν
n1

dν

]
ds = σ12

∫
s
n1ds = N1 σ12, (6.5)

where
σ12 =

∫ ν=∞

ν=0
σν dν =

∫ ν=∞

ν=0

αν
n1

dν, (6.6)

is the cross-section of the line and N1 is the column density. This is the number of absorbing
particles along the path length per unit area. For example, if a beam from a background source
passes a distance s through an absorbing cloud, and the 1→ 2 transition refers to hydrogen,
then N1 is the number of ground state hydrogen atoms per unit area in the cloud along a path
length s .

From the above equations, we see that if we measure the EW of an absorption line, we can
use this to measure the column density of the absorbing atom/ion – but only if we know the
cross-section of the line. We therefore need to calculate the theoretically expected line cross
section.

6.3 Line cross section

In order to calculate the line cross section, let’s return to our model for the 2-level atom. Recall
that the net rate of electrons per unit volume being excited from level 1 to level 2 due to
absorption is

Excitation rate per unit volume = [n1B12 − n2B21]

∫
uνϕ(ν )dν, (6.7)

where B12 represents absorption, B21 represents stimulated emission the energy density is
related to the speci�c intensity as

uν =
1
c

∫
IνdΩ, (6.8)
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and ϕ(ν ) is the line pro�le – a narrow function centered at ν = ν12. Most of the time we’ve been
thinking about this as a δ−function, but let’s keep things nice and general for the time being.

Since each excitation leads to photons transferring energy hν to a ground state electron, the
energy taken out of the beam by a volume dV of absorbing material in a time interval dt and
frequency interval dν , is:

dE = hν uν [n1B12 − n2B21]ϕ(ν )dt dV dν . (6.9)

Subbing in the above expression for uν gives

dE

dΩ
= hν

Iν
c
[n1B12 − n2B21]ϕ(ν )dt dV dν, (6.10)

and expressing the volume element in terms of an area element and a path length element,
dV = dA ds , allows us to calculate the reduction in the speci�c intensity of the beam due to
absorption

− dIν =
dE

dAdtdνdΩ
= hν

Iν
c
[n1B12 − n2B21]ϕ(ν ) ds . (6.11)

We can then calculate the absorption coe�cient, αν , from dIν = −αν Iν ds:

αν =
hν

c
[n1B12 − n2B21]ϕ(ν ). (6.12)

Finally, we can calculate the line cross section

σ12 =

∫
hν

c
[B12 −

n2
n1

B21]ϕ(ν )dν ≈
hν12
c
[B12 −

n2
n1

B21], (6.13)

and the line optical depth trivially follows: τ12 = N1σ12.

So we can calculate the line cross section in terms of the Einstein B coe�cients, but now we
need to know how to calculate the B coe�cients from quantum mechanics!

6.4 Einstein B coe�icients: oscillator strength

First, we can derive the relationship between B12 and B21 by looking at the limit of TE (just as
we did for the C coe�cients). This gives:

B21 =
д1
д2
B12, (6.14)

(see Appendix for the derivation). The line cross section therefore becomes

σ12 = σabs

[
1 − n2

n1

д1
д2

]
, (6.15)

where the integrated atomic absorption cross section is

σabs =

∫
hν

c
B12ϕ(ν ) dν ≈

hν12
c

B12. (6.16)

65



6 Absorption Lines

We therefore need to know the level populations in order to calculate σ12. In general though,
we don’t know n2/n1. One regime in which we do know n2/n1 is in TE – in that case, n2/n1 is
simply given by the Boltzmann distribution:

n1
n2
=
д1
д2

exp
[
hν12
kTe

]
. (6.17)

It is therefore useful to express the energy levels in terms of departure coe�cients, such that

n2
n1
=
b2
b1

д1
д2

exp
[
hν12
kTe

]
. (6.18)

Clearly in TE, b2/b1 = 1, and out of TE, b2/b1 , 1. We can now write out our expression for the
line cross section

σ12 = σabs

[
1 − b2

b1
e−hν12/kTe

]
. (6.19)

Now we only need to know how to calculate σabs from quantum mechanics! It is useful to
express the absorption coe�cient in terms of the absorption oscillator strength, f12:

B12 =
πe2

mehν12
f12 (6.20)

where e is the electron charge andme is the electron mass. Therefore

σabs =
πe2

mec
f12, (6.21)

and we can simply look up the oscillation strength for a given excitation in a book (e.g. Astro-
physical Quantities by C W Allen or the NIST database).

6.5 Limiting cases

We can now calculate the line EW in terms of the column density N1, the absorption oscillator
strength, f12, and the departure coe�cients, b2/b1. As always, it is instructive to look at a few
limiting cases.

Optically thin (weak) lines at short wavelengths

In this case, τν << 1, and therefore we can Taylor expand the exponential in the expression for
the EW,

Wλ =

∫ ν=∞

ν=0
[1 − e−τν ] c

ν2 dν, (6.22)

to get

Wλ ≈

∫ ν=∞

ν=0
τν

c

ν2 dν ≈
λ2

12
c

τ12 =
λ2

12
c

N1σ12. (6.23)
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For lines at optical / UV (or even shorter) wavelengths, we have hν12 >> kTe , and so the
exponential in the expression for σ12 becomes very small. We can therefore simply write

σ12 = σabs . (6.24)

Therefore, in the case of weak (i.e. not saturated) optical lines, the EW is linearly related to the
column density

Wλ =
λ2

12
c
N1

πe2

mec
f12. (6.25)

We can therefore measure the column density of, say, hydrogen by measuring the equivalent
width of hydrogen absorption lines (recall we should only really see Lyman series lines in
absorption because cold hydrogen is mostly in the ground state) and applying the formula

N1 =
mec

2

πe2
Wλ

f12λ
2
12
, (6.26)

which becomes (
N1

cm−2

)
= 1.13 × 1017 (Wλ/mÅ)

f12(λ12/Å)2
. (6.27)

Lines at long wavelengths

For IR - radio lines, which have hν12 << kTe , σ12 , σabs , but we can instead Taylor expand the
exponential in our equation for σ12 to get

σ12 ≈ σabs

[
1 − b2

b1

(
1 − hν12

kTe

)]
. (6.28)

Therefore, stimulated emission can reduce the strength of absorption lines with long wave-
lengths. In fact, in some extreme cases we can get population inversion, whereby

b2
b1
>

1
1 − hν12/kTe

. (6.29)

In this case, we actually have n2/n1 > 1, leading to net negative absorption! So in this case, the
absorption line is actually an emission line. Such anti-absorption lines occur in the microwave
and radio spectra of masers, mostly in diatomic molecules such as OH and SIO. We will not be
covering molecular lines in this course, but the concept is the same: population inversion leads
to the absorption line actually being in emission.

Masers can be extremely useful astrophysically because the produce very strong emission lines.
Fig 6.2 shows an example of OH maser lines in the galaxy Arp 220. The rest frame frequencies
of these lines are 1665 MHz and 1667 MHz, but they have been redshifted by bulk velocity of
the gas, and also broadened by the velocity dispersion of the gas. These strong lines can be used
to accurately map out the velocity of gas in galaxies.
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Figure 6.2: OH maser emission from Arp 220. The lines shown are the 1665 and 1667 MHz
transitions, which have been redshifted to lower frequency. The data shown here
were acquired using the Arecibo observatory.
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Figure 6.3: Energy levels of a neutral carbon atom.

69



6 Absorption Lines

6.6 Excitation temperature

We can estimate the temperature of the gas imprinting absorption lines onto an observed
spectrum by comparing the EWs of di�erent lines from the same atom/ion. Since most absorbing
atoms are in their ground state, atoms in which multiple lines originate from a split ground
state are particularly useful. If these lines are at optical/UV rest frame wavelengths and are
optically thin, then even better: we can use Equation 6.25 to calculate the EWs of lines from the
lower / upper ground state (level 1 / 2) to the excited state (level 3), and approximate the level
populations with the Boltzmann formula, to get:

Wλ23

Wλ13
=

(
λ23
λ13

)2 f23
f13

д2
д1

e−∆E12/kTe . (6.30)

The resulting temperature estimate is called the excitation temperature.

A good example of an atom with a split lower level is neutral carbon (CI). Fig 6.3 shows the
energy levels of CI. The ground state 3P is a triplet, and there are multiple transitions up to the
3Po level (the "o" meaning odd parity – note the 3P →3 Po transition is essentially one electron
transitioning from n = 2, ` = 1 to n = 3, ` = 0), all with very similar wavelengths and fairly
similar oscillator strengths (see the �gure). Transitions from the 3P0, 3P1 and 3P2 states are
called C0, C0∗ and C0∗∗ respectively. If we can measure the equivalent widths of all of these
di�erent lines in the λ ≈ 1657Å region, then we can use the above formula to get two estimates
of the excitation temperature by comparing the EW of the C0 line with the combined EWs of
the C0∗ lines, and also with the combined EWs of the C0∗∗ lines.

An example of an observed spectrum with CI absorption lines is shown in Fig 6.4. The continuum
is from a distant quasar PKS 1232+0815, at redshift z = 2.33771, and the lines are imprinted by
a cool cloud of gas in the line of sight, in this case fairly close to the quasar itself. The original
measurement of the excitation temperature of these lines in 2000 was very important because
it provided the �rst direct observational con�rmation of a very fundamental cosmological
prediction: that the cosmic microwave background (CMB) cools over time as the Universe
expands. This is possible because the gas in the ISM is excited by CMB photons, and so the
excitation temperature gives an estimate of the CMB temperature at the redshift of the gas.
Speci�cally, we expect the CMB temperature to go as TCMB(z) = (1 + z)TCMB(z = 0), where
TCMB(z = 0) = 2.726 K is the CMB temperature today. For one of the homework problems, you
will use the column densities of the C0, C0∗ and C0∗∗ lines measured by Srianand et al (2000) et
al from the spectrum shown in Fig 6.4 to estimate TCMB(z = 2.3).

6.7 Curve of Growth

We already know that for optically thin lines,Wλ ∝ N1. To extend this relation to intermediate
and large optical depths, we must appreciate that the observed line can be broadened by two
main mechanisms:

1. By Doppler shifts due to motions of the absorbing atoms/ions,
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Figure 6.4: C0,C0∗ andC0∗∗ absorption lines seen in the spectrum of the z = 2.33771 quasar PKS
1232+0815. From Srianand, Petitjean & Ledoux (2000), Nature.

2. ‘Natural’ broadening due to the Heisenberg uncertainty principle.

As for the �rst process: if the ion is travelling with a velocity v towards the observer, then the
observed frequency of the line from that ion will be shifted by the Doppler e�ect:

νobs = νem
(
1 + v

c

)
. (6.31)

The ions are all travelling in di�erent directions with di�erent speeds and so we will see a
distribution of di�erent Doppler shifts. If the variance of line of sight velocities is σ 2 (the velocity
dispersion), then the line pro�le is

Iν = I contν exp [−τ12д(ν )] , (6.32)

where
д(ν ) = exp

(
−
(ν − ν12)

2

2(σν12)2

)
, (6.33)

is a Gaussian function and ν12 is the rest frame frequency of the line. The velocity dispersion
can be a combination of thermal motions and turbulence, σ 2 = kTion/(mionc

2) + σ 2
turb .

Fig 6.5 shows how the resulting line pro�le changes as the optical depth increases (here, τ12
is increasing from 1 to 10 in steps of 1 and I arbitrarily assumed σ = 10−2). We see that the
line EW, as expected, grows linearly for low optical depth, but at τ12 ∼ 5 the line core saturates,
and so doubling the number of ions in the line of sight suddenly doesn’t double the equivalent
width of the line anymore (note how close e.g. the τ12 = 9 and τ12 = 10 lines are to each other).
The line EW can only grow by the �ux in the wings getting lower.
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Figure 6.5: Absorption line pro�le broadened by Gaussian mechanisms (σ = 10−2) for 10 di�erent
optical depths: τ12 = 1 (top), τ12 = 10 (bottom), intermediate lines are in steps of
∆τ12 = 1.
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12Figure 6.6: Absorption line pro�le broadened by Lorentzian mechanisms (∆ = 10−3ν12) for 10

di�erent optical depths: τ12 = 1 (top), τ12 = 10 (bottom), intermediate lines are in
steps of ∆τ12 = 1.
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The uncertainty principle does not broaden the line into a Gaussian pro�le, but into a Lorentzian
pro�le:

`(ν ) =
∆2

(ν − ν0)2 + ∆2 , (6.34)

where ∆ is the half width at half maximum. The line pro�le in the absence of any Doppler
broadening is therefore Iν ∝ exp[−τ12`(ν )]. Fig 6.6 shows the resulting line pro�le for the
same 10 values of optical depth as before (I arbitrarily assumed ∆ = 10−3ν0). We see that the
Lorentzian function has a narrow core and broad lines. This means that it does not saturate
until the optical depth is huge, and when it does saturate, the broad wings means that the EW
keeps on growing as τ12 increases.

These two processes combine via a convolution (Voigt pro�le). The relation between column
density and line EW for this combined pro�le, known as the curve of growth, is shown in Fig 6.7.
We see 3 regimes:

Low optical depths:Wλ ∝ N1, as expected.

Intermediate optical depths:Wλ ∝
√

ln(N1), as the core of the Gaussian component becomes
saturated and so it is di�cult to grow the EW by adding more column density.

High optical depths:Wλ ∝
√
N1. Eventually, the line becomes so saturated that the wings of

the Lorentzian become important, and the EW grows as a steeper function of N1.

6.8 The ISM and IGM

Gas associated with galaxies is called the interstellar medium (ISM), and gas outside of galaxies is
called the intergalactic medium (IGM). Absorption lines imprinted on the spectra of background
light sources can be used to measure the properties of the ISM and IGM.

6.8.1 The Lyman alpha forest

The Lyman α forest is a huge number of absorption lines seen in the spectra of very distant
galaxies and quasars. Fig 6.8 shows an example: The spectrum of a z = 3.63 quasar has many
absorption lines imprinted onto it by gas at lower redshifts. The broad emission lines, including
Lyman α at λ = 3.63 × 1216Å = 6562.8Å, are from the quasar itself. The vast majority of these
absorption lines are Lyman α lines (rest frame wavelength λLyα = 1216Å) imprinted by clouds
of H I gas at di�erent redshifts, and the higher column density clouds also imprint higher order
Lyman series lines at shorter wavelengths. Fig 6.9 demonstrates that we can in principle use the
number of lines and the column density of each line to reconstruct the number and density of
clouds as a function of redshift. The observations show that the number of clouds increases as
a function of redshift, which is nicely explained by the expansion of the Universe. The number
of clouds at redshifts approaching that of the quasar is actually seen to drop o� (the proximity
e�ect). This is because the quasar ionizes the gas in its direct vicinity, thus reducing the H I
column density of these clouds. In cosmological models, these clouds are actually sheets and
�laments in the cosmic web (see Fig 6.10), either associated with galaxies (ISM) or not (IGM).
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Figure 6.7: Curve of growth: EW as a function of column density. From Aller, ‘Atoms, Stars and
Nebulae’ (1971).

Figure 6.8: Spectrum of a z = 3.63 quasar (x-axis is wavelength in Angstroms) with a ‘forest’ of
Lyman series of absorption lines imprinted by gas clouds at a range of redshifts, all
lower than the redshift of the background quasar.
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Figure 6.9: Schematic representation of the Lyman α forest: clouds at di�erent distances from
us imprint Lyman series absorption lines on the spectrum with di�erent redshifts.

Figure 6.10: A computer simulation of a possible Lyman α forest con�guration at z = 3 (Shalf
et al 2000).
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In addition to Lyman series absorption lines, the observed spectrum also drops-o� sharply at a
rest frame wavelength of 912Å. This is called the Lyman limit, and photons at this or shorter
wavelengths can ionize neutral hydrogen (i.e. hc/λ > 13.6 eV). Since the ionization cross-section
of hydrogen is so high, the Universe is opaque to photons just bluer than the Lyman limit (recall
that the cross-section drops o� as ν−3, so the Universe is transparent to soft X-rays and even
shorter wavelengths).

6.8.2 The Gunn-Peterson Trough

Since the epoch of reionization, most of the hydrogen in the Universe has been ionized. This
means that the H I column density of clouds intercepted after reionization is quite low (i.e. most
of the hydrogen is H II). We still see the Lyman α forest absorption lines though because the
cross section of Lyman α is huge – and so only a small column density of material is needed for
a line to be observable. If we were to see photons that were emitted from a quasar before the
end of the epoch of reionization, those photons would have travelled through a huge H I column
on their way to us, since the ionization fraction of hydrogen back then was so much lower. The
Lyman α lines imprinted on the spectrum at this time would therefore be so saturated that they
would completely blend together, leaving no �ux at all in the portion of the spectrum covered
by the lines. If the portion of the spectrum covered by these lines stretches all the way down to
the Lyman limit at the redshift of the quasar, then we would see no �ux at all blueward of the
most redshifted Lyman α absorption line. This is called the Gunn-Peterson trough.

The �rst observational con�rmation of the Gunn-Peterson trough is shown in Fig 6.11. This is
from Becker et al (2001) using data from the Sloan Digital Sky Survey (SDSS). The three quasars
at z < 6 show strong absorption lines blueward of λ = zλLyα , but there are still some spikes in
�ux. For the z > 6 quasar, however, the �ux at wavelengths shorter than λ = zλLyα is ∼zero.
This con�rms that the epoch of reionization ended at z ∼ 6.

The sharp drop-o� in �ux caused by the Lyman limit and/or Gunn-Peterson trough provides
a way to search for high redshift galaxies and quasars. The drop-out technique consists of
searching for sources that are visible at longer wavelengths but suddenly disappear at shorter
wavelengths (see Fig 6.12). Typically, candidates are identi�ed using photometry and then later
con�rmed by spectroscopic follow up.

6.9 Appendix: relation between Einstein coe�icients

In TE, there is detailed balance:

n1B12uν12 = n2A21 + n2B21uν12, (6.35)

where we have gone back to approximating ϕ(ν ) = δ (ν − ν12) because life is too short! Re-
arranging the above equation, we �nd

uν12 =
A21/B21

(n1/n2)(B12/B21) − 1 . (6.36)
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Figure 6.11: Spectra of four SDSS quasars from Becker et al (2001). The highest redshift quasar
has essentially no �ux at wavelengths below that of the highly redshifted Lyman α
line (marked by a dashed line). This is the �rst observational con�rmation of the
Gunn-Peterson trough.
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Figure 6.12: Illustration of the drop-out technique to discover distant galaxies and quasars. A
high redshift galaxy can be seen in some photometry �lters but not in others.
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In TE, the levels follow the Boltzmann distribution:

n1
n2
=
д1
д2

exp
[
hν12
kTe

]
, (6.37)

giving
uν12 =

A21/B21
(д1/д2)(B12/B21) exp(hν12/kTe ) − 1 . (6.38)

In thermal equilibrium, we also have Iν = Bν , meaning that

uν12 = 4π
2hν3

12/c
3

exp(hν12/kTe ) − 1 (6.39)

for isotropic emission. The above two equations need to equal each other for all values of Te ,
meaning

(д1/д2)(B12/B21) = 1, (6.40)

and
A21
B21
=

8πhν3
12

c3 . (6.41)

We therefore have our desired relation between the absorption and stimulated emission coe�-
cients

B21 =
д1
д2
B12. (6.42)

Adam Ingram
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7 Stellar Spectroscopy

7.1 Introduction

In this Lecture we will learn about radiative transfer in stars, using a lot of what we’ve learned
so far about the radiative transfer equation, blackbody radiation, and absorption lines.

7.2 Stars

7.2.1 Basic Properties

Stars are extremely optically thick objects: a photon emitted in the core will be scattered /
absorbed and re-emitted many times before �nally leaving the star. For example, the mean
free path of photons in the Sun is ` ∼ 1 cm (i.e. α ∼ 1cm−1), and the radius of the Sun is
R� = 6.957 × 105 km. A photon emitted in the core will follow a random walk to get out of the
Sun, and so after N interactions it will cover a distance R = `N 1/2. Plugging the numbers in for
the Sun gives N ∼ 1020.

The density and temperature peak in the core and drop o� towards the surface (see Fig 7.1 and
Fig 7.2). Since there is a temperature gradient, stars are not formally in TE, but the temperature
gradient is small over a distance of ` and so the conditions of LTE are met. This means that
the electron temperature is equal to the photon temperature throughout the stellar interior.
The surface layer is called the photosphere: this is de�ned as the region where photons can
stream freely out of the star and is ∼ 10− 100 km thick in the Sun (note that ` is much longer at
R ∼ R� than at R ∼ 0 because the density is so much lower). Since photons can now escape, the
photosphere is not in LTE; and since the photosphere is cooler than the interior, it imprints
absorption lines onto the thermal spectrum. Outside of the photosphere is a thin atmosphere (Fig
7.2, right). In the atmosphere, the electron temperature increases, but the photon temperature
is the same as it was when the photons were emitted in the photosphere – i.e. the atmosphere
is far from LTE. We see in the �gure that the atmosphere consists of the chromosphere and the
much hotter corona.

7.2.2 Spectral Classifications

Stars have a quasi-blackbody spectrum with absorption lines. Fig 7.3 shows the spectrum of the
Sun: it has an e�ective temperature of Te� = 5, 777 K, with absorption lines imprinted onto it.
The absorption lines are called Fraunhofer lines (after Joseph von Fraunhofer). Early on, it was
noted that di�erent stars had di�erent patterns of absorption lines, and so stars were classi�ed
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Figure 7.1: Density of the Sun as a function of radius. Rs = R� = 6.957 × 105 km.

by these patterns of lines. The spectra were not understood, so the names of the classi�cation
system are rather arbitrary. The spectral types are: O, B, A, F, G, K, M. The traditional mnemonic
to remember this is Oh Be A Fine Girl Kiss Me, although this sounds very dated so perhaps we
need a new one. We now know that the e�ective temperature (and therefore mass) decreases
from class O to class M: Te� goes from ∼ 40, 000 K in O stars to ∼ 1, 500 K in M stars.

There are further sub-divisions. Numbers 0-9 are appended as sub-divisions of e�ective temper-
ature with 0 as the hottest, therefore the hottest type is O0 and the coolest is M9. Finally, a third
Roman numeral, I-VII is appended to convey compactness, with I being the least dense and VII
being the most dense. Compactness is often expressed in terms of surface gravity, д = GM/R2,
and we see from the de�nition that denser stars clearly have a higher surface gravity. Main
sequence stars – otherwise known as dwarf stars – are of class V, whereas evolved giants and
supergiants have a lower Roman numeral, and sub-dwarfs and white dwarfs are respectively VI
and VII. The Sun is of spectral type G2V, in that its e�ective temperature falls in the G2 class,
and it is a main sequence star.

7.3 Emergent Flux

Now let’s use the radiative transfer equation to calculate the �ux that we will see from di�erent
parts of a star’s surface.
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Figure 7.2: Left: Temperature of the Sun as a function of radius (Rs = R� = 6.957 × 105 km).
The electron temperature is equal to the photon temperature because the interior of
the Sun is in LTE. Right: Electron temperature of the Sun’s atmosphere as a function
of distance from the surface. The photon temperature is the same as that in the
photosphere (T ∼ 5, 800 K).

7.3.1 Radial optical depth

Fig 7.4 illustrates that we observe light from a star along rays. These rays travel in straight lines
that intersect the star, as shown. Until now, we have been de�ning the optical depth along the
ray: the path for a given ray is s ′ = 0 at the back of the star to s ′ = s at the front of the star,
such that the ray goes from τ ′ν = 0 to τ ′ν = τν . Even though this de�nition of the optical depth
is very convenient for a plane-parallel geometry with the light ray travelling perpendicular
to the surface, it is not very convenient for a star. This is because in a star we have spherical
symmetry, and therefore αν and jν are both functions of R. It is therefore more convenient to
re-de�ne the optical depth as a radial optical depth:

dτν = −ανdR, (7.1)

such that the optical depth for a ray that travels from R′ = R to R′ = R∗ is:

τν (R) = −

∫ R

R∗
αν (R

′) dR′ =

∫ R∗

R
αν (R

′) dR′. (7.2)

Note that, as well as the new de�nition being radial, it also di�ers from the old de�nition in
another way: it is de�ned backwards, such that τν = 0 at the surface of the star. I will use this
new de�nition of the optical depth for the entire lecture. It is a very useful quantity because it
makes it easy to think about how far into a star we are looking.
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Figure 7.3: Spectrum of the Sun: a quasi-blackbody spectrum withTe� = 5, 777 K and absorption
lines.

84



7 Stellar Spectroscopy
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Figure 7.4: Schematic of light rays from a star travelling to the observer. The radial optical depth
τν tells us how far into the star we are seeing, so τν (R∗) = 0.

We can now take the radiative transfer equation:

dIν
ds
(µ,R) = jν (R) − αν (R)Iν (µ,R), (7.3)

and re-express it in terms of our new de�nition of τν . From the �gure, we see that ds = dR/µ,
and so:

µ
dIν
dR
(µ,R) = jν (R) − αν (R)Iν (µ,R). (7.4)

Subbing in dτν = −ανdR then gives:

µ
dIν
dτν
(µ, τν ) = Iν (µ, τν ) − Sν (τν ). (7.5)

This is the version of the radiative transfer equation that we will solve for a star.

7.3.2 Formal solution

We already solved the radiative transfer equation in Lecture 2 using the old de�nition of optical
depth. We can use the same method to solve with the new de�nition of optical depth. First,
multiply Equation (7.5) by e−τν /µ to get:

e−τν /µµ dIν
dτν
(µ, τν ) = e−τν /µ [Iν (µ, τν ) − Sν (τν )] . (7.6)
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We can then use the product rule to show that:

d

dτν

[
e−τν /µ Iν (µ, τν )

]
= −

Sν
µ

e−τν /µ . (7.7)

To solve, we now need to integrate backwards down the ray; i.e. following back from the
observer to the star. To keep things general, let us integrate from τout to τin , such that τin > τout
because τin is deeper inside of the star than τout . This gives:[

Iν (tν )e−tν /µ
] tν=τin
tν=τout

= −

∫ τin

τout
Sν (tν )e−tν /µ

dtν
µ
, (7.8)

where tν is the dummy integration variable for optical depth. Re-arranging, we get:

Iν (τout , µ) = Iν (τin, µ)e−(τin−τout )/µ +
∫ τin

τout
Sν (tν )e−(tν−τout )/µ

dtν
µ
. (7.9)

Here, the two terms of the RHS can be interpreted as before. The �rst term is the intensity
originating from inside of τin , decreased by absorption along the path of the ray from τin to τout .
The second term is the contribution from emission along the path, also decreased by absorption.

7.3.3 Eddington-Barbier Relation

Let’s take our formal solution to the radiative transfer equation and apply it to a star. For a ray
that travels from deep within the star, τin = ∞, all the way to the surface, τout = 0, to then be
measured by the observer, the solution becomes:

Iν (0, µ) =
∫ ∞

0
Sν (tν )e−tν /µ

dtν
µ
. (7.10)

We see that the emergent intensity, perhaps unsurprisingly, depends critically on the source
function Sν (τν ). We do not know a priori what the τν dependence of the source function is,
but we know that it increases with τν because we know that the temperature increases as we
go deeper into the star. We can approximate the source function by Taylor expanding around
τν = 0 and only keeping linear terms to get

Sν (τν ) = aν + bντν . (7.11)

I will justify this assumption a little more later, but for now we can look at our equation for the
emergent intensity and realize that it is a weighted average of the source function at di�erent
optical depths. This weighted average is dominated by the small optical depths. Another way of
putting it is that we don’t expect to be able to see far into the star, in that the photons that we
detect were very likely emitted from τ . 1 (recall that τ ∼ 1 corresponds to the mean free path
of photons in the medium). It is therefore a good approximation to consider Sν in the small τν
limit.
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θ

dR
ds

ds

dR = μds
∴ τν ∝ μ

Figure 7.5: Schematic demonstrating that we always see the same path length into a star, there-
fore we the depth we see into the star depends on θ .

Subbing our linear approximation of the source function into the equation for the emergent
speci�c intensity gives:

Iν (0, µ) =
∫ ∞

0
[aν + bν tν ] e−tν /µ

dtν
µ
, (7.12)

which becomes
Iν (0, µ) = aν + bν µ . (7.13)

We therefore see that:
Iν (0, µ) = Sν (τν = µ). (7.14)

This is the Eddington-Barbier relation. It says that the speci�c intensity we see is just the source
function at an optical depth of τν = µ. Therefore, for the sight line that intersects the centre
of the star, we see the source function at τν = 1. On the other hand, sight lines that intersect
the limb (i.e. the very outside of the star) only see down to τν = 0. This is demonstrated
schematically in Fig 7.5: if we always see the same path length ds into the star, then the depth
dR we see into the star is dR = µds . This means that we always see down to a depth of τν /µ = 1.

For most stars, we just see the integrated �ux and therefore cannot resolve out the speci�c
intensity at di�erent angular separations from the centre. It therefore makes sense to calculate
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the integrated emergent �ux from the entire surface of the star by integrating over solid angle:

Fν = 2π
∫ 1

0
Iν (0, µ)µdµ (7.15)

= 2π
∫ 1

0

[
aν µ + bν µ

2] dµ (7.16)

= 2π
{
aν

[
µ2

2

]1

0
+ bν

[
µ3

3

]1

0

}
(7.17)

Fν = π

{
aν +

2
3bν

}
. (7.18)

Therefore the average emergent speci�c intensity is Iν = Fν /π = aν + 2bν /3, and so

Iν = Sν (τν = 2/3). (7.19)

Therefore, on average we see down to an optical depth of τν = 2/3.

7.3.4 The Grey Atmosphere

Further intuition can be gained from a simplifying case in which we ignore the frequency
dependence of αν . This is called the grey atmosphere approximation. The solution to the
radiative transfer equation for a ray in the star travelling from t = ∞ to t = τ now becomes

I (τ , µ) =

∫ ∞

τ
S(t)e−(t−τ )/µ dt

µ
. (7.20)

In the grey atmosphere approximation, we can derive a simple form for the source function,
provided we appreciate that the star is in LTE everywhere, and make one more approximation
called the Eddington Approximation. That is, we will approximate the star as an ideal isotropic
gas. In this case, the radiation pressure P is related to the total radiation density, u, (this is just
the integral over all frequencies of uν ) as P = u/3. Recalling that u = 4π J/c , where J is the
mean intensity gives

P(τ ) =
4π
3c J (τ ). (7.21)

The mean intensity and the radiation pressure are de�ned as:

J (τ ) =
1
2

∫ +1

−1
I (τ , µ)dµ (7.22)

P(τ ) =
2π
c

∫ +1

−1
I (τ , µ)µ2dµ, (7.23)

where the integral runs from µ = −1 to µ = +1 because we are inside of the star, so photons can
move inwards as well as outwards. It is useful to also de�ne the total radiative �ux

F (τ ) = 2π
∫ +1

−1
I (τ , µ)µdµ . (7.24)
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Because the star is in LTE everywhere, F must be constant. This comes from equilibrium and
energy conservation considerations: all regions are in LTE and so the energy �ux must be
uniform across the entire system. We therefore know that dF/dτ = 0. Di�erentiating our
expression for F (τ ) and inserting our de�nition of µdI/dτ gives

dF

dτ
= 0 = 2π

∫ +1

−1
(I − S)dµ = 2π

[∫ +1

−1
Idµ −

∫ +1

−1
Sdµ

]
= 4π (J − S). (7.25)

We therefore see that J = S , which we expected because the star is in LTE.

We can use the same trick on the radiation pressure to get

dP

dτ
=

F

c
. (7.26)

Integrating this (inde�nite integral) gives

P(τ ) =
F

c
[τ +A] , (7.27)

where A is an integration constant. Combining our two expressions for the radiation pressure
gives

S(τ ) =
3F
4π (τ +A), (7.28)

which is the promised further justi�cation of the linear form we assumed for the source function
earlier in the lecture.

All that remains now is to �nd the value of the integration constant. To do this, we can �rst
calculate the emergent intensity by integrating down the ray from τ = 0 to τ = ∞:

I (0, µ) = 3F
4π

∫ ∞

0
(t +A)e−t/µdt (7.29)

=
3F
4π

[
µ

∫ ∞

0
(t/µ)e−t/µd(t/µ) +A

∫ ∞

0
e−t/µd(t/µ)

]
(7.30)

=
3F
4π (µ +A). (7.31)

From this, we can calculate the radiative �ux escaping the star:

F (τ = 0) = 2π
∫ 1

0
I (0, µ)µdµ (7.32)

=
3F
2

∫ 1

0
(µ2 +Aµ)dµ (7.33)

=
3F
2

[
µ3

3 +A
µ2

2

]1

0
(7.34)

=
3F
2

[
1
3 +

A

2

]
. (7.35)
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Since, F is a constant, we can set F (τ = 0) = F to �nd that:

A =
2
3 . (7.36)

The source function, under the grey atmosphere approximation and the Eddington approxima-
tion, is therefore

S(τ ) =
3F
4π

(
τ +

2
3

)
. (7.37)

Therefore, our assumption that S is linear in τ from before is justi�ed. From this relation, it
is fairly straightforward to see that, on average, we see an optical depth of τ = 2/3 into the
star. This is because we know that the intensity integrated over the entire star must follow
I = F/π (by de�nition), and must be equal to the source function at some optical depth. The
above equation therefore tells us that I = F/π = (3F/4π )(τ + 2/3), and re-arranging we see that
τ = 2/3.

7.3.5 Limb Darkening

Now we have calculated a form for the source function, we can use the Eddington-Barbier
relation [I (0, µ) = S(τ = µ)] to calculate how the intensity varies as a function of the angle θ .
This is the limb darkening law:

I (0, µ)
I (0, 1) =

S(τ = µ)

S(τ = 1) =
3
5

[
µ +

2
3

]
. (7.38)

Fig 7.6 shows how the intensity of the star is expected to vary as a function of projected distance
on the sky from the centre of the star, r . The projected distance is r = R∗ sinθ , R∗ is the stellar
radius, and I have simply used the limb darkening law above. We can see limb darkening in
images of the Sun: see Fig 7.7

This is the limb darkening law for the frequency integrated intensity. Breaking down into
narrow frequency ranges, we expect limb darkening to be more extreme for blue light than
for red light. This is because the spectrum is a blackbody function, Iν (0, µ) = Bν (T (µ)), and
so the intensity dropping o� towards the limbs of the star means that the temperature also
drops o� towards the limbs (as you will explore in the second problem set). Fig 7.8 shows how
the temperature dropping o� with projected distance from the centre leads to limb darkening
becoming more extreme for higher frequencies. Another way we can think of limb darkening
is that the temperature of the star decreases with radius, and so we see a hotter spectrum for
sight lines that penetrate further into the star.

It has long been possible to observe this wavelength dependent limb darkening e�ect for the
sun. It is now even possible to detect limb darkening for unresolved stars, because the limb
darkening law shows up in the pro�le of exoplanet transits. Fig 7.9 shows the expected �ux from
the star as the exoplanet transits across our line of sight (from Knutson et al 2007). Bluer light
has deeper and narrower transits due to the wavelength dependence of the limb darkening law.
This is actually seen in observational data: Fig 7.10 shows transits of the exoplanet HD 209458b
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Figure 7.6: Limb darkening law derived from the grey atmosphere approximation.

91



7 Stellar Spectroscopy

Figure 7.7: Image of the sun. Note the limb darkening.
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Figure 7.8: Spectrum from the centre (black) and limb (grey) of the sun. The red, green and blue
lines mark the frequencies of red, green and blue light. We see that limb darkening
is more extreme for higher frequencies, since the Planck functions diverge at high ν .
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Figure 7.9: Model expolanet transit pro�les for di�erent wavelengths of visible light, taking
stellar limb darkening into account.

in front of the star HD 209458, taken with the Hubble Space Telescope (Knutson et al 2007).
The out-of-transit �ux level has been shifted for clarity, but we can see that the wavelength
dependence of the transits is exactly as expected from the simple limb darkening model.

7.4 The Emergent Spectrum

From what we’ve discussed so far, it is clear that the spectrum of a star is a sum of blackbody
functions, since di�erent sight lines each see a black body spectrum with a slightly di�erent
temperature, depending on how far into the star that sight line sees. Speci�cally, the overall
(continuum) speci�c intensity is:

Iν =
1
π

2π
∫ 1

0
Bν [T (µ)]µdµ . (7.39)

This would be the whole story if the entire star were in LTE, but the atmosphere is not in LTE.
It cannot be in LTE because photons can freely escape instead of staying in the star to share
their energy. Since the photosphere is out of LTE and it is cooler than the rest of the star, it
imprints absorption lines and edges onto the spectrum. Fig 7.11 illustrates the formation of
absorption lines schematically. For a given µ, we always see down to the same optical depth,
but for frequencies with an enhanced absorption coe�cient αν , this optical depth corresponds
to a larger radius. Therefore these frequencies sample a cooler spectrum and we see a dip in
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Figure 7.10: Transits of the exoplanet HD 209458b in front of its host star (Knutson et al 2007) at
di�erent wavelengths of light. The black lines represent the limb darkening model.
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Figure 7.11: Schematic illustration of absorption line formation in the photosphere.
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the overall spectrum. Clearly, the concept is the same whether we are talking about absorption
lines or edges.

The lines and edges that we see in the spectrum of a given star depend on the form of the
absorption coe�cient, αν , which in turn depends on the ionization balance and excitation levels
of bound electrons in the atmosphere. In stars, it is more common to talk in terms of the opacity.
This is very simply related to the absorption coe�cient via the mass density ρ: κν = αν /ρ (units
m2/kg). We can therefore say that the nature of the absorption lines we see depends on what
the dominant sources of opacity are in the atmosphere. There are three kinds of process that
contribute to the opacity:

1. Bound-bound transitions. These are absorption lines: either photo-excitations in atoms
or rotational-vibration transitions in molecules (which we will not be covering in this
course).

2. Bound-free transitions. These are absorption edges resulting from photo-ionization
events.

3. Free-free transitions. This covers all transitions whereby both particles start and �nish
unbound. For example, photons scattering o� free electrons, electrons interacting with
ions via the Coulomb force (bremsstrahlung), or electrons interacting with the magnetic
�eld (synchrotron).

Fig 7.12 shows examples of optical spectra for stars across the range of stellar classi�cations,
from O stars (hottest, top) to M stars (coolest, bottom). We see that the continuum changes
across the classes, which is of course because the e�ective temperature is decreasing from
∼ 40, 000 K to ∼ 1, 500 K from O to M stars, meaning that O stars peak in the UV and M stars
peak in the IR. The changes in absorption lines across the classes is dramatic. We see that Balmer
lines and the Balmer edge are strongest for stars with intermediate e�ective temperatures, and
molecular lines dominate for the coolest stars.

7.4.1 Absorption Lines

Fig 7.13 shows how the EW of di�erent lines changes with spectral class. We see that hydrogen
peaks for Tef f ∼ 10, 000K, metals are most important for Tef f ∼ 5, 000K, and molecules (TiO)
become important for Tef f ∼ 3, 000K. Naively, it is remarkable that hydrogen does not always
contribute the strongest lines, since it is by far the most abundant element in main sequence
stars. So, why does H I only contribute signi�cantly to the optical opacity for a small range of
spectral classes? The answer is two fold:

1. The hydrogen lines that contribute to the optical opacity are the Balmer series lines. For
a Balmer series absorption line to occur, there must be an electron already in the n = 2
shell. Therefore, for Balmer lines to be important, the star’s atmosphere needs to be hot
enough for a signi�cant population to be excited to the n = 2 level.

2. To get hydrogen lines at all, there need to be neutral hydrogen atoms. Therefore, for H
lines to be important, the star’s atmosphere needs to be cool enough for there to be a
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Figure 7.12: Example optical spectra for a range of stellar classes.
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Figure 7.13: Line strengths for di�erent spectral classes of stars.

signi�cant population of neutral hydrogen atoms.

We can therefore understand the H line in Fig 7.13 as a trade o� between two e�ects: the hottest
stars have no hydrogen lines because all the hydrogen is ionized, and the coolest stars have no
Balmer lines because there aren’t enough H atoms with electrons in the n = 2 shell.

We can do this a little more quantitatively using what we learned in the previous lecture. For
optically thin lines, the EW of a Balmer series absorption line (transition from n = 2 to n = k in
a neutral hydrogen atom) is

Wλ ∝ λ
2
2k

(
n2
nHI

)
j
(1 − ζ ) f2k (E), (7.40)

where ζ = nHI I /nH is the ionization fraction and f is the oscillator strength. The above assumes
that nH = nHI +nHI I , and therefore nHI /nH = (1−ζ ). Because the star is in LTE, we can use the
Boltzmann distribution to describe the level populations. For hydrogen (дj = 2j2, Ej = −13.6/j2),
this gives:

nj

nHI
=

j2 exp[13.6eV/(j2kT )]∑
i i

2 exp[13.6eV/(i2kT )] . (7.41)

The resulting temperature dependence of n2/nHI is plotted in Fig 7.14 (top, red dashed line).

Now all that remains is to calculate the ionization fraction. In LTE, ionization balance is given
by the Saha equation:

ni+1
ni
=

2
ne

дi+1
дi

(
2πmekT

h2

)3/2
e−Ei /kT , (7.42)
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Figure 7.14: Estimates of excited fraction n2/nHI (top, dashed red line) and bound fraction (1−ζ )

(middle, solid black line) for hydrogen, assuming ne = 5 × 1020m−3. The product
of these two quantities (bottom, solid blue line) is proportional to the EW of the
Balmer series lines.
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Figure 7.15: Opacity of H−.

where ni+1 and ni are ion number densities of the (i + 1)th and ith ionization state (not number
densities of bound electrons), Ei is the ionization potential of the ith ion (i.e. the energy required
to liberate an electron for the ground state of the ion i), and дi+1 and дi are the statistical weights
of the ground state of the two varieties of ion. For hydrogen this becomes

ζ

1 − ζ =
(
2πmekT

h2

)3/2 1
ne

e−13.6eV/kT , (7.43)

because the statistical weights are дHI I = 1, and дHI = 2. The resulting temperature dependence
of (1 − ζ ) is plotted in Fig 7.14 (middle, black solid line), assuming ne = 5 × 1020m−3. We see
that, as expected, the lowest temperature stars have plenty of neutral H atoms but very few
of them are in the excited n = 2 state. On the other hand, the hottest stars have very few
neutral H atoms. These two considerations balance out at T ∼ 10, 000 K (bottom, blue solid
line), therefore explaining why A stars have the strongest Balmer lines. We can use similar
reasoning to understand the temperature dependence of heavy element lines.

7.4.2 Absorption Edges and Continuum Opacity

Looking back at Fig 7.12, we see the Balmer edge – a sharp drop in �ux blueward of 365 nm
– only for intermediate spectral classes. This happens for exactly the same reason as for the
Balmer lines: for the hottest stars there is not enough H I, and for the coolest stars there is
enough H I, but too small a fraction of the H I atoms are in the n = 2 required for a Balmer
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bound-free transition. Note however that the spectrum of the hottest stars with no Balmer jump
continues to rise for λ < 365nm, whereas the spectrum of the coolest stars is still suppressed
for λ < 365 nm, even though there is no Balmer jump.

This continuum suppression is primarily due to opacity of the negative hydrogen ion H−. This
is a hydrogen nucleus with two bound electrons, and has an ionization potential of 0.75 eV
(λ = 1, 650 nm). Fig 7.15 shows the absorption cross-section of H−. We see there are two
components. The bound-free contribution is just photo-ionization. This is a very di�erent cross
section to other bound-free transitions – we may naively expect to see a function going as λ3

for λ < 1, 650 nm and zero for λ > 1, 650 nm. Instead, it is a broad bump for λ < 1, 650 nm.
The free-free contribution is the opposite of Bremsstrahlung radiation. For Bremsstrahlung
radiation, an electron is decelerated by an ion due to the Coulomb force, and emits a photon to
conserve energy. In the case of inverse Bremsstrahlung, the electron instead absorbs a photon
during this deceleration, meaning that the electron keeps more kinetic energy than it otherwise
would have.

Since the ionization potential of H− is so low (0.75 eV), it is an important source of opacity in
all stars that are cool enough to have a signi�cant H− population (solar and cooler). It is not
important at all in the highest temperature stars, because all H− atoms are ‘ionized’ to HI or
HII (we can again use the Saha equation to calculate this). Finally, in the very hottest stars,
electron-proton scattering becomes a dominant source of opacity, as there are so many free
electrons.

Adam Ingram
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8 Dust

8.1 Introduction

Dust consists of particles ranging in size from a few molecules to ∼micrometers (Fig 8.1). It
is very important in astronomy. Partly as a nuisance, since it absorbs and scatters light and
re-emits it at longer wavelengths. Optical and UV light is preferentially absorbed / scattered,
and re-emission is at longer wavelengths, therefore the process of dust scattering and absorption
tends to be referred to as extinction or reddining. Clearly, the greater the column of dust we
look through, the greater the reddening. This can be seen in the deep �eld images taken by
HST (optical) and ALMA (sub-mm) that are shown in Fig 8.2. Dust re-emission is also polarised,
which provides a challenge for experiments aiming to measure the polarisation of the cosmic
microwave background (CMB) radiation. Most infamously, the BICEP2 experiment announced
the detection of polarisation B-modes originating from gravitational waves during the epoch
of in�ation in 2014, but it was later realised that the contribution of Galactic dust had been
slightly underestimated (Fig 8.3). The BICEP2 collaboration withdrew their claim when they
re-calculated that foreground dust alone could potentially explain the detected signal within
statistical errors. Dust is important as more than just a nuisance though. The process of planet
formation relies on particles in a proto-planetary disc around a young star coagulating into larger
and larger grains. These grains eventually become large enough to grow into ‘planetesimals’,
which eventually become planets. This process is still not well understood and is the subject of
active research.

In this lecture, we will cover the extinction curve, which governs the contribution of dust
extinction as a function of wavelength, we will learn about some of the absorption and scattering
processes that determine the shape of the extinction curve, and we will calculate dust heating
and re-emission.

8.2 Extinction curve

8.2.1 The Form of the Extinction Curve

Dust extinction is quanti�ed in terms of its a�ect on the apparent magnitude of an object. The
apparent magnitude relative to some constant reference star (e.g. Vega) is

mν ≡ −2.5 log10

(
Fν

F
r ef
ν

)
. (8.1)
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interplanetary dust particles

But detailed physical and chemical properties
remain uncertain
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• Extinction (and polarization) of starlight

• Infrared emission from particles with 10< T <1000K

• Spectroscopic identification of absorption and emission

bands

• Depletions of gas-phase refractory
elements

• Reflection	nebulae

• In-situ measurements of meteorites and
interplanetary dust particles

But detailed physical and chemical properties
remain uncertain Figure 8.1: Dust grains grown in a lab.

If the speci�c �ux of the object with no extinction is F 0
ν , then the apparent magnitude is

mν ≡ −2.5 log10

(
(F 0
ν /Fν )Fν

F
r ef
ν

)
= −2.5 log10

(
Fν

F
r ef
ν

)
− 2.5 log10

(
Fν

F 0
ν

)
=m0

ν +Aν , (8.2)

where Aν ≡ −2.5 log10(Fν /F
0
ν ) is the frequency-dependent extinction in terms of magnitudes.

Note that larger Aν makes the apparent magnitude more positive, which corresponds to lower
observed �ux (I know, I don’t like magnitudes any more than you do!).

The form of Aν can be determined empirically using a number of methods. First is the pair
method, which involves comparing the spectrum of two stars of the same spectral type. If one
of the stars has negligible foreground dust but the other is heavily reddened, then Aν can be
inferred by assuming A∞ = 0. Say the apparent magnitude of the un-reddened and reddened
stars are respectivelym1(ν ) andm1(ν ). The two stars are assumed to have the same intrinsic
spectral shape, but they are likely at di�erent distances and so will have di�erent integrated
apparent magnitudes. Therefore, the un-reddened magnitudes of the two stars arem0

1(ν ) and
m0

2(ν ) = m0
1(ν ) + C , where C is a constant (unknown if we do not know the distance to the

two stars). Since star 1 is un-reddened, we simply havem1(ν ) =m
0
1(ν ), whereas the apparent

magnitude of star 2 is m2(ν ) = m0
2(ν ) + A(ν ). Combining these equations and assuming that

extinction is not important at the longest wavelengths yields:

A(ν ) = [m2(ν ) −m2(∞)] − [m1(ν ) −m1(∞)]. (8.3)

Another method involves using the known relative strengths of hydrogen recombination
lines. Recall from Lecture 5 that the �ux ratios of Balmer lines depend only very weakly on
electron temperature, and so are fairly well determined theoretically. The same is true for
longer wavelength series of H transitions, therefore an observed spectrum that contains H
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Figure 8.2: Near and far galaxies seen by Hubble (optical; source: K. Lanzetta, SUNY-SB) and
ALMA (sub-mm; source: Wootten and Gallimore, NRAO). More distant galaxies are
more reddened due to the greater column density of dust along the longer line of
sight.
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Figure 8.3: Polarization of 353 GHz radiation detected by Planck in the BICEP2 �eld. Colours
are emission from dust, relief is orientation of the Galactic magnetic �eld, and the
white patch depicts a region of the sky observed by both the Keck observatory and
by BICEP2. Dust contributes polarised emission to the BICEP2 �eld that cannot be
ignored. Source: ESA/Planck Collaboration, M-A Miville-Deschênes, CNRS – Institut
d’Astrophysique Spatiale, Université Paris-XI, Orsay, France
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Figure 8.4: Observed spectrum of the Galaxy centre (black) corrected for extinction using H
line ratios (red points). The blue line is a model for the un-extincted spectrum. From
Fritz et al (2011).

recombination lines can be de-reddened by comparison to theoretical line ratios. Fig 8.4 shows
an example of the IR spectrum of the Galaxy centre, Sgr A. The enhanced extinction at 10µm
and 20µm is due to absorption by silicate dust.

These empirical methods have shown that the amount of dust extinction varies with line of
sight (e.g. the Galaxy centre is very dusty), but the general form of Aν is fairly universal in
that it can be modelled with reasonably few parameters (see Draine 2003, Annual Review of
Astronomy & Astrophysics, 41, pp.241-289). The dimensionless quantity RV ≡ AV /(AB −AV )

is a common measure of the slope of the extinction curve in the optical region. Here, the V
and B bands are centered respectively on λ ≈ 551 nm and λ ≈ 569 nm. A gray extinction curve
would have RV →∞, and a very steep extinction curve of Aν ∝ ν4 would give RV ≈ 1.2. The
measured values of RV for di�erent sight lines range from RV ∼ 2.1 − 5.8.

Fig 8.5 shows the extinction curve for di�erent values of RV . Note that this is plotted as a
function of wave number, so everything to the right of 1/λ ≈ 2.5 on this plot is UV. Clearly
extinction occurs most dramatically for UV (as we expected). The curves all peak at 1/λ ≈ 12.5,
such that extinction is not so extreme for X-rays. We see a large feature at ∼ 220 nm, and we
can even see the tiny silicate feature at 1/λ ≈ 0.1 that we already saw in the previous plot.

8.2.2 Processes Contributing to Extinction

The extinction curve Aν is, to within a factor of ∼ 1.09, equal to the optical depth of extinction,
since

Fν = F 0
ν exp(−τ extν ), (8.4)

and therefore
Aν ≡ −2.5 log10(Fν /F

0
ν ) = 2.5 log10(e)τ extν ≈ τ extν . (8.5)
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Figure 8.5: Extinction curve for di�erent values of RV as a ratio toAI (I band centered on λ ≈ 806
nm, 1/λ ≈ 1.24µm−1). The curves all peak and turn over at λ ∼ 80nm, corresponding
to 1/λ ∼ 12.5µm−1 which is just o� the plot. Note that optical is 1/λ ∼ 1.43−2.5µm−1.
From Draine et al (2003)
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Aν

ν

Absorption

Scattering

~optical

∝ ν4∝ ν
(Rayleigh scattering)

Figure 8.6: Schematic of extinction curve demonstrating the relative importance of scattering
and absorption. At long wavelengths, the continuum of both processes can be
represented by a power-law.

As usual, we can represent the optical depth in terms of a column density and a cross-section:
τ extν = Ndustσ

ext
ν . We can then de�ne a cross-section for absorption, σabsν , and a cross-section

for scattering, σ scaν , such that σ extν = σabsν + σ scaν . It is usual to represent the cross-sections in
terms of their geometrical cross-section multiplied by a correction factor

σabsν = πa2Qabs
ν (8.6)

σ scaν = πa2Qsca
ν (8.7)

σ extν = πa2Qext
ν , (8.8)

such that Qext
ν = Qabs

ν +Qsca
ν is the e�ciency factor for dust extinction. Here, we are assum-

ing that the dust grains are ∼spherical with radius a. The distribution of dust grain sizes is
approximately:

dN

da
∝

{
a−3.5e−a/a0 for a ≥ amin,

0 for a < amin,
(8.9)

where amin ∼ 1 nm and a0 ∼ 0.25 µm.

Fig 8.6 shows a sketch of the extinction curve with contributions from absorption and scattering.

Sca�ering

Scattering in the (a/λ) << 1 regime is Rayleigh scattering, and the scattered �ux is ∝ a6/λ4.
Therefore, in this regime, illustrated in Fig 8.7, bluer light is preferentially scattered over redder
light. This is the regime of Earth’s atmosphere on a cloudless day: the Sun appears to be yellow
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Figure 8.7: Schematic of Rayleigh scattering.

even though it is actually white, and the sky is blue, because we are seeing predominantly blue
photons that came from the Sun and have been scattered. Another famous example of scattered
light is the re�ection nebulae surrounding the Pleiades. The blue �laments of light shown in
Fig 8.8 are due to scattering of light from the stars into our line of sight.

Absorption

There are a number of narrow absorption features, and the continuum absorption goes asAν ∝ ν
for the longest wavelengths. Absorption by molecules is beyond the scope of this course, and
dust grains are made up of complex molecules, so we will only cover this qualitatively. I already
said that the feature at ∼ 10µm is due to absorption from silicate molecules (the Si-O bond
stretching mode). The origin of the very large feature at λ ∼ 220nm is actually still uncertain.
Candidates include graphitic carbon (Draine & Lee 1984, ApJ, 285, 89) and Polycyclic Aromatic
Hydrocarbon (PAH) molecules (Weingartner & Draine 2001, ApJ, 548, 296). These molecules
have complex structures – see examples in Fig 8.10.

8.3 Dust heating

Whenever dust absorbs radiation, it is heated and the energy absorbed is then re-emitted at
longer wavelengths. This happens in protoplanetary discs around young stars. Fig 8.11 shows
an ALMA image of the young (∼ 1 million years old) stellar system HL Tauri. The star is at the
centre radiating in optical, and the protoplanetary disc around it is being heated by the star, and
this energy is being re-emitted at wavelengths that ALMA is sensitive to (∼ 0.3 − 3.6 µm). The
gaps in the disc are thought to be young planets clearing out dust lanes around their orbits. It is,
however, di�cult to understand theoretically how planets could have formed quite so quickly!

We can calculate the temperature of dust at a given distance from the star. If the luminosity of
the irradiating star is

L =

∫ ∞

0
Lνdν, (8.10)
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Figure 8.8: The Pleiades. The blue fuzz around the stars is due to scattering of star light into
our line of sight.
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Figure 8.9: Images of the ‘dark cloud’ Barnard 68 at di�erent wavelengths. Clearly, shorter
wavelengths are preferentially absorbed. Source: ESO.
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Figure 8.10: Examples of Polycyclic Aromatic Hydrocarbon (PAH) molecules.
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Figure 8.11: Protoplanetary disc around HL Tauri imaged by ALMA (λ ∼ 0.3 − 3.6 mm). The
distance to the star is ∼ 450 light years, and the disc is ∼1,500 light minutes across.
Image Credit: ALMA (ESO/NAOJ/NRAO), NSF.
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then the power absorbed by spherical dust grains with radius a a distance d from the star is

Labs =

∫ ∞

0

Lν
4πd2σ

abs
ν dν . (8.11)

From before, we know that the cross-section is σabsν = πa2Qabs
ν , therefore

Labs =
πa2

4πd2

∫ ∞

0
LνQ

abs
ν dν . (8.12)

The dust grains radiate a with a speci�c intensity I emν , such that the power re-emitted from the
grains is

Lem = 4πa2
∫ ∞

0
π I emν dν, (8.13)

where we recall that π Iν is a speci�c �ux to explain the factor of π in the integral. If the system
is in equilibrium, the emitted power equals the absorbed power,

πa2

4πd2

∫ ∞

0
LνQ

abs
ν dν = 4πa2

∫ ∞

0
π I emν dν, (8.14)

such that all of the ∼optical/UV light absorbed by the dust grains is re-emitted. The spectrum
re-emitted by the dust grains is not quite thermal, but it is useful to de�ne a characteristic
temperature for the grains. We can therefore assign an e�ective temperature (recall this from
Lecture 1), such that Iν = Qem

ν Bν . We then have

πa2

4πd2

∫ ∞

0
LνQ

abs
ν dν = 4πa2

∫ ∞

0
πQem

ν Bν (T )dν . (8.15)

We could then calculate the e�ective temperature of the dust grains if we knew the exact
spectrum of the star and the exact forms of Qabs

ν and Qem
ν . This is di�cult in practice, but the

equations can be simpli�ed by introducing averaged quantities:

πa2

4πd2 〈QUV 〉

∫ ∞

0
Lνdν = 4πa2〈QI R〉

∫ ∞

0
πBν (T )dν, (8.16)

where
〈QUV 〉 ≡

1
L

∫ ∞

0
LνQ

abs
ν dν, (8.17)

and

〈QI R〉 ≡

∫ ∞
0 Qem

ν Bν (T )dν∫ ∞
0 Bν (T )dν

, (8.18)

where the names come from absorption (emission) being primarily in the UV (IR). In one of
the homework problems, you will be asked to calculate grain temperatures for given values
of 〈QI R〉/〈QUV 〉. Note that the grain size a drops out of the above equations explicitly, but the
absorption / scattering cross-section depends on a, and so the size of the dust grains governs
the value of 〈QI R〉/〈QUV 〉.

Adam Ingram
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