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Today’s lecture

• Power-law distribution of high-energy particles from space.

• Second- and first-order Fermi acceleration.

• Fermi acceleration by shock crossing to produce a power-law
distribution of particle energies.



Recap of shock results

ρd
ρu

= 4; vuvd
= 4

Td = 3mv2
u

16kB



How to obtain a power-law energy distribution

We are now in a position to investigate mechanisms for producing
power-law distributions of particle energies, i.e. those of the form

N(E) ∝ Eα

Where α is some constant. Such distributions are sometimes
referred to as non-thermal because they vary significantly from a
Maxwellian distribution.



Spectrum of cosmic rays (mostly protons). Maxiumim collision energy at LHC is 14 TeV.



A mechanism by which particles obtain such an energy distribution
was originally investigated in 1949 by Fermi as a means of
explaining the highest-energy cosmic rays, and in the 1970’s it was
demonstrated to be to be an efficient mechanism for the production
of synchrotron-emitting electrons in AGN (which will be the main
topic of the next few lectures).



Enrico Fermi

Never underestimate the joy
people derive from hearing

something they already know.



Fermi’s “ping-pong” acceleration process





Fermi acceleration: simple first-order
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Suppose we inject a particle of mass m is travelling at a mildly
relativistic speed v between two scattering surfaces separated by
distance L and approaching each other with speed V << c. If the
particle collides alternately head-on with each scatterer, it will gain
energy at a rate

dE

dt
= Rate of collisions× energy change per collision

Let us use the fact that the particle is relativistic to our advantage:
the momentum increase at each collision is γmV so we can
calculate the energy increase via E = pc.



dE

dt
≈

v

L
× γmV c

≈
γmc2V

L

≈
EV

L

Where in the last step we are also approximating v = c.



Thus we have a situation where a particle gains energy as

dE

dt
=

E

τ

where τ is some timescale, in this case the crossing time between
scatterers: the particle’s energy will increase exponentially. If a
population of particles with slightly different initial energies enter a
region where this sort of scattering occurs, the slightly-higher
energy particles will be accelerated to much greater energies than
the the slightly-lower-energy ones.



This situation is a gross idealisation but it shows how to proceed. If
we can find a mechanism for multiple back-and-forth accelerations,
we can get a power-law energy distribution. The most significant
caveat is that we don’t know how to make the particles mildly
relativistic to start with, i.e. in order to make use of E = pc.



Real Fermi acceleration at shocks

The way to do this in practice is to make use of shocks: in the jets
and at the hotspots of radiosources, and at the blast-wave shock in
a supernova.

Take the case of a shock propagating into “cold” gas at a speed vu.
In the frame of the shock, we have our familiar results: we see
unshocked gas ahead of us approaching at speed vu, and hot
shocked gas streaming away behind us at vd = 1

4vu

Now consider electrons initially at rest in the unshocked gas frame.
They see the shock approaching at vu but they also see the hot
shocked gas approaching at 3

4vu. As they cross the shock they are



accelerated to a mean speed of 3
4vu, as viewed from the frame of

the unshocked gas, and are also thermalised to a high temperature.

The clever part is next: consider what would happen if, say as a
result of its thermal motion, or tangled magnetic field, an electron is
carried back over the shock front. With respect to the frame it has
just come from—the shocked gas frame—it is once again
accelerated by 3

4vu.

So we have a system of symmetric head-on collisions that we can
use to generate a power-law energy distribution.





Much of the pioneering work in calulating the details of first-order
Fermi acceleration in astrophysical situation was done by our very
own Prof Tony Bell (although like many of us in astro he was a Tab at the time...)



Fermi acceleration at shocks: calculation

Now we will demonstrate explicitly that this gives a power-law in
electron energies.

Let us say the fractional change in kinetic energy at each crossing
is β. After n crossings, a particle with initial energy E0 will have
energy E = E0β

n.

The particles will not continue crossing the shock indefinitely: the
net momentum flux of the shocked gas downstream will carry them
away in due course. So let us call the probability of of remaining in
the shock-crossing region after each crossing P . Then after n
crossings there will be N = N0P

n of the original N0 electrons left.



We can eliminate n from these expressions to find:

log(N/N0)

log(E/E0)
=

logP

logβ

Which gives:

N

N0
=

(
E

E0

) logP
logβ

If we take the differential form of this we get

N(E)dE = constants× E
(
−1+ logP

logβ

)



So we have recovered our power-law energy distribution with its
form

N(E)dE ∝ E−kdE



Fermi acceleration at shocks: the power-law index

The detailed derivation of the power-law index is not examinable.

The result, which you are required to remember, is that it can be
shown that

lnP

lnβ
= −1

Therefore the power-law index is −2, i.e.



N(E)dE ∝ E−2dE

Which is close to - but not quite - the spectral index observed in
cosmic rays, and as we will see over the course of the next few
lectures it closely underlies the spectrum of synchrotron radiation in
AGN.

Much work is still done to build models in which the index is slightly
steeper than 2, as is observed in the real cosmic ray energy
spectrum.



Supplementary

Fermi acceleration at shocks: derivation of the power-law
index non-examinable

(see Longair Vol 2 pp 354–355 for full details)

First consider the particles crossing from the upstream to the
downstream side of the shock. As in our cartoon example we will
take particles which are at least mildly relativistic, and we will use a
non-relativistic shock speed U . Using our jump conditions, we find
that a particle upstream of the shock sees the shocked gas coming
towards it at speed V = 3

4U .

We calculate the energy of the particle when it crosses into the
downstream region via the Lorentz transform:



E′ = γV (E + pxV )

Where px is the component of momentum perpendicular to the
shock. Now γV ≈ 1 and px = (E/c)cosθ, so for each particle

∆E

E
=
V

c
cosθ

Now we need to use a standard result from kinetic theory. The
number of particles crossing the shock between θ and θ + dθ is
proportional to sinθ, and the rate at which they approach the shock
is proportional to the x component of their velocities, ccosθ.



So to normalise our energy gain per shock crossing we need to
integrate over

p(θ) = 2sinθcosθdθ

Giving an average energy gain per crossing of 2
3
V
c . A round trip

produces twice this, so the fractional energy gain per round trip is

β =
E

E0
= 1 +

4V

3c

Using V << c we get



lnβ = ln(1 +
4V

3c
) ≈

4V

3c
=
U

c

Next we need to calculate P ; this is simpler, because we can see
that the rate at which particles are being swept away from the
shock is U

c per crossing. So

P = 1−
U

c

Again, take U << c, and we have

lnP ≈ −
U

c



So we have our result:

lnP

lnβ
= −1

Therefore the power-law index is −2, i.e.

N(E)dE ∝ E−2dE


