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Today’s lecture: Accretion Discs Part II

• Recap of last lecture.

• Viscosity in this accretion disc.

• Luminosity and spectrum of thin disc.

• Evidence for accretion onto black holes - will start if time
permits.



Recap of accretion concepts and results so far

• The Eddington Luminosity sets the balance between radiation pressure
outwards and gravitational force inwards in a system where matter is
accreting onto a compact object.

• L =

4⇡GMc



where  is the opacity of the accreting material.

• for the case of AGN it is often convenient to set L
Edd

=

4⇡GMcm
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but
generally  must be calculated precisely depending on the composition and
ionisation state of the material involved.

• If the material accreting onto an object radiates away some of its GPE on
the way in, L = ✏
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2, we get a characteristic limiting accretion rate,
˙

M

Edd

=

4⇡GMm

p

✏c�

T

.



• Qualitatively, a cloud of collisional material with some angular momentum
must eventually form a disc.

• It is generally hypothesised that tidal interactions between galaxies can
force gas with high angular momentum in the outer regions into a state of
low angular momentum where is falls towards the nucleus and forms a disc.
The details are nowadays the topic of intensive study by numerical
simulation.

• In a potential that is Keplerian (or close to it) near the nucleus, a thin disc
supported by its own gas pressure must be cold compared to the virial
temperature, i.e. it must have a highly supersonic rotation speed.



Viscosity in the disc

For the accreting material to fall into tighter orbits in the disc there must be an
outwards flow of angular momentum—a torque acting on the disc. Take the disc
viscosity to be ⌘ and consider a radius r in the disc with thickness t and angular
velocity !. The tangential force per unit area exerted by the disc inside r on the
disc outside r is given by

Force per unit area = ⌘r

d!

dr

.

This force acts over an area 2⇡rt so the total torque between adjacent pieces of
the disc is

� = 2⇡r

3

t⌘

d!

dr

.

Remember torque is rate of change of angular momentum...



Again taking the orbits to be Keplerian we have ! =

q
GM

r

3

, so subbing into the
previous equation for the torque we have

dL

dt

= �3⇡⌘t(GMr)

1/2

which is the rate of change of angular momentum of the inner piece of the disc.
This must equal the change of angular momentum duw to inflow of disc material,
i.e.

dL

dt

= ṁr

2

! = ṁ(GMr)

1/2

and so we have a relationship between the accretion rate and the disc viscosity,

ṁ = 3⇡⌘t



The problem with viscosity... The problem arises when we consider the
Reynolds number of the material in the disc—a measure of how turbulent it is.

R ⇠
V L

⌫

Here V and L are characteristic speed and length scales and ⌫ is the kinematic
viscosity, ⌘/⇢. We find (see e.g. Longair pp 145–146) that R ⇠ 10

12. The flow is
highly turbulent, and so standard kinetic theory dynamic visosity ⌘ =

1

3

⇢c� will
make a negligible contribution.

We do not yet understand the precise mechanism of viscosity in accretion discs.
Highly turbulent flow helps, but precise calculations are difficult. Magnetic fields
will be present and will certainly contribute. Much of the progress to date has
come from a neat side-step developed by Shakura and Sunyaev (1972). They
invented a parameter

↵ =

⌫

hc

s

which allows detailed models to be made without knowing the exact mechanism
for the viscosity.





Luminosity of a thin accretion disc

Neglecting the energy transport due to viscosity, we can calculate the rate at
which accreting material in the disc must lose gravitational potential energy if it is
to fall closer to the accreting object. For an annulus between r and r +dr, the
energy which must be dissipated will be

L(r) = �
✓
dE

dt
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where ˙

M is the accretion rate and M is the mass of the central object. Including
viscous energy transport we gain a total luminosity three times this value
(non-examinable—see Longair pp 149-150).



Temperature structure of a physically thin, optically thick disc

If the disc is optically thick, each annulus between r and r +dr will radiate as a
blackbody with the luminosity derived above. Hence via Stefan’s Law
(remembering the disc has two surfaces), the annulus at at r will radiate with
2�T
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Spectrum of the thin disc

We are now in a position to describe the form of the overall spectrum of the disc,
i.e. the sum of all the black-body contributions at different radii.
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From before we have T / r

�3/4 so dr / (1/T )
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d(1/T ) and we can integrate
dT instead of dr. Including B
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We can proceed by changing variable x = (h⌫/kT )—recall from the
second-year thermo problem set where you used the same substitution to derive
the functional form u(T ) / T

4. This yields
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The integral dx is just a numerical constant so we now have the shape of the
spectrum over most of its range:
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Note, though, that the low- and high-frequency ends will have a different form:

• From the outer edge of the disc we will see the Rayleigh-Jeans tail of
T
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• From the inner edge, an exponential cut-off I
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Theoretical spectrum of thin accretion disc.
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Total luminosity of the thin disc

Let’s now estimate ✏. If we approximate with a Newtonian potential, take the
particle to have started its trip at r = 1 and total energy zero, and calculate the
total energy it has on the last stable orbit. The amount of GPE which must be
lost (by radiation) is equivalent to 1/12 of the rest-mass energy of the particle.

For the best possible case—the closest orbit around a rapidly-rotating black
hole—the efficiency rises to a whopping 0.42. Compare this to nuclear fusion in
stars, which has an efficiency of only 0.7 percent!

Hence in practice, astronomers usually adopt an approximate value of ✏ = 0.1

for accretion onto black holes.

Example: estimating a quasar accretion rate

Suppose we observe a quasar to have a total power output of 1040 W. We are
now in a position to estimate the mass of the central black hole and the rate at
which its mass is increasing.

First let us assume that the accretion is Eddington limited. From our equation for
the Eddington luminosity we have
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from which
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And from our Eddington accretion rate, using ✏ = 0.1 we have

˙

M

Edd

=

4⇡GMm

p

✏c�

T

⇡ 3M�yr
�1



Getting round the Eddington limit

The accretion may not always be Eddington-limited. It is, for example, possible to
achieve ˙

M much greater than would be inferred by using the Eddington
luminosity with ✏ = 0.1, by making the disc physically thick, and very low density,
so that it is optically thin and matter doesn’t have time to radiate away so much
energy before it falls over the horizon. This has the advantages of allowing black
holes to grow at a very high rate in the early Universe, and also of providing
“funnels” which could be a mechanism for collimating outflows from accreting
objects.

Unfortunately simple analytical models of these discs are unstable, but the
advantages of thick discs are so great that much effort is put into modelling them
numerically... including the effects of strong magnetic fields.



It is also possible for an object to have a luminosity significantly greater than the
Eddington luminosity:

• In supernovae (somewhat trivially!)

• Where spherical symmetry is broken, with extremely collimated radiation in
a direction different to the accretion direction

• Where accretion is not steady, e.g. bursts or radiation emitted when
discrete clouds of matter fall onto a neutron star or white dwarf.



Evidence for black holes in AGN
There are several canonical pieces of evidence that supermassive black holes
really are there at the heart of AGN. Among these are:

• Variability (in combination with Eddington luminosity).

• Stellar velocity dispersions.

• Rotation speeds inferred from emission lines.

• The controversial history of X-ray line profiles.














