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Schedule
• Lecture 1: Shocks — Blast waves from huge explosions, strong 

shock conditions at the front of the blast wave.

• Lecture 2: Shock Acceleration — How electrons are accelerated to 

ultra-relativistic energies at strong shock fronts.

• Lecture 3: Synchrotron Radiation — The emission mechanism.

• Lecture 4: Synchrotron Radiation — Synchrotron self-absorption 

and spectral ageing.

• Lecture 5: Accretion discs — Structure, luminosity and spectrum.

• Lecture 6: The X-ray Corona — Thermal Compton scattering, X-ray 

reflection.

• Lecture 7: Black holes and Jets — The AGN zoo, evidence for 

black holes, jet mechanisms, super-luminal jet motion.

• Lecture 8: Galaxy Clusters — Thermal bremsstrahlung radiation, 

Sunyaev-Zeldovich effect.



Reading Material
• “High Energy Astrophysics” by Malcolm Longair


• “Accretion Power in Astrophysics” by Frank, King & Raine


• “Radiative Processes in Astrophysics” by Rybicki & Lightman


Questions: Online question session, can also email me!



Lecture 1 
Shocks



Blast waves
After an explosion (e.g. supernova, atomic bomb) a 
fireball expands outwards

Explosion: 
energy E, 
at time t=0

External 
medium: 
density ρ   

r(t)

Fireball



Blast waves
• In 1950, G. I. Taylor calculated how the fireball 

expansion relates to explosion energy and external 
density


• He reduced the problem to a self-similar scaling 
solution — basically using dimensional analysis.


• He reasoned that r is a function of E, ρ and t:



Blast waves
• In 1950, G. I. Taylor calculated how the fireball 

expansion relates to explosion energy and external 
density


• He reduced the problem to a self-similar scaling 
solution — basically using dimensional analysis.


• He reasoned that r is a function of E, ρ and t:

r = CρxEytz

Dimensionless 
constant Must have 

dimensions of length 
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Blast waves
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Blast waves

r = CρxEytz

0 = x + y
1 = − 3x + 2y
0 = − 2y + z

⟹

⟹
x = − 1/5
y = 1/5
z = 2/5

∴ r = Cρ−1/5E1/5t2/5



Blast waves

r = Cρ−1/5E1/5t2/5

• Taylor used high-speed photographs of small detonations in the lab 
to determine that D~1.033 for a fireball expanding into air.


• The power of dimensional analysis is that even though the 
experiments were done on very small scales, we can be sure the 
scaling will still hold for explosions that are many, many orders of 
magnitude greater.


• Sedov later came up with a full solution (see: http://
www.mso.anu.edu.au/~geoff/AGD/Sedov.pdf), and so the above 
formula is usually referred to as the Taylor-Sedov solution.

⟹
E = D

r5ρ
t2

http://www.mso.anu.edu.au/~geoff/AGD/Sedov.pdf
http://www.mso.anu.edu.au/~geoff/AGD/Sedov.pdf


Blast waves

E ≈ 1.033
r5ρ
t2

ρ ≈ 1.1 kg m−3

r ≈ 140 m
t = 25 ms

⟹
E ≈ 9.778 × 1013 J
E ≈ 23.28 kilotons

• Taylor used his equation and de-classified photos of the 1st atomic 
bomb tests to calculate the yield of the bomb.



Blast waves
• Taylor used his equation and de-classified photos of the 1st atomic 

bomb tests to calculate the yield of the bomb.

• The true (still classified in 1950) yield of the bomb was ~18-20 

kilotons!!

E ≈ 23.28 kilotons



Blast waves
• Now calculate fluency of the Crab supernova of 

1054

E ≈
r5ρ
t2

ρ ≈ 10−21 kg m−3

r ≈ 3 pc ∼ 9 × 1016 m
t = 966 yrs ∼ 3 × 1010 s

⟹
E ≈ 6.6 × 1042 J



Blast waves
• What about the current speed of the blast wave?

·r ≈ (2/5)ρ−1/5E1/5t−3/5

·r ≈ 1.2 × 106 m/s
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·r ≈ 1.2 × 106 m/s
·r ≫ cs
∴

Blast wave is supersonic!



Blast waves
• What about the current speed of the blast wave?

·r ≈ (2/5)ρ−1/5E1/5t−3/5

·r ≈ 1.2 × 106 m/s
·r ≫ cs
∴

Blast wave is supersonic!

∴
Shock!



Shocks
• A shock occurs when a disturbance moves through a medium 

faster than the sound speed in the medium, i.e., sufficiently fast 
that a pressure wave cannot precede the disturbance.


• The conditions in the medium—temperature, density, bulk velocity
—thus change almost instantaneously at the shock. The material 
which is hit by the shock receives no forewarning.



Shocks
Derivation of strong shock ‘jump 
conditions’

‘upstream’

‘downstream’

shock

ρu
Tu ∼ 0

ρd
Td

ρd > ρu



Shocks
Switch to rest frame of the shock

‘upstream’‘downstream’

sh
oc

k

vd < vu

vuvd
Un-shocked gas particles appear 
to be moving towards shock front.

Shocked gas particles appear to be 
moving away from the shock front



‘upstream’‘downstream’

sh
oc

k

vuvdρd
Td

ρu Tu ∼ 0

ρdvd = ρuvu

Mass per unit area flowing across shock front

(1) Mass conservation:
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Momentum per unit area flowing across shock front

(2) Momentum conservation:
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‘upstream’‘downstream’

sh
oc

k

vuvdρd
Td

ρu Tu ∼ 0

Pd + ρdv2
d = Pu + ρuv2

u

Momentum per unit area flowing across shock front

Gas pressure (pressure from thermal motions)

Ram pressure (pressure from bulk motion)

(2) Momentum conservation:



‘upstream’‘downstream’

sh
oc

k

vuvdρd
Td

ρu Tu ∼ 0

(3) Energy conservation:
Energy per unit area flowing across shock front



‘upstream’‘downstream’

sh
oc

k

vuvdρd
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(3) Energy conservation:

vd [ 1
2

ρdv2
d + ρdϵd] + Pdvd = vu [ 1

2
ρuv2

u + ρuϵu] + Puvu

Energy per unit area flowing across shock front

ε= internal energy per unit mass



‘upstream’‘downstream’

sh
oc

k

vuvdρd
Td

ρu Tu ∼ 0

(3) Energy conservation:

vd [ 1
2

ρdv2
d + ρdϵd] + Pdvd = vu [ 1

2
ρuv2

u + ρuϵu] + Puvu

KE / 
volume

TE / 
volume

energy / area / time

P dV work / area / time

Energy per unit area flowing across shock front

ε= internal energy per unit mass



‘upstream’‘downstream’

sh
oc

k

vuvdρd
Td

ρu Tu ∼ 0

Rankine-Hugoniot jump conditions:

vd [ 1
2

ρdv2
d + ρdϵd] + Pdvd = vu [ 1

2
ρuv2

u + ρuϵu] + Puvu

ρdvd = ρdvu

Pd + ρdv2
d = Pu + ρuv2

u

1)

2)

3)



‘upstream’‘downstream’

sh
oc

k

vuvdρd
Td

ρu Tu ∼ 0

Pd + ρdv2
d = ρuv2

u

Simplify (2):

Tu ∼ 0 ⟹ Pu ∼ 0 ⟹

Pd + ρdv2
d = Pu + ρuv2

u
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Simplify (2):

Tu ∼ 0 ⟹ Pu ∼ 0 ⟹

Pd + ρdv2
d = Pu + ρuv2
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Pd + ρdv2
d = ρuv2

u

(1)
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(3)



vd [ 1
2

ρdv2
d + ρdϵd] + Pdvd = vu [ 1

2
ρuv2

u + ρuϵu] + Puvu

Simplify (3):

Pd + ρdv2
d = ρuv2

u

(1)

(2)

(3)

ρdvd = ρuvu



vd [ 1
2

ρdv2
d + ρdϵd] + Pdvd = vu [ 1

2
ρuv2

u + ρuϵu] + Puvu

For ideal gas:

ϵ =
3
2

kT
m̄

P =
ρ
m̄

kT ∴ ρϵ =
3
2

P

Simplify (3):

Pd + ρdv2
d = ρuv2

u

(1)

(2)

(3)

ρdvd = ρuvu
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3
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Strong shock jump conditions:
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ρu
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vd
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ρdv3
d +
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ρdvd = ρuvu



Shocks
Back in the rest frame of the ISM

‘upstream’

‘downstream’

shock

·rρd = 4ρu

3
4

·r

Assumptions:


• Ideal gas, T.E./m=(3/2)kT 


• Mach number:


• Tu~0


• Ignored viscosity (only 
important within mean free 
path from shock front) 

ℳ ≡ v/cs ≫ 1



Compact object accretion

Compact object: 
black hole / neutron 
star / white dwarf 

Companion star

X-rays



Compact object accretion
• Compact object = black hole or 

neutron star: system called an X-ray 
binary


• Compact object = white dwarf: 
system called cataclysmic variable 
or dwarf nova (historic)


• White dwarf systems: WD always 
observed to be more massive than 
companion


• High mass X-ray binaries (HMXBs):


• Low mass X-ray binaries (LMXBs):

Mcompanion > Mco

Mcompanion < Mco



Compact object accretion
LMXBs: Roche-Lobe Overflow

CS

Compact 
object

• Roche potential: companion star 
(CS) occupies equipotential surface.


• CS can fill its Roche Lobe if it swells 
during its evolution, or binary 
separation reduces due to angular 
momentum loss due to e.g. stellar 
wind mass loss or gravitational 
waves.


• Then material passes through L1 
(inner Lagrange point).


• In-falling material forms an accretion 
disc




Compact object accretion
HMXBs: Stellar Wind Capture

Stellar wind capture

This occurs where the donor star is very high mass (typically M > 15M ⊙), and
the stellar wind of the high-mass star can be captured by the compact object. In
these systems the luminosity depends on the mass outflow rate from the donor.

•                   stars can have a strong stellar 
wind.


• Wind can be captured by the compact 
object.


• Accretion luminosity therefore depends 
on mass outflow rate of wind.


• Can also get Roche-Lobe overflow in 
HMXBs, but less common


• Intermediate case: Cygnus X-1 has a 
focused wind 


M ≳ 15 M⊙



Compact object accretion
Magnetic fields
• B-field of NS / WD can interrupt disc and channel 

material directly to magnetic poles.

CV (white dwarf) / X-ray pulsar (neutron star)



Compact object accretion
Magnetic fields

Polar

• B-field of NS / WD can interrupt disc and channel material directly to 
magnetic poles.


• For strongest field WDs, there can be no disc at all.



Compact object accretion
Magnetic fields

vu = vff

vd ∼ vff /4

Tu ∼ 0

Shock

Td

Neutron star / 
White dwarf

Magnetic pole

• Gravitational free fall in 
accretion column


• Shock as material is 
halted


• Homework problem: 
calculate Td (hot 
enough to emit hard X-
rays)

v0 ∼ 0


