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Fig. 15.1 The overall differential energy spectra of cosmic rays from various experiments. Prominent features in the spectrum
are indicated – the ‘knee’ at 1015 eV and the ‘ankle’ at 1018 eV. The frequencies of arrival of particles of different
energies are indicated, as well as the energies attainable in various accelerator experiments (from
www.physics.utah.edu/∼whanlon/spectrum.html).

form N (E) dE = K E−x dE in the energy range 1 < E < 104 GeV nucleon−1 as can be
seen in Fig. 1.16. A more recent version of the energy spectra of different cosmic ray species
is shown in Fig. 15.2 which extends to the highest energies at which clear discrimination
of their charges can be achieved. At higher energies, the energy spectra are obtained from
cosmic ray air-shower data and the identification of the species is estimated from the
signatures of the masses of the particles in the air-shower data. The intensity of primary
nucleons in the energy range from several GeV to somewhat beyond 100 TeV is given
approximately by

IN(E) ≈ 1.8 × 104 E−x nucleons m−2 s−1 sr−1 GeV−1 , (15.1)

with x = 2.7 and E the energy per nucleon in GeV. There are, however, significant dif-
ferences between the energy spectra of different elements. The general trend is that those

• Discovered in 1912 by Hess on a 
balloon flight (1936 Nobel prize)


• ~85% protons, ~12% He nuclei, 
~1% heavier nuclei, ~2% 
electrons.


• ~power-law across many 
decades in energy:


• “Ankle and “knee”

• Highest energies ~1020 eV!! 

dN
dE

∝ E−k, k ∼ 2.5
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How to accelerate particles to 
such high energies?



Fermi acceleration
Fermi (1949) considered mildly relativistic particles reflecting off 
randomly moving “magnetic mirrors” in the Galaxy.

He showed that particles can, on average gain energy from 
bouncing off these mirrors many times.



Fermi acceleration
We can understand the concept by thinking of the mirrors 
moving together like the ‘trash compactor’ scene in Star Wars.
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Energy after collision
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ΔE
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Fermi acceleration

• Same fractional energy gain per crossing


• Energy after n crossings:


• P = probability of particle remaining in accelerator after each 
crossing. Particles remaining after n crossings:


• Eliminate n:
ln(N/N0)
ln(E/E0)

=
n ln(P)
n ln(β)

E = E0βn

N = N0Pn

∴ N = N0(E/E0)ln(P)/ln(β)

∴ dN
dE

∝ Eln(P)/ln(β)−1 …get a power-law spectrum!



Fermi acceleration

Fermi imagined randomly moving magnetic mirrors, and particles 
moving at all angles to the mirrors. Collisions with approaching 
mirrors more likely than those with receding mirrors, so net 
energy gain. Net gain per collision is                               (see e.g. 
Longair 1994 for derivation). For this reason, Fermi’s original 
model is called second order Fermi acceleration. 
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(a) (b)

Fig. 17.1 Illustrating the collision between a particle of mass m and a cloud of mass M: (a) a head-on collision; (b) a following
collision. The probabilities of head-on and following collisions are proportional to the relative velocities of approach of
the particle and the cloud, namely, v + V cos θ for (a) and v − V cos θ for (b). Since v ≈ c, the probabilities are
proportional to 1 + (V/c) cos θ where 0 < θ < π .

17.3 Fermi acceleration – original version

The Fermi mechanism was first proposed in 1949 as a stochastic means by which particles
colliding with clouds in the interstellar medium could be accelerated to high energies
(Fermi, 1949). We first consider Fermi’s original version of the theory, the problems it
encounters and how it can be reincarnated in a modern guise. The analysis contains a
number of features which are important for particle acceleration in general. In Sect.17.4,
the modern version of first-order Fermi acceleration is described.

In Fermi’s original picture, charged particles are reflected from ‘magnetic mirrors’ as-
sociated with irregularities in the Galactic magnetic field. The mirrors are assumed to
move randomly with typical velocity V and Fermi showed that the particles gain en-
ergy stochastically in these reflections. If the particles remain within the acceleration
region for some characteristic time τesc, a power-law distribution of particle energies is
obtained.

Let us repeat Fermi’s calculation in which the collision between the particle and the
mirror takes place such that the angle between the initial direction of the particle and the
normal to the surface of the mirror is θ (Fig. 17.1a). We carry out a relativistic analysis of
the change in energy of the particle in a single collision.

The mirror is taken to be infinitely massive and so its velocity is unchanged in the
collision. The centre of momentum frame of reference is therefore that of the cloud moving
at velocity V . The energy of the particle in this frame is

E ′ = γV (E + V p cos θ ) , where γV =
(

1 − V 2

c2

)−1/2

. (17.9)

The x-component of the relativistic three-momentum in the centre of momentum frame is

p ′
x = p ′ cos θ ′ = γV

(
p cos θ + V E

c2

)
. (17.10)

From Longair (1994)

ΔE = (8/3)(V/c)2E



1. How to get particles travelling at mildly relativistic v in the 
first place?


2. Random velocities of Galactic clouds is V/c~10-4, so 
fractional energy gain per collision is ~ΔE/E~10-8. Mean free 
path between clouds is ~0.1 pc, so very slow energy gain!


3. Get a power-law spectrum, but why specifically ~E-2.5?

Fermi acceleration 
Problems
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Shock acceleration
Considering particles at a shock 
front solves all the problems:


1. Already some mildly 
relativistic particles from the 
supernova / black hole jet 
causing the shock wave;


2. Mechanism to only get head-
on collisions so ΔE/E~V/c, 
therefore easier to get to very 
high energies;


3. Can predict a specific power-
law index.


Bell (1978)
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Because fractional energy gain goes as (u/c) instead of (u/c)2, this diffusive shock 
acceleration process is known as first order Fermi acceleration. Now much easier to 
accelerate particles to the observed E~1020 eV!

Fermi did not come up with the shock front idea though, this dates back to the late 
1970s, with many of the key insights being made by Tony Bell (Oxford): https://
ui.adsabs.harvard.edu/abs/1978MNRAS.182..147B/abstract; https://
ui.adsabs.harvard.edu/abs/1978MNRAS.182..443B/abstract

β = 1 +
u
c

https://ui.adsabs.harvard.edu/abs/1978MNRAS.182..147B/abstract
https://ui.adsabs.harvard.edu/abs/1978MNRAS.182..147B/abstract
https://ui.adsabs.harvard.edu/abs/1978MNRAS.182..443B/abstract
https://ui.adsabs.harvard.edu/abs/1978MNRAS.182..443B/abstract
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energies are indicated, as well as the energies attainable in various accelerator experiments (from
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form N (E) dE = K E−x dE in the energy range 1 < E < 104 GeV nucleon−1 as can be
seen in Fig. 1.16. A more recent version of the energy spectra of different cosmic ray species
is shown in Fig. 15.2 which extends to the highest energies at which clear discrimination
of their charges can be achieved. At higher energies, the energy spectra are obtained from
cosmic ray air-shower data and the identification of the species is estimated from the
signatures of the masses of the particles in the air-shower data. The intensity of primary
nucleons in the energy range from several GeV to somewhat beyond 100 TeV is given
approximately by

IN(E) ≈ 1.8 × 104 E−x nucleons m−2 s−1 sr−1 GeV−1 , (15.1)

with x = 2.7 and E the energy per nucleon in GeV. There are, however, significant dif-
ferences between the energy spectra of different elements. The general trend is that those

• Close to observed E-2.5, but not 
exactly!

• Still active area of research.

• Mechanism so popular because it 
explains why you can get the same 
power-law spectrum for particles 
accelerated in diverse array of 
astrophysical objects (e.g. supernova 
remnants, AGN etc). There only needs 
to be a strong shock!


