
High Energy Astrophysics 
Dr. Adam Ingram



Lecture 3 
Synchrotron Radiation



Introduction
• Electrons accelerated to ultra-relativistic energies at shock fronts (e.g. jet 

lobes, supernova remnants) will spiral around B-field, resulting in 
synchrotron radiation.


• Observe strong radio emission from such regions.

• e.g. AGN/XRB jet lobes, SN remnants, galaxies (sum of radio emission from 

SN remnants & XRBs)

Radio galaxy Cygnus A at 5 GHz (VLA: Carilli and Barthel 1996, A&A Reviews)



Evidence for synchrotron
• Smooth, featureless broadband spectrum over many orders of magnitude in 

frequency;

• Power-law spectrum (will address turn-over next time);

• High degree of linear polarisation.

Conway et al (1963)



Synchrotron radiation
• Radiation released by relativistic electrons spiralling 

around magnetic field lines.




B-field moving 
out of screen
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moving out of screen

Synchrotron radiation
• Radiation released by relativistic electrons spiralling 

around magnetic field lines.

• Motion is helical: 


v⊥ = circular
v∥ = constant …velocity parallel to B-field

…velocity perpendicular to B-field

electron: mass m, charge e
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Synchrotron radiation
• Radiation released by relativistic electrons spiralling 

around magnetic field lines.

• Motion is helical: 


v⊥ = circular
v∥ = constant …velocity parallel to B-field

…velocity perpendicular to B-field
Pitch angle = angle between    and     =

electron: mass m, charge e
v B α

α
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• Lorentz force: F = q(ℰ + v × B) = − e(ℰ + v × B)

a

Acceleration of electron

Electric field vector

(E is reserved for electron energy)Electric charge

Electron has -ve 
charge



B-field moving 
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• Lorentz force:


• Static B-field

F = q(ℰ + v × B) = − e(ℰ + v × B)
⟹ F = − ev × B

a

Acceleration of electron
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d
dt

(γmv) = − ev × B

• Lorentz force:


• Static B-field


• Therefore equation of motion:

F = q(ℰ + v × B) = − e(ℰ + v × B)
⟹ F = − ev × B

a

Acceleration of electron



B-field moving 
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d
dt

(γmv) = − ev × B

• Lorentz force:


• Static B-field


• Therefore equation of motion:


• Therefore acceleration:

F = q(ℰ + v × B) = − e(ℰ + v × B)
⟹ F = − ev × B

a = −
evB sin α

γm
̂r

a

Acceleration of electron



• Calculate orbital radius of electron by setting    equal to 
centripetal acceleration:
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Gyroradius

a

a =
evB sin α

γm
=

v2
⊥

r
=

v2 sin2 α
r

r

a



• Calculate orbital radius of electron by setting a equal to 
centripetal acceleration:


• Therefore gyroradius:
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Gyroradius

a

a =
evB sin α

γm
=

v2
⊥

r
=

v2 sin2 α
r

rg =
γmv sin α

eB

rg



• Calculate orbital radius of electron by setting a equal to 
centripetal acceleration:


• Therefore gyroradius:


• Gyro angular frequency:
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v2
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γmv sin α
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• Calculate orbital radius of electron by setting a equal to 
centripetal acceleration:


• Therefore gyroradius:


• Gyro angular frequency:


• Gyrofrequency:
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γm
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⊥
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γmv sin α

eB
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• Calculate orbital radius of electron by setting a equal to 
centripetal acceleration:


• Therefore gyroradius:


• Gyro angular frequency:


• Gyrofrequency:


• Gyroperiod:
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Gyroradius
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evB sin α

γm
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v2
⊥

r
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v2 sin2 α
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rg
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tg =
1
νg

=
2πγm

eB

rg



Radiation generated

ℰr =
e

4πϵ0r2

ℰθ = 0

From Coulomb’s law, 
electric field is:

Electron at rest

Thomson’s reasoning



Now give electron 
velocity Δv in time 
interval Δt

Radiation generated

ℰr =
e

4πϵ0r2

ℰθ = 0

From Coulomb’s law, 
electric field is:

Thomson’s reasoning



After time t:

• Electron has travelled distance 
Δv t


• Electric field is radial centred 
on electron in sphere of radius 
ct


• Field outside of this sphere 
hasn’t adjusted yet


• Kink in field in shell of radius 
cΔt where inner and outer 
fields join up


• This kink corresponds to non-
zero 

Δv . t

ct

ℰθ

a =
Δv
Δt

cΔt

Radiation generated

Thomson’s reasoning



At later time t:

• Pulse of non-zero       has 
moved out


ℰθ

Radiation generated

Thomson’s reasoning



After time t:

θ

tΔv sin θ

ℰθ

ℰr
=

tΔv sin θ
cΔt

=
ar
c2

sin θΔv . t

cΔt

• Pulse of non-zero       has 
moved out


• Pulse strength (in electron rest 
frame) depends on angle to 
acceleration θ:


Radiation generated

ℰθ

Thomson’s reasoning



Power radiated 
(non-relativistic)

ℰr =
e

4πϵ0r2

ℰθ

ℰr
=

ar
c2

sin θ

Energy flow in pulse / time / area at distance r = modulus of Poynting vector:

S = (ϵ0/μ0)1/2 ℰ2
θ =

e2a2 sin2 θ
(4π)2ϵ0c3r2

Therefore power radiated into full sphere (remember dA = r 2π sinθ dθ):

P =
e2a2

6πϵ0c3

c2 =
1

ϵ0μ0



• We want to deal with ultra-relativistic electrons, so need relativistic limit! 
Luckily, can use non-relativistic formula in the instantaneous electron rest 
frame S’ and then use Lorentz invariance of dE/dt to trivially move back to 
the observer’s frame S (in which the B-field is at rest)

Power radiated
P =

e2a2

6πϵ0c3



• We want to deal with ultra-relativistic electrons, so need relativistic limit! 
Luckily, can use non-relativistic formula in the instantaneous electron rest 
frame S’ and then use Lorentz invariance of dE/dt to trivially move back to 
the observer’s frame S (in which the B-field is at rest)


• This comes about because dE and dt Lorentz transform in the same way:

dE = γdE′�; dt = γdt′� ∴ (dE/dt) = (dE/dt)′�

Power radiated
P =

e2a2

6πϵ0c3



• We want to deal with ultra-relativistic electrons, so need relativistic limit! 
Luckily, can use non-relativistic formula in the instantaneous electron rest 
frame S’ and then use Lorentz invariance of dE/dt to trivially move back to 
the observer’s frame S (in which the B-field is at rest)


• This comes about because dE and dt Lorentz transform in the same way:

dE = γdE′�; dt = γdt′� ∴ (dE/dt) = (dE/dt)′�

vx′�

z′�

B′�

α′�

Power radiated
P =

e2a2

6πϵ0c3

Electron restframe, S’:

vx

z

B

α

v
Observer restframe, S’:



• In S frame:
 Bx = B cos α; By = 0; Bz = B sin α

Power radiated

ℰ = 0



• In S frame:


• In S’ frame:

P′� =

e2a′�
6πϵ0c3

F′� = ma′� = e(ℰ′� + v′ � × B′�)

Bx = B cos α; By = 0; Bz = B sin α

Power radiated

ℰ = 0



• In S frame:


• In S’ frame:


• By design of the rest frame, v’=0, therefore:


P′� =
e2a′�

6πϵ0c3

F′� = ma′� = e(ℰ′� + v′ � × B′�)

ma′� = eℰ′�

Bx = B cos α; By = 0; Bz = B sin α

Power radiated

ℰ = 0



• In S frame:


• In S’ frame:


• By design of the rest frame, v’=0, therefore:


• Lorentz transforms to get electric field in S’:


P′� =
e2a′�

6πϵ0c3

F′� = ma′� = e(ℰ′� + v′ � × B′�)

ma′� = eℰ′�

ℰ′�x = ℰx
ℰ′�y = γ(ℰy − vBz)
ℰ′�z = γ(ℰz − vBy)

Bx = B cos α; By = 0; Bz = B sin α

Power radiated

ℰ = 0



• In S frame:


• In S’ frame:


• By design of the rest frame, v’=0, therefore:


• Lorentz transforms to get electric field in S’:


P′� =
e2a′�

6πϵ0c3

F′� = ma′� = e(ℰ′� + v′ � × B′�)

ma′� = eℰ′�

ℰ′�x = ℰx = 0
ℰ′�y = γ(ℰy − vBz) = − γvBz = − γvB sin α
ℰ′�z = γ(ℰz − vBy) = 0

Bx = B cos α; By = 0; Bz = B sin α

Power radiated

ℰ = 0



• Therefore:
 a′� = −
eγvB sin α

m

Power radiated



• Therefore:


• Therefore:


P = P′� =
e2a′�

6πϵ0c3
=

e4γ2B2v2 sin2 α
6πϵc3m2

e

a′� = −
eγvB sin α

m

Power radiated



• Therefore:


• Therefore:


• Re-arrange:


P = P′� =
e2a′�

6πϵ0c3
=

e4γ2B2v2 sin2 α
6πϵc3m2

e

a′� = −
eγvB sin α

m

c2 =
1

ϵ0μ0
Umag =

B2

2μ0
= energy density of magnetic field

⟹ P = 2σTcUmag ( v
c )

2

γ2 sin2 α

σT =
e4

6πϵ2
0c4m2 = Thomson cross-section

Power radiated



• Therefore:


• Therefore:


• Re-arrange:


P = P′� =
e2a′�

6πϵ0c3
=

e4γ2B2v2 sin2 α
6πϵc3m2

e

a′� = −
eγvB sin α

m

c2 =
1

ϵ0μ0
Umag =

B2

2μ0
= energy density of magnetic field

⟹ P = 2σTcUmag ( v
c )

2

γ2 sin2 α

σT =
e4

6πϵ2
0c4m2 = Thomson cross-section

Power radiated

i.e. Tighter helixes with the same v radiate more (because more of velocity is in 
circular motion)



P = 2σTcUmag ( v
c )

2

γ2 sin2 α

Power radiated

• Average over isotropic distribution of pitch angles:


∴ ⟨P⟩ =
4
3

σTcUmag ( v
c )

2

γ2

i.e. For a population of electrons travelling in random initial directions but all 
with the same speed (and therefore the same Lorentz factor and same energy).



Spectrum 
γ=1: gyroradiation
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Spectrum 
γ=1: gyroradiation
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Spectrum 
γ=1: gyroradiation
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ν
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Spectrum 
γ>>1: Relativistic beaming
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Spectrum 
γ>>1: Relativistic beaming

t

tg Linearly polarised

Fν

ν

Fourier transform to get spectrum:

νc

0 1 2 3

−1
0

1

2νg

P(
t)

B-field moving 
out of screen

v⊥

a
θ

ϕ
rg



Spectrum 
γ>>1: Relativistic beaming

t

tg Linearly polarised

Fν

ν

Fourier transform to get spectrum:

νc ∼ 1/Δt

0 1 2 3

−1
0

1

Δt

2νg

P(
t)

B-field moving 
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a
θ

ϕ
rg



Spectrum 
γ>>1: Relativistic beaming

B-field moving 
out of screen

v⊥

a
θ

ϕ
rg

cos ϕ =
cos ϕ′� + v/c

1 + (v/c)cos ϕ′�

Observer’s rest frame:

Electron’s rest frame:

ϕ
ϕ′�

Relativistic aberration formula:



Relativistic aberration
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Relativistic aberration
• P(t) peaks at             and is zero at                  and   
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Relativistic aberration
• P(t) peaks at             and is zero at                  and   


• These zero points to observer are at:


cos ϕ =
cos ϕ′ � + v/c

1 + (v/c)cos ϕ′ �
= v/c
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Relativistic aberration
• P(t) peaks at             and is zero at                  and   


• These zero points to observer are at:


cos ϕ =
cos ϕ′ � + v/c

1 + (v/c)cos ϕ′ �
= v/c

0 1 2 3

−1
0

1

ϕ′�

ϕ′� = 0 ϕ′� = π/2 ϕ′� = − π/2

sin ϕ = ± 1 − (v/c)2 = ± 1/γ

ϕ′� = 0 ϕ′� = π/2ϕ′� = − π/2 ϕ′� = πϕ′� = − π



Relativistic aberration
• P(t) peaks at             and is zero at                  and   


• These zero points to observer are at:


cos ϕ =
cos ϕ′ � + v/c

1 + (v/c)cos ϕ′ �
= v/c

0 1 2 3

−1
0

1

ϕ′�

ϕ′� = 0 ϕ′� = π/2 ϕ′� = − π/2

sin ϕ = ± 1 − (v/c)2 = ± 1/γ ⟹ ϕ ≈ ± 1/γ

ϕ′� = 0 ϕ′� = π/2ϕ′� = − π/2 ϕ′� = πϕ′� = − π



Relativistic aberration
• P(t) peaks at             and is zero at                  and   


• These zero points to observer are at:


cos ϕ =
cos ϕ′ � + v/c

1 + (v/c)cos ϕ′ �
= v/c

0 1 2 3

−1
0

1

ϕ′�ϕ = 0 ϕ = 1/γϕ = − 1/γ

ϕ′� = 0 ϕ′� = π/2 ϕ′� = − π/2

sin ϕ = ± 1 − (v/c)2 = ± 1/γ ⟹ ϕ ≈ ± 1/γ

ϕ = πϕ = − π



Relativistic aberration
• P(t) peaks at             and is zero at                  and   


• These zero points to observer are at:


cos ϕ =
cos ϕ′ � + v/c

1 + (v/c)cos ϕ′ �
= v/c

ϕΔϕ = 2/γ

ϕ′� = 0 ϕ′� = π/2 ϕ′� = − π/2

sin ϕ = ± 1 − (v/c)2 = ± 1/γ ⟹ ϕ ≈ ± 1/γ

ϕ = πϕ = − π
0 1 2 3

−1
0

1 P′� ∝ cos2 ϕ′�



Relativistic aberration
• P(t) peaks at             and is zero at                  and   


• These zero points to observer are at:


cos ϕ =
cos ϕ′ � + v/c

1 + (v/c)cos ϕ′ �
= v/c

ϕ
Δϕ = 2/γ

ϕ′� = 0 ϕ′� = π/2 ϕ′� = − π/2

sin ϕ = ± 1 − (v/c)2 = ± 1/γ ⟹ ϕ ≈ ± 1/γ

ϕ = πϕ = − π
0 1 2 3

−1
0

1 P′� ∝ cos2 ϕ′�



Relativistic aberration

1/γ

1/γ

2/γ

L

• Electron orbits an angle 2/γ from our sightline first cutting 
the cone to our sightline first not cutting the cone.


• Electron travels this distance in:


v⊥

v⊥

δt = (2/γ)/ωg

rg



Relativistic aberration

1/γ

1/γ

2/γ

L

• Electron orbits an angle 2/γ from our sightline first cutting 
the cone to our sightline first not cutting the cone.


• Electron travels this distance in:

• We first see the pulse at time:


v⊥

v⊥

δt = (2/γ)/ωg
t1 = L/c + d/c

rg

d



Relativistic aberration

1/γ

1/γ

2/γ

L

• Electron orbits an angle 2/γ from our sightline first cutting 
the cone to our sightline first not cutting the cone.


• Electron travels this distance in:

• We first see the pulse at time:

• We stop seeing the pulse at time:


v⊥

v⊥

δt = (2/γ)/ωg
t1 = L/c + d/c
t2 = δt + d/c

rg

d



Relativistic aberration

1/γ

1/γ

2/γ

L

• Electron orbits an angle 2/γ from our sightline first cutting 
the cone to our sightline first not cutting the cone.


• Electron travels this distance in:

• We first see the pulse at time:

• We stop seeing the pulse at time:

• Therefore length of pulse is:


v⊥

v⊥

δt = (2/γ)/ωg
t1 = L/c + d/c
t2 = δt + d/c
Δt = t2 − t1 = δt − L/c

rg



Relativistic aberration

1/γ

1/γ

v⊥

v⊥

Δt = δt − L/c

rg

L

2/γ



Relativistic aberration

1/γ

1/γL = 2rg sin(1/γ) ≈ 2rg/γ

v⊥

v⊥rg

2/γ

Δt = δt − L/c =
2
γ [ 1

ωg
−

rg

c ]

δt = (2/γ)/ωg



Relativistic aberration

1/γ

1/γ

v⊥

v⊥rg

Δt ≈
1

γ3ωg
(v⊥ ≈ v; γ2 ≫ 1)

Δt = δt − L/c =
2
γ [ 1

ωg
−

rg

c ]

L = 2rg sin(1/γ) ≈ 2rg/γ

2/γ



Relativistic aberration

1/γ

1/γ

v⊥

v⊥rg

Δt ≈
1

γ3ωg
(v⊥ ≈ v; γ2 ≫ 1)

Δt = δt − L/c =
2
γ [ 1

ωg
−

rg

c ]

L = 2rg sin(1/γ) ≈ 2rg/γ

2/γ

νc ≈ γ3ωg = γ2 eB
m



Population of electrons
• Spectrum for electrons with energy            is narrow and 

peaked at             ; peak value is
E ∝ γ

ν ∝ γ2

log(ν)

log(Fν)

ν = νc

P ∝ γ2



Population of electrons
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peaked at             ; peak value is

• Population of electrons:                       (previous lecture).

E ∝ γ
ν ∝ γ2

dN/dγ ∝ γ−k

log(ν)

log(Fν)

P ∝ γ2



Population of electrons
• Spectrum for electrons with energy            is narrow and 

peaked at             ; peak value is

• Population of electrons:                       (previous lecture).

• Overall spectrum:                   (α is spectral index, not 

pitch angle).

E ∝ γ
ν ∝ γ2

dN/dγ ∝ γ−k

log(ν)

log(Fν)

ν = νc

Fν ∝ ν−α

P ∝ γ2



Population of electrons
• Spectrum for electrons with energy            is narrow and 

peaked at             ; peak value is

• Population of electrons:                       (previous lecture).

• Overall spectrum:                   (α is spectral index, not 

pitch angle).

• Homework problem to show that:

E ∝ γ
ν ∝ γ2

dN/dγ ∝ γ−k

log(ν)

log(Fν)

ν = νc

Fν ∝ ν−α

α =
k − 1

2

P ∝ γ2



Population of electrons
• Spectrum for electrons with energy            is narrow and 

peaked at             ; peak value is

• Population of electrons:                       (previous lecture).

• Overall spectrum:                   (α is spectral index, not 

pitch angle).

• Homework problem to show that:

E ∝ γ
ν ∝ γ2

dN/dγ ∝ γ−k

log(ν)

log(Fν)

ν = νc

Fν ∝ ν−α

α =
k − 1

2

P ∝ γ2

Fν =
dF
dν

∝ P
dN
dν

∝ P
dN
dγ

dγ
dν

Hint:



Population of electrons
• Spectrum for electrons with energy            is narrow and 

peaked at             ; peak value is

• Population of electrons:                       (previous lecture).

• Overall spectrum:                   (α is spectral index, not 

pitch angle).

• Homework problem to show that:

E ∝ γ
ν ∝ γ2

dN/dγ ∝ γ−k

log(ν)

log(Fν)

ν = νc

Fν ∝ ν−α

α =
k − 1

2

P ∝ γ2

•                                       …we sometimes measure this for radio sources!k = 2 ⟹ α = 0.5



Population of electrons
• Spectrum for electrons with energy            is narrow and 

peaked at             ; peak value is

• Population of electrons:                       (previous lecture).

• Overall spectrum:                   (α is spectral index, not 

pitch angle).

• Homework problem to show that:

E ∝ γ
ν ∝ γ2

dN/dγ ∝ γ−k

log(ν)

log(Fν)

ν = νc

Fν ∝ ν−α

α =
k − 1

2

P ∝ γ2

•                                       …we sometimes measure this for radio sources!

• But often measure 

k = 2 ⟹ α = 0.5
α > 0.5 ⟹ k > 2

…same as cosmic ray spectrum!



Minimum energy
• By integrating the spectrum of a synchrotron emitting 

object, we can measure the total energy density emitted 
by the plasma (need as estimate for distance and size).
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• But energy density is Utot = Ue + Umag



Minimum energy
• By integrating the spectrum of a synchrotron emitting 

object, we can measure the total energy density emitted 
by the plasma (need as estimate for distance and size).


• But energy density is Utot = Ue + Umag

• To break this degeneracy, and therefore measure B-field, we can use the 
minimum energy method (Burbidge 1956)

Umag =
B2

2μ0

Ue = ∫ E(γ)
dN
dγ

dγ



Minimum energy
• By integrating the spectrum of a synchrotron emitting 

object, we can measure the total energy density emitted 
by the plasma (need as estimate for distance and size).


• But energy density is Utot = Ue + Umag

• To break this degeneracy, and therefore measure B-field, we can use the 
minimum energy method (Burbidge 1956)

Umag =
B2

2μ0

Ue = ∫ E(γ)
dN
dγ

dγ ∝ B−3/2

• Plasma presumably finds ~lowest 
energy state in equilibrium.



Minimum energy
• Minimum energy requirement:                   (equipartition).

• Will calculate true minimum energy relation for homework problem.

• Roughly equipartition values expected from particles jiggling around and 

sharing energy in the plasma.

• See https://github.com/robfender/ThunderBooks/blob/master/

Equipartition%20analysis.ipynb


Ue ∼ Umag

https://github.com/robfender/ThunderBooks/blob/master/Equipartition%20analysis.ipynb
https://github.com/robfender/ThunderBooks/blob/master/Equipartition%20analysis.ipynb
https://github.com/robfender/ThunderBooks/blob/master/Equipartition%20analysis.ipynb

