High Energy Astrophysics Dr. Adam Ingram

Lecture 3
 Synchrotron Radiation

Introduction

- Electrons accelerated to ultra-relativistic energies at shock fronts (e.g. jet lobes, supernova remnants) will spiral around B-field, resulting in synchrotron radiation.
- Observe strong radio emission from such regions.
- e.g. AGN/XRB jet lobes, SN remnants, galaxies (sum of radio emission from SN remnants \& XRBs)

Radio galaxy Cygnus A at 5 GHz (VLA: Carilli and Barthel 1996, A\&A Reviews)

Evidence for synchrotron

- Smooth, featureless broadband spectrum over many orders of magnitude in frequency;
- Power-law spectrum (will address turn-over next time);
- High degree of linear polarisation.

Synchrotron radiation

- Radiation released by relativistic electrons spiralling around magnetic field lines.

Synchrotron radiation

- Radiation released by relativistic electrons spiralling around magnetic field lines.
- Motion is helical:

$$
\begin{array}{ll}
\mathbf{v}_{\|}=\text {constant } & \ldots \text { velocity parallel to B-field } \\
\mathbf{v}_{\perp}=\text { circular } & \ldots \text { velocity perpendicular to B-field }
\end{array}
$$

electron: mass m, charge e

$\mathbf{V}_{\|}$moving out of screen

Synchrotron radiation

- Radiation released by relativistic electrons spiralling around magnetic field lines.
- Motion is helical:

$$
\begin{array}{ll}
\mathbf{v}_{\|}=\text {constant } & \ldots \text { velocity parallel to B-field } \\
\mathbf{v}_{\perp}=\text { circular } & \text {...velocity perpendicular to B-field }
\end{array}
$$

Pitch angle $=$ angle between \mathbf{V} and $\mathbf{B}=\alpha$
electron: mass m, charge e

$\mathbf{V}_{\|}$moving out of screen

Acceleration of electron

- Lorentz force:

$$
\mathbf{F}=q(\mathscr{E}+\mathbf{v} \times \mathbf{B})=-e(\mathscr{E}+\mathbf{v} \times \mathbf{B})
$$

Electron has -ve charge

Electric field vector
(E is reserved for electron energy)

$\mathbf{V}_{\|}$moving out of screen

Acceleration of electron

- Lorentz force:

$$
\mathbf{F}=q(\mathscr{E}+\mathbf{v} \times \mathbf{B})=-e(\mathscr{E}+\mathbf{v} \times \mathbf{B})
$$

- Static B-field $\Longrightarrow \mathbf{F}=-e \mathbf{v} \times \mathbf{B}$

$\mathbf{V}_{\|}$moving out of screen

Acceleration of electron

- Lorentz force:

$$
\mathbf{F}=q(\mathscr{E}+\mathbf{v} \times \mathbf{B})=-e(\mathscr{E}+\mathbf{v} \times \mathbf{B})
$$

- Static B-field $\Longrightarrow \mathbf{F}=-e \mathbf{v} \times \mathbf{B}$
- Therefore equation of motion: $\frac{d}{d t}(\gamma m \mathbf{v})=-e \mathbf{v} \times \mathbf{B}$

$\mathbf{V}_{\|}$moving out of screen

Acceleration of electron

- Lorentz force:

$$
\mathbf{F}=q(\mathscr{E}+\mathbf{v} \times \mathbf{B})=-e(\mathscr{E}+\mathbf{v} \times \mathbf{B})
$$

- Static B-field $\Longrightarrow \mathbf{F}=-e \mathbf{v} \times \mathbf{B}$
- Therefore equation of motion: $\frac{d}{d t}(\gamma m \mathbf{v})=-e \mathbf{v} \times \mathbf{B}$
- Therefore acceleration:

$$
\mathbf{a}=-\frac{e v B \sin \alpha}{\gamma m} \hat{\mathbf{r}}
$$

$\mathbf{V}_{\|}$moving out of screen

Gyroradius

- Calculate orbital radius of electron by setting a equal to centripetal acceleration:

$$
a=\frac{e v B \sin \alpha}{\gamma m}=\frac{v_{\perp}^{2}}{r}=\frac{v^{2} \sin ^{2} \alpha}{r}
$$

$\mathbf{V}_{\|}$moving out of screen

Gyroradius

- Calculate orbital radius of electron by setting a equal to centripetal acceleration:

$$
a=\frac{e v B \sin \alpha}{\gamma m}=\frac{v_{\perp}^{2}}{r}=\frac{v^{2} \sin ^{2} \alpha}{r}
$$

- Therefore gyroradius:

$$
r_{g}=\frac{\gamma m v \sin \alpha}{e B}
$$

$\mathbf{V}_{\|}$moving out of screen

Gyroradius

- Calculate orbital radius of electron by setting a equal to centripetal acceleration:

$$
a=\frac{e v B \sin \alpha}{\gamma m}=\frac{v_{\perp}^{2}}{r}=\frac{v^{2} \sin ^{2} \alpha}{r}
$$

- Therefore gyroradius:

$$
r_{g}=\frac{\gamma m v \sin \alpha}{e B}
$$

- Gyro angular frequency:

$$
\omega_{g}=\frac{v_{\perp}}{r_{g}}=\frac{e B}{\gamma m}
$$

$\mathbf{V}_{\|}$moving out of screen

Gyroradius

- Calculate orbital radius of electron by setting a equal to centripetal acceleration:

$$
a=\frac{e v B \sin \alpha}{\gamma m}=\frac{v_{\perp}^{2}}{r}=\frac{v^{2} \sin ^{2} \alpha}{r}
$$

- Therefore gyroradius:

$$
r_{g}=\frac{\gamma m v \sin \alpha}{e B}
$$

- Gyro angular frequency:

$$
\omega_{g}=\frac{v_{\perp}}{r_{g}}=\frac{e B}{\gamma m}
$$

- Gyrofrequency:

$$
\nu_{g}=\frac{v_{\perp}}{2 \pi r_{g}}=\frac{e B}{2 \pi \gamma m}
$$

$\mathbf{V}_{\|}$moving out of screen

Gyroradius

- Calculate orbital radius of electron by setting a equal to centripetal acceleration:

$$
a=\frac{e v B \sin \alpha}{\gamma m}=\frac{v_{\perp}^{2}}{r}=\frac{v^{2} \sin ^{2} \alpha}{r}
$$

- Therefore gyroradius:

$$
r_{g}=\frac{\gamma m v \sin \alpha}{e B}
$$

- Gyro angular frequency:

$$
\omega_{g}=\frac{v_{\perp}}{r_{g}}=\frac{e B}{\gamma m}
$$

- Gyrofrequency:

$$
\nu_{g}=\frac{v_{\perp}}{2 \pi r_{g}}=\frac{e B}{2 \pi \gamma m}
$$

- Gyroperiod:

$$
t_{g}=\frac{1}{\nu_{g}}=\frac{2 \pi \gamma m}{e B}
$$

$\mathbf{V}_{\|}$moving out of screen

Radiation generated

Radiation generated

Radiation generated

- Electron has travelled distance $\Delta \mathrm{v}$ t
- Electric field is radial centred on electron in sphere of radius ct
- Field outside of this sphere hasn't adjusted yet
- Kink in field in shell of radius $c \Delta t$ where inner and outer fields join up
- This kink corresponds to nonzero \mathscr{E}_{θ}

Thomson's reasoning

Radiation generated

Radiation generated

After time t:

- Pulse of non-zero \mathscr{E}_{θ} has moved out
- Pulse strength (in electron rest frame) depends on angle to acceleration θ :

$$
\frac{\mathscr{E}_{\theta}}{\mathscr{E}_{r}}=\frac{t \Delta v \sin \theta}{c \Delta t}=\frac{a r}{c^{2}} \sin \theta
$$

Thomson's reasoning

Power radiated

(non-relativistic)

$$
\mathscr{E}_{r}=\frac{e}{4 \pi \epsilon_{0} r^{2}} \quad \frac{\mathscr{E}_{\theta}}{\mathscr{E}_{r}}=\frac{a r}{c^{2}} \sin \theta \quad c^{2}=\frac{1}{\epsilon_{0} \mu_{0}}
$$

Energy flow in pulse / time / area at distance $r=$ modulus of Poynting vector:

$$
S=\left(\epsilon_{0} / \mu_{0}\right)^{1 / 2} \mathscr{E}_{\theta}^{2}=\frac{e^{2} a^{2} \sin ^{2} \theta}{(4 \pi)^{2} \epsilon_{0} c^{3} r^{2}}
$$

Therefore power radiated into full sphere (remember $d A=r 2 \pi \sin \theta d \theta$):

$$
P=\frac{e^{2} a^{2}}{6 \pi \epsilon_{0} c^{3}}
$$

Power radiated

$$
P=\frac{e^{2} a^{2}}{6 \pi \epsilon_{0} c^{3}}
$$

- We want to deal with ultra-relativistic electrons, so need relativistic limit! Luckily, can use non-relativistic formula in the instantaneous electron rest frame S' and then use Lorentz invariance of dE/dt to trivially move back to the observer's frame S (in which the B-field is at rest)

Power radiated

$$
P=\frac{e^{2} a^{2}}{6 \pi \epsilon_{0} c^{3}}
$$

- We want to deal with ultra-relativistic electrons, so need relativistic limit! Luckily, can use non-relativistic formula in the instantaneous electron rest frame S' and then use Lorentz invariance of dE/dt to trivially move back to the observer's frame S (in which the B-field is at rest)
- This comes about because dE and dt Lorentz transform in the same way:

$$
d E=\gamma d E^{\prime} ; \quad d t=\gamma d t^{\prime} \quad \therefore(d E / d t)=(d E / d t)^{\prime}
$$

Power radiated

$$
P=\frac{e^{2} a^{2}}{6 \pi \epsilon_{0} c^{3}}
$$

- We want to deal with ultra-relativistic electrons, so need relativistic limit! Luckily, can use non-relativistic formula in the instantaneous electron rest frame S' and then use Lorentz invariance of dE/dt to trivially move back to the observer's frame S (in which the B-field is at rest)
- This comes about because dE and dt Lorentz transform in the same way:

$$
d E=\gamma d E^{\prime} ; \quad d t=\gamma d t^{\prime} \quad \therefore(d E / d t)=(d E / d t)^{\prime}
$$

Electron restframe, S':

V

Power radiated

- In S frame: $B_{x}=B \cos \alpha ; B_{y}=0 ; B_{z}=B \sin \alpha$

$$
\mathscr{E}=0
$$

Power radiated

- In S frame: $B_{x}=B \cos \alpha ; B_{y}=0 ; B_{z}=B \sin \alpha$

$$
\mathscr{E}=0
$$

- In S' frame:

$$
\begin{aligned}
& P^{\prime}=\frac{e^{2} a^{\prime}}{6 \pi \epsilon_{0} c^{3}} \\
& \mathbf{F}^{\prime}=m \mathbf{a}^{\prime}=e\left(\mathscr{E}^{\prime}+\mathbf{v}^{\prime} \times \mathbf{B}^{\prime}\right)
\end{aligned}
$$

Power radiated

- In S frame: $B_{x}=B \cos \alpha ; B_{y}=0 ; B_{z}=B \sin \alpha$

$$
\mathscr{E}=0
$$

- In S' frame:

$$
\begin{aligned}
& P^{\prime}=\frac{e^{2} a^{\prime}}{6 \pi \epsilon_{0} c^{3}} \\
& \mathbf{F}^{\prime}=m \mathbf{a}^{\prime}=e\left(\mathscr{E}^{\prime}+\mathbf{v}^{\prime} \times \mathbf{B}^{\prime}\right)
\end{aligned}
$$

- By design of the rest frame, $\mathrm{v}^{\prime}=0$, therefore: $\quad m \mathbf{a}^{\prime}=e \mathscr{E}^{\prime}$

Power radiated

- In S frame: $B_{x}=B \cos \alpha ; B_{y}=0 ; B_{z}=B \sin \alpha$

$$
\mathscr{E}=0
$$

- In S' frame:

$$
\begin{aligned}
& P^{\prime}=\frac{e^{2} a^{\prime}}{6 \pi \epsilon_{0} c^{3}} \\
& \mathbf{F}^{\prime}=m \mathbf{a}^{\prime}=e\left(\mathscr{E}^{\prime}+\mathbf{v}^{\prime} \times \mathbf{B}^{\prime}\right)
\end{aligned}
$$

- By design of the rest frame, $\mathrm{v}^{\prime}=0$, therefore: $\quad m \mathbf{a}^{\prime}=e \mathscr{E}^{\prime}$
- Lorentz transforms to get electric field in S':

$$
\begin{aligned}
& \mathscr{E}_{x}^{\prime}=\mathscr{E}_{x} \\
& \mathscr{E}_{y}^{\prime}=\gamma\left(\mathscr{E}_{y}-v B_{z}\right) \\
& \mathscr{E}_{z}^{\prime}=\gamma\left(\mathscr{E}_{z}-v B_{y}\right)
\end{aligned}
$$

Power radiated

- In S frame: $B_{x}=B \cos \alpha ; B_{y}=0 ; B_{z}=B \sin \alpha$

$$
\mathscr{E}=0
$$

- In S' frame:

$$
\begin{aligned}
& P^{\prime}=\frac{e^{2} a^{\prime}}{6 \pi \epsilon_{0} c^{3}} \\
& \mathbf{F}^{\prime}=m \mathbf{a}^{\prime}=e\left(\mathscr{E}^{\prime}+\mathbf{v}^{\prime} \times \mathbf{B}^{\prime}\right)
\end{aligned}
$$

- By design of the rest frame, $\mathrm{v}^{\prime}=0$, therefore: $\quad m \mathbf{a}^{\prime}=e \mathscr{E}^{\prime}$
- Lorentz transforms to get electric field in S':

$$
\begin{aligned}
& \mathscr{E}_{x}^{\prime}=\mathscr{E}_{x}=0 \\
& \mathscr{E}_{y}^{\prime}=\gamma\left(\mathscr{E}_{y}-v B_{z}\right)=-\gamma v B_{z}=-\gamma v B \sin \alpha \\
& \mathscr{E}_{z}^{\prime}=\gamma\left(\mathscr{E}_{z}-v B_{y}\right)=0
\end{aligned}
$$

Power radiated

$$
a^{\prime}=-\frac{e \gamma v B \sin \alpha}{m}
$$

Power radiated

- Therefore:

$$
a^{\prime}=-\frac{e \gamma v B \sin \alpha}{m}
$$

- Therefore:

$$
P=P^{\prime}=\frac{e^{2} a^{\prime}}{6 \pi \epsilon_{0} c^{3}}=\frac{e^{4} \gamma^{2} B^{2} v^{2} \sin ^{2} \alpha}{6 \pi \epsilon c^{3} m_{e}^{2}}
$$

Power radiated

- Therefore:

$$
a^{\prime}=-\frac{e \gamma v B \sin \alpha}{m}
$$

m

- Therefore:

$$
P=P^{\prime}=\frac{e^{2} a^{\prime}}{6 \pi \epsilon_{0} c^{3}}=\frac{e^{4} \gamma^{2} B^{2} v^{2} \sin ^{2} \alpha}{6 \pi \epsilon c^{3} m_{e}^{2}}
$$

- Re-arrange:

$$
\begin{aligned}
c^{2} & =\frac{1}{\epsilon_{0} \mu_{0}} \quad U_{\mathrm{mag}}=\frac{B^{2}}{2 \mu_{0}} \quad=\text { energy density of magnetic field } \\
\sigma_{T} & =\frac{e^{4}}{6 \pi \epsilon_{0}^{2} c^{4} m^{2}} \quad=\text { Thomson cross-section } \\
& \Longrightarrow \quad P=2 \sigma_{T} c U_{\operatorname{mag}}\left(\frac{v}{c}\right)^{2} \gamma^{2} \sin ^{2} \alpha
\end{aligned}
$$

Power radiated

- Therefore:

$$
a^{\prime}=-\underline{e \gamma v B \sin \alpha}
$$

m

- Therefore:

$$
P=P^{\prime}=\frac{e^{2} a^{\prime}}{6 \pi \epsilon_{0} c^{3}}=\frac{e^{4} \gamma^{2} B^{2} v^{2} \sin ^{2} \alpha}{6 \pi \epsilon c^{3} m_{e}^{2}}
$$

- Re-arrange:

$$
\begin{aligned}
c^{2} & =\frac{1}{\epsilon_{0} \mu_{0}} \quad U_{\mathrm{mag}}=\frac{B^{2}}{2 \mu_{0}} \quad=\text { energy density of magnetic field } \\
\sigma_{T} & =\frac{e^{4}}{6 \pi \epsilon_{0}^{2} c^{4} m^{2}} \quad=\text { Thomson cross-section } \\
& \Longrightarrow \quad P=2 \sigma_{T} c U_{\operatorname{mag}}\left(\frac{v}{c}\right)^{2} \gamma^{2} \sin ^{2} \alpha
\end{aligned}
$$

i.e. Tighter helixes with the same v radiate more (because more of velocity is in circular motion)

Power radiated

$$
P=2 \sigma_{T} c U_{\mathrm{mag}}\left(\frac{v}{c}\right)^{2} \gamma^{2} \sin ^{2} \alpha
$$

- Average over isotropic distribution of pitch angles:

$$
\therefore\langle P\rangle=\frac{4}{3} \sigma_{T} c U_{\mathrm{mag}}\left(\frac{v}{c}\right)^{2} \gamma^{2}
$$

i.e. For a population of electrons travelling in random initial directions but all with the same speed (and therefore the same Lorentz factor and same energy).

Spectrum

$\mathrm{Y}=1$: gyroradiation

Linearly polarised

Spectrum

$\mathrm{Y}=1$: gyroradiation

Spectrum

$\mathrm{Y}=1$: gyroradiation

Fourier transform to get spectrum:

Spectrum

$\gamma \gg 1$: Relativistic beaming

Spectrum

$\gamma \gg 1$: Relativistic beaming

Fourier transform to get spectrum:

Spectrum

$\gamma \gg 1$: Relativistic beaming

Fourier transform to get spectrum:

Spectrum
 $\gamma \gg 1$: Relativistic beaming

Relativistic aberration formula:
$\cos \phi=\frac{\cos \phi^{\prime}+v / c}{1+(v / c) \cos \phi^{\prime}}$

Observer's rest frame: ϕ
Electron's rest frame: ϕ^{\prime}

Relativistic aberration

Relativistic aberration

- $\mathrm{P}(\mathrm{t})$ peaks at $\phi^{\prime}=0$ and is zero at $\phi^{\prime}=\pi / 2$ and $\phi^{\prime}=-\pi / 2$

Relativistic aberration

- $\mathrm{P}(\mathrm{t})$ peaks at $\phi^{\prime}=0$ and is zero at $\phi^{\prime}=\pi / 2$ and $\phi^{\prime}=-\pi / 2$
- These zero points to observer are at:

$$
\cos \phi=\frac{\cos \phi^{\prime}+v / c}{1+(v / c) \cos \phi^{\prime}}=v / c
$$

Relativistic aberration

- $\mathrm{P}(\mathrm{t})$ peaks at $\phi^{\prime}=0$ and is zero at $\phi^{\prime}=\pi / 2$ and $\phi^{\prime}=-\pi / 2$
- These zero points to observer are at:

$$
\cos \phi=\frac{\cos \phi^{\prime}+v / c}{1+(v / c) \cos \phi^{\prime}}=v / c
$$

$$
\sin \phi= \pm \sqrt{1-(v / c)^{2}}= \pm 1 / \gamma
$$

Relativistic aberration

- $\mathrm{P}(\mathrm{t})$ peaks at $\phi^{\prime}=0$ and is zero at $\phi^{\prime}=\pi / 2$ and $\phi^{\prime}=-\pi / 2$
- These zero points to observer are at:

$$
\cos \phi=\frac{\cos \phi^{\prime}+v / c}{1+(v / c) \cos \phi^{\prime}}=v / c
$$

$$
\sin \phi= \pm \sqrt{1-(v / c)^{2}}= \pm 1 / \gamma \Longrightarrow \phi \approx \pm 1 / \gamma
$$

Relativistic aberration

- $\mathrm{P}(\mathrm{t})$ peaks at $\phi^{\prime}=0$ and is zero at $\phi^{\prime}=\pi / 2$ and $\phi^{\prime}=-\pi / 2$
- These zero points to observer are at:

$$
\cos \phi=\frac{\cos \phi^{\prime}+v / c}{1+(v / c) \cos \phi^{\prime}}=v / c
$$

$$
\sin \phi= \pm \sqrt{1-(v / c)^{2}}= \pm 1 / \gamma \Longrightarrow \phi \approx \pm 1 / \gamma
$$

Relativistic aberration

- $\mathrm{P}(\mathrm{t})$ peaks at $\phi^{\prime}=0$ and is zero at $\phi^{\prime}=\pi / 2$ and $\phi^{\prime}=-\pi / 2$
- These zero points to observer are at:

$$
\cos \phi=\frac{\cos \phi^{\prime}+v / c}{1+(v / c) \cos \phi^{\prime}}=v / c
$$

$$
\sin \phi= \pm \sqrt{1-(v / c)^{2}}= \pm 1 / \gamma \Longrightarrow \phi \approx \pm 1 / \gamma
$$

$$
P^{\prime} \propto \cos ^{2} \phi^{\prime} \uparrow
$$

Relativistic aberration

- $\mathrm{P}(\mathrm{t})$ peaks at $\phi^{\prime}=0$ and is zero at $\phi^{\prime}=\pi / 2$ and $\phi^{\prime}=-\pi / 2$
- These zero points to observer are at:

$$
\cos \phi=\frac{\cos \phi^{\prime}+v / c}{1+(v / c) \cos \phi^{\prime}}=v / c
$$

$$
\sin \phi= \pm \sqrt{1-(v / c)^{2}}= \pm 1 / \gamma \Longrightarrow \phi \approx \pm 1 / \gamma
$$

Relativistic aberration

- Electron orbits an angle $2 / \mathrm{Y}$ from our sightline first cutting the cone to our sightline first not cutting the cone.
- Electron travels this distance in: $\delta t=(2 / \gamma) / \omega_{g}$

Relativistic aberration

- Electron orbits an angle $2 / \mathrm{Y}$ from our sightline first cutting the cone to our sightline first not cutting the cone.
- Electron travels this distance in: $\delta t=(2 / \gamma) / \omega_{g}$
- We first see the pulse at time: $\quad t_{1}=L / c+d / c$

Relativistic aberration

- Electron orbits an angle $2 / \mathrm{Y}$ from our sightline first cutting the cone to our sightline first not cutting the cone.
- Electron travels this distance in: $\delta t=(2 / \gamma) / \omega_{g}$
- We first see the pulse at time: $\quad t_{1}=L / c+d / c$
- We stop seeing the pulse at time: $t_{2}=\delta t+d / c$

Relativistic aberration

- Electron orbits an angle $2 / \mathrm{y}$ from our sightline first cutting the cone to our sightline first not cutting the cone.
- Electron travels this distance in: $\delta t=(2 / \gamma) / \omega_{g}$
- We first see the pulse at time: $\quad t_{1}=L / c+d / c$
- We stop seeing the pulse at time: $t_{2}=\delta t+d / c$
- Therefore length of pulse is:
$\Delta t=t_{2}-t_{1}=\delta t-L / c$

Relativistic aberration

$$
\Delta t=\delta t-L / c
$$

Relativistic aberration

$$
\Delta t=\delta t-L / c=\frac{2}{\gamma}\left[\frac{1}{\omega_{g}}-\frac{r_{g}}{c}\right]
$$

Relativistic aberration

$$
\begin{aligned}
& \Delta t=\delta t-L / c=\frac{2}{\gamma}\left[\frac{1}{\omega_{g}}-\frac{r_{g}}{c}\right] \\
& \Delta t \approx \frac{1}{\gamma^{3} \omega_{g}} \\
& \quad\left(v_{\perp} \approx v ; \gamma^{2} \gg 1\right)
\end{aligned}
$$

Relativistic aberration

$$
\begin{aligned}
& \Delta t=\delta t-L / c=\frac{2}{\gamma}\left[\frac{1}{\omega_{g}}-\frac{r_{g}}{c}\right] \\
& \Delta t \approx \frac{1}{\gamma^{3} \omega_{g}} \\
& 1 / \gamma / \cdots \cdots \cdots \cdots \cdots \nu_{c} \approx \gamma^{3} \omega_{g}=\gamma^{2} \frac{e B}{m}
\end{aligned} \quad\left(v_{\perp} \approx v ; \gamma^{2} \gg 1\right)
$$

Population of electrons

- Spectrum for electrons with energy $E \propto \gamma$ is narrow and peaked at $\nu \propto \gamma^{2}$; peak value is $P \propto \gamma^{2}$

Population of electrons

- Spectrum for electrons with energy $E \propto \gamma$ is narrow and peaked at $\nu \propto \gamma^{2}$; peak value is $P \propto \gamma^{2}$
- Population of electrons: $d N / d \gamma \propto \gamma^{-k}$ (previous lecture).

Population of electrons

- Spectrum for electrons with energy $E \propto \gamma$ is narrow and peaked at $\nu \propto \gamma^{2}$; peak value is $P \propto \gamma^{2}$
- Population of electrons: $d N / d \gamma \propto \gamma^{-k}$ (previous lecture).
- Overall spectrum: $F_{\nu} \propto \nu^{-\alpha}$ (α is spectral index, not pitch angle).

Population of electrons

- Spectrum for electrons with energy $E \propto \gamma$ is narrow and peaked at $\nu \propto \gamma^{2}$; peak value is $P \propto \gamma^{2}$
- Population of electrons: $d N / d \gamma \propto \gamma^{-k}$ (previous lecture).
- Overall spectrum: $F_{\nu} \propto \nu^{-\alpha}$ (α is spectral index, not pitch angle).

$$
k-1
$$

- Homework problem to show that: $\alpha=\frac{}{2}$

Population of electrons

- Spectrum for electrons with energy $E \propto \gamma$ is narrow and peaked at $\nu \propto \gamma^{2}$; peak value is $P \propto \gamma^{2}$
- Population of electrons: $d N / d \gamma \propto \gamma^{-k}$ (previous lecture).
- Overall spectrum: $F_{\nu} \propto \nu^{-\alpha}$ (α is spectral index, not pitch angle).

$$
k-1
$$

- Homework problem to show that: $\alpha=\frac{}{2}$

$$
\text { Hint: } F_{\nu}=\frac{d F}{d \nu} \propto P \frac{d N}{d \nu} \propto P \frac{d N}{d \gamma} \frac{d \gamma}{d \nu}
$$

Population of electrons

- Spectrum for electrons with energy $E \propto \gamma$ is narrow and peaked at $\nu \propto \gamma^{2}$; peak value is $P \propto \gamma^{2}$
- Population of electrons: $d N / d \gamma \propto \gamma^{-k}$ (previous lecture).
- Overall spectrum: $F_{\nu} \propto \nu^{-\alpha}$ (α is spectral index, not pitch angle).

$$
k-1
$$

- Homework problem to show that: $\alpha=\frac{1}{2}$
- $k=2 \Longrightarrow \alpha=0.5 \quad$...we sometimes measure this for radio sources!

Population of electrons

- Spectrum for electrons with energy $E \propto \gamma$ is narrow and peaked at $\nu \propto \gamma^{2}$; peak value is $P \propto \gamma^{2}$
- Population of electrons: $d N / d \gamma \propto \gamma^{-k}$ (previous lecture).
- Overall spectrum: $F_{\nu} \propto \nu^{-\alpha}$ (α is spectral index, not pitch angle).

$$
k-1
$$

- Homework problem to show that: $\alpha=\frac{1}{2}$
- $k=2 \Longrightarrow \alpha=0.5 \quad$...we sometimes measure this for radio sources!
- But often measure $\alpha>0.5 \Longrightarrow k>2$

Minimum energy

- By integrating the spectrum of a synchrotron emitting object, we can measure the total energy density emitted by the plasma (need as estimate for distance and size).

Minimum energy

- By integrating the spectrum of a synchrotron emitting object, we can measure the total energy density emitted by the plasma (need as estimate for distance and size).
- But energy density is $U_{\text {tot }}=U_{\mathrm{e}}+U_{\mathrm{mag}}$

Minimum energy

- By integrating the spectrum of a synchrotron emitting object, we can measure the total energy density emitted by the plasma (need as estimate for distance and size).
- But energy density is $U_{\text {tot }}=U_{\mathrm{e}}+U_{\text {mag }}$
- To break this degeneracy, and therefore measure B-field, we can use the minimum energy method (Burbidge 1956)

$$
\begin{aligned}
U_{\mathrm{mag}} & =\frac{B^{2}}{2 \mu_{0}} \\
U_{\mathrm{e}} & =\int E(\gamma) \frac{d N}{d \gamma} d \gamma
\end{aligned}
$$

Minimum energy

- By integrating the spectrum of a synchrotron emitting object, we can measure the total energy density emitted by the plasma (need as estimate for distance and size).
- But energy density is $U_{\text {tot }}=U_{\mathrm{e}}+U_{\text {mag }}$
- To break this degeneracy, and therefore measure B-field, we can use the minimum energy method (Burbidge 1956)

$$
\begin{aligned}
U_{\mathrm{mag}} & =\frac{B^{2}}{2 \mu_{0}} \\
U_{\mathrm{e}} & =\int E(\gamma) \frac{d N}{d \gamma} d \gamma \propto B^{-3 / 2}
\end{aligned}
$$

- Plasma presumably finds ~lowest energy state in equilibrium.

Magnetic field strength, B

Minimum energy

- Minimum energy requirement: $U_{\mathrm{e}} \sim U_{\text {mag }}$ (equipartition).
- Will calculate true minimum energy relation for homework problem.
- Roughly equipartition values expected from particles jiggling around and sharing energy in the plasma.
- See https://github.com/robfender/ThunderBooks/blob/master/ Equipartition\%20analysis.ipynb

