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Lecture 3
Synchrotron Radiation

S

&



Introduction

* Electrons accelerated to ultra-relativistic energies at shock fronts (e.g. jet
lobes, supernova remnants) will spiral around B-field, resulting in
synchrotron radiation.

* QObserve strong radio emission from such regions.

* e.9. AGN/XRB jet lobes, SN remnants, galaxies (sum of radio emission from
SN remnants & XRBs)

Radio galaxy Cygnus A at 5 GHz (VLA: Carilli and Barthel 1996, A&A Reviews)



Evidence for synchrotron

* Smooth, featureless broadband spectrum over many orders of magnitude in
frequency;
* Power-law spectrum (will address turn-over next time);

* High degree of linear polarisation.
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Synchrotron radiation

 Radiation released by relativistic electrons spiralling
around magnetic field lines.




Synchrotron radiation

 Radiation released by relativistic electrons spiralling
around magnetic field lines.
* Motion is helical:

V| = constant ...velocity parallel to B-field

vV, = circular ...velocity perpendicular to B-field

electron: mass m, charge e

B-field moving
out of screen

V” moving out of screen




Synchrotron radiation

 Radiation released by relativistic electrons spiralling
around magnetic field lines.
* Motion is helical:

V| = constant ...velocity parallel to B-field

vV, = circular ...velocity perpendicular to B-field

Pitch angle = angle between Vand B =«
electron: mass m, charge e

B-field moving
out of screen

V” moving out of screen




Acceleration of electron

e Lorentz force: F=qg(+vXxB)=— e(%+VXB)
Electron has -ve
charge

Electric field vector
Electric charge (E is reserved for electron energy)

B-field moving
out of screen

V” moving out of screen




Acceleration of electron
e Lorentz force: F=qg(+vXB)=—-e(&+vXB)

e Static B-field —> F = —evXB

B-field moving
out of screen

V” moving out of screen




Acceleration of electron
e Lorentz force: F=qg(+vXB)=—-e(&+vXB)

e Static B-field —> F = —evXB

* Therefore equation of motion: z(ymv) = —evXB
[
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Acceleration of electron
e Lorentz force: F=qg(+vXB)=—-e(&+vXB)

e Static B-field —> F = —evXB

* Therefore equation of motion: z(ymv) = —evXB
[
e Therefore acceleration: evBsina |
a= r
ym

B-field moving
out of screen

V” moving out of screen




Gyroradius

e Calculate orbital radius of electron by setting a equal to
centripetal acceleration:
2 2 32

evBsina v{ v sin“a

a = = — =

ym r r

B-field moving
out of screen

V” moving out of screen



Gyroradius

e Calculate orbital radius of electron by setting a equal to
centripetal acceleration:

evBsina vi vZsina
a = = —_— =
ym r r
* Therefore gyroradius:
ymy Sin o
Iy =
eB

B-field moving
out of screen

V” moving out of screen



Gyroradius

e Calculate orbital radius of electron by setting a equal to
centripetal acceleration:
2 2 32

evBsina v{ v sin“a

a = = — =
ym r r
* Therefore gyroradius:

ymy sin o
r, =
eb

* Gyro anqular frequency:

B-field moving
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Gyroradius

e Calculate orbital radius of electron by setting a equal to
centripetal acceleration:

evBsina vi vZsina
a = = — =
ym r r
* Therefore gyroradius:
ymy sSin o
r, =
eB
* Gyro anqular frequency:
1% eB
o) =— = —
5 Iy ym
e QGyrofrequency: v, cB
UV, = — \% L
S 2ar 2rym
g 4

B-field moving
out of screen

V” moving out of screen



Gyroradius

e Calculate orbital radius of electron by setting a equal to
centripetal acceleration:

evBsina vi vZsina
a = = — =
ym r r
* Therefore gyroradius:
ymy sSin o
r, =
eB
* Gyro anqular frequency:
1% eB
o) =— = —
g
Iy ym
e QGyrofrequency: v, cB
52 2
T Tym | |
J B-field moving
e Gyroperiod: out of screen
t 1 2nym
g _——
Vg eB

V” moving out of screen



Radiation generated

Electron at rest

From Coulomb’s law,
electric field is:

€
g_

" 4meyr?

%QZO

Thomson'’s reasoning



Radiation generated

Now give electron
velocity Av in time
interval At

From Coulomb’s law,
electric field is:

€
g_

" 4meyr?

%QZO

Thomson'’s reasoning



Radiation generated

After time t:

e Electron has travelled distance
CAf AV t

/ e Electric field is radial centred
on electron in sphere of radius

) ct
__,* Field outside of this sphere

)

Av nasn’t adjusted yet
Ar * Kink in field in shell of radius

c/AAt where inner and outer
\ fields join up

e This kink corresponds to non-
zero &

Thomson'’s reasoning



Radiation generated

At later time t:

e Pulse of non-zero %9 has
moved out

o

Thomson'’s reasoning



Radiation generated

After time t:

’? =~
l' VZ)

e Pulse of non-zero %9 has
moved out

“_ » Pulse strength (in electron rest

frame) depends on angle to
acceleration 0:

—>

TG
&’ 0
é — = — —sin®

&y tAvsing ar

&, cAt c?

Thomson'’s reasoning



Power radiated
(non-relativistic)

e & ar 1
&, = — = " sind c” =
471'601"2 %r C2 (50/40

Energy flow in pulse / time / area at distance r = modulus of Poynting vector:

e?a’ sin? @

) 1/2
(4r)2eyc3r?

g2 =

S = (60//40

Therefore power radiated into full sphere (remember dA =r 21t sinB d6):

e’a’

67eyC



Power radiated

67T€0C3
e \We want to deal with ultra-relativistic electrons, so need relativistic limit!
Luckily, can use non-relativistic formula in the instantaneous electron rest

frame S’ and then use Lorentz invariance of dE/dt to trivially move back to
the observer’s frame S (in which the B-field is at rest)

e’a’




Power radiated

e’a’

67T€0C3

e \We want to deal with ultra-relativistic electrons, so need relativistic limit!
Luckily, can use non-relativistic formula in the instantaneous electron rest
frame S’ and then use Lorentz invariance of dE/dt to trivially move back to
the observer’s frame S (in which the B-field is at rest)

* This comes about because dE and dt Lorentz transform in the same way:

dE = ydE". dt = ydt' .. (dE/dt) = (dE/d})



Power radiated

2

€ d

67T€0C3

e \We want to deal with ultra-relativistic electrons, so need relativistic limit!
Luckily, can use non-relativistic formula in the instantaneous electron rest
frame S’ and then use Lorentz invariance of dE/dt to trivially move back to

the observer’s frame S (in which the B-field is at rest)

* This comes about because dE and dt Lorentz transform in the same way:

dE = ydE",

/

Electron restframe, S’:

A

I

B/

<

dt = ydt' .. (dE/dt) = (dE/dt)’

Observer restframe, S’:
A

\

B




Power radiated

* InSframe: B_ = Bcosa; By=(); B, = Bsina
& =10



Power radiated

* InSframe: B_ = Bcosa; By=(); B, = Bsina
& =10

e |InS’ frame: . eza’

 6eyC3
F'=ma'=e(&+v xXDB)




Power radiated

* InSframe: B_ = Bcosa; By=(); B, = Bsina
& =10

e |InS’ frame: . eza’

 6eyC3
F'=ma'=e(&+v xXDB)

By design of the rest frame, v’'=0, therefore: ma =ed’



Power radiated

In S frame: Bx = Bcosa; By = 0; BZ —

& =0

In S’ frame: . eza,

 6eyC3
F'=ma'=e(&+v xXDB)

By design of the rest frame, v’=0, therefore:

Lorentz transforms to get electric field in S’:
&, =6,

&, =y(&,—VvB,)

&, =y(&,—vB,)

Bsin a

ma’ = ed&’



Power radiated

* InSframe: B_ = Bcosa; By=(); B, = Bsina
& =10

e |InS’ frame: . eza’

 6eyC3
F'=ma'=e(&+v xXDB)

By design of the rest frame, v’'=0, therefore: ma =ed’

e | orentz transforms to get electric field in S’:
& =8 =0
&,=y(&,—vB)=—yvB,=—yvBsina
&, =y(&,—vB,)=0



Power radiated

* Therefore: , eyvB sin a

a =—
m



Power radiated

* Therefore: = eyvB sin a

e Therefore: m

e’a’ e*y’B*v? sin” a

P =P = —
67y 6rec3m?2



Power radiated

* Therefore: = eyvB sin a
m
* Therefore: 5 .
e’a’ e*y’B*v* sin” a
P — P, — —
6reyc? brec3m?

* Re-arrange:

, 1 B*

C = Umag = —— = energy density of magnetic field

€oMo 2

64
Or = 671 6(% 42 = Thomson cross-section

2

;
—> P =20pcUp,, | — ) 77sin°a
C



Power radiated

* Therefore:  , _ eyvB sin a
e Therefore: m
p—p e’a’ 64}/23 22 sin? o
b€ C3 brec3m?
* Re-arrange:
© T U — = energy density of magnetic field
€ mag 2
oMo U
64
GT — B ] |
6ﬂ€364m2 = Thomson cross-section
v 2
ﬁ — 2 i 2
P = 2GTcl]rnag — Yy S1Inn-

C

l.e. Tighter helixes with the same v radiate more (because more of velocity is in
circular motion)



Power radiated

2
P =20,cU ) sin’ o
— <07 mag c Y

e Average over isotropic distribution of pitch angles:

. 4 v )
<P>:§ TCUmag ; 4

l.e. For a population of electrons travelling in random initial directions but all
with the same speed (and therefore the same Lorentz factor and same energy).



Spectrum
Y=1: gyroradiation

Linearly polarised

>

P(f) x cos® ¢(t)

B-field moving
out of screen




Spectrum
y=1: gyroradiation

Linearly polarised

P(t) o< 1 4 cos[2¢(1)]

B-field moving
out of screen




Spectrum
Y=1: gyroradiation

= Linearly polarised
3 [
N, A g
2z < >
Q
- /\M
3
= >
< t
Fourier transform to get spectrum:
t 22U
F g
U
B-field moving
out of screen
>



Spectrum
y>>1: Relativistic beaming

R Linearly polarised

§JL Il JL

B-field moving
out of screen




Spectrum
y>>1: Relativistic beaming

R Linearly polarised

§JL Il JL

Fourier transform to get spectrum.

r 4 21/8 .

U

B-field moving
out of screen




Spectrum
y>>1: Relativistic beaming

R Linearly polarised

§))L jkml

Fourier transform to get spectrum.

‘21/8 V.~ 1/At

F

U

B-field moving
out of screen




Spectrum
y>>1: Relativistic beaming

Relativistic aberration formula:

cos@Q'+v/c
1 + (v/c)cos @’

COS ) =

Observer’s rest frame: ¢

Electron’s rest frame: ¢’

B-field moving
out of screen
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Relativistic aberration
* P(t) peaks at ¢’ = Oandis zero at ¢’ = #/2 and ¢’ = — x/2

;b'=—7t Q'=—-—n/2 ¢P'=0 Q' =nl2 ¢P'=n=x >¢/



Relativistic aberration
* P(t) peaks at ¢’ = Oandis zero at ¢’ = #/2 and ¢’ = — x/2

* These zero points to observer are at:

cos@'+v/c
COS @) = =v/c

14 (v/c)cos @’ B

;b'=—7t Q'=—-—n/2 ¢P'=0 Q' =nl2 ¢P'=n=x >¢/



Relativistic aberration
* P(t) peaks at ¢’ = Oandis zero at ¢’ = #/2 and ¢’ = — x/2

* These zero points to observer are at:

cos@'+v/c
COS @) = =v/c

1+ (v/c)cos ¢’ B
sin ¢ = i\/l —WleR ==+ 1ly

;b'=—7t Q'=—-—n/2 ¢P'=0 Q' =nl2 ¢P'=n=x >¢/



Relativistic aberration
* P(t) peaks at ¢’ = Oandis zero at ¢’ = #/2 and ¢’ = — x/2

* These zero points to observer are at:

cos@'+v/c
COS @) = =v/c

1+ (v/e)cos Q' B
sin ¢ = i\/l WP =%y = pr*lly

;b'=—7t Q'=—-—n/2 ¢P'=0 Q' =nl2 ¢P'=n=x >¢/



Relativistic aberration
* P(t) peaks at ¢’ = Oandis zero at ¢’ = #/2 and ¢’ = — x/2

* These zero points to observer are at:
cos @’

v/c
= v/c

COS QP =

1+ (v/c)cos ¢’ -

sinqbzi\/l—(v/c)z:il/y:} b+ 1)y

p=—n ¢p=—1ly =0

>¢/
/A

¢ =1ly ¢



Relativistic aberration
* P(t) peaks at ¢’ = Oandis zero at ¢’ = #/2 and ¢’ = — x/2

* These zero points to observer are at:
cos @’

v/c
= v/c

COS QP =

1+ (v/c)cos ¢’ -

sinqbzi\/l—(v/c)z:il/y:} b+ 1)y

t—l
p=—n Agp = 2/y




Relativistic aberration
* P(t) peaks at ¢’ = Oandis zero at ¢’ = #/2 and ¢’ = — x/2

* These zero points to observer are at:

cos@'+v/c
COS QP = =v/c

1+ (v/c)cos Q' B
sin ¢ = i\/l WP =%y = pr*lly

p=-n Ap =2y p=r 9



Relativistic aberration

Electron orbits an angle 2/y from our sightline first cutting
the cone to our sightline first not cutting the cone.

* Electron travels this distance in: 0f = (Z/y)/a)g

1/}/.........

21y



Relativistic aberration

e Electron orbits an angle 2/y from our sightline first cutting
the cone to our sightline first not cutting the cone.

* Electron travels this distance in: 0f = (2/}/)/6;)#
/c

* We first see the pulse at time: [ = Lic+
V| e
d
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Relativistic aberration

e Electron orbits an angle 2/y from our sightline first cutting
the cone to our sightline first not cutting the cone.

e Electron travels this distance in: 0t = (2/y)/w
* We first see the pulse at time: [ = Lic+ cﬁc
* We stop seeing the pulse at time: 1, = 0t + d/c

Y
.......- 0,..... d
1/}/....,- --..... <<
L 1/y
. V1
7y -.

21y



Relativistic aberration

e Electron orbits an angle 2/y from our sightline first cutting
the cone to our sightline first not cutting the cone.

e Electron travels this distance in: 0t = (2/y)/w
* We first see the pulse at time: [ = Lic+ cﬁc

* We stop seeing the pulse at time: [, = ot + d/c

e Therefore length of pulse is: At=1t,—t;, =0t—Llc
R
1/}/.........
L 17y
A
rg g

21y



Relativistic aberration

At = o0t—L/c

Yo
1/}/..........
L 1/y
. V1
ry

21y




Relativistic aberration

Y e
1/}/...........
L =2r,sm(l/y) = 2r,/y 17y
ot = 2/y)w,
Vi
r,

21y




Relativistic aberration

y |o, ¢
At :
~ }’360g (v, & v; y? > 1)
Y
1/}/..........
L =2r,sin(l/y) = 2r,/y 17y
. V1
r,

21y



Relativistic aberration

y o, ¢
At :
~ }’360g (v, & v; y? > 1)
\Al
1/}/..........
L = 2rg sin(1/y) ~ ng/y 17y
. V1
ry

21y



Population of electrons

* Spectrum for electrons with energy £ oc y IS narrow and
peaked at v « y%; peak value is P o y?

log(F,)

log(v)



Population of electrons

* Spectrum for electrons with energy £ oc y IS narrow and
peaked at v « y%; peak value is P o y

e Population of electrons: dN/dy « y~* (previous lecture).
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Population of electrons

* Spectrum for electrons with energy £ oc y IS narrow and
peaked at v « y%; peak value is P o y

e Population of electrons: dN/dy « y~* (previous lecture).

e Overall spectrum: F, x v™% (ais spectral index, not
pitch angle).

log(F,)

log(v)



Population of electrons

Spectrum for electrons with energy £ oc y IS narrow and
peaked at v }/ peak value is P y

Population of electrons: dN/dy « y~* (previous lecture).
Overall spectrum: F, x v™% (a is spectral index, not
pitch angle). k—1
Homework problem to show that: @ = 5

log(F,)

iog(v)



Population of electrons

* Spectrum for electrons with energy £ oc y IS narrow and
peaked at v « y%; peak value is P o y

e Population of electrons: dN/dy « y~* (previous lecture).

e Overall spectrum: F, x v™% (ais spectral index, not
pitch angle). k—1

* Homework problem to show that: & = 5

dFF  _dN _dN dy

Hint: F,=— xP— «x P
dv dv dy dv

log(F,)

log(v)



Population of electrons

* Spectrum for electrons with energy £ oc y IS narrow and
peaked at v « y%; peak value is P o y

e Population of electrons: dN/dy « y~* (previous lecture).

e Overall spectrum: F, x v™% (ais spectral index, not
pitch angle). k—1

* Homework problem to show that: & = 5

e k=2 — a=0.5 ...wesometimes measure this for radio sources!

log(F,)

log(v)



Population of electrons

* Spectrum for electrons with energy £ oc y IS narrow and
peaked at v « y%; peak value is P o y

e Population of electrons: dN/dy « y~* (previous lecture).

e Overall spectrum: F, x v™% (ais spectral index, not
pitch angle). k—1

* Homework problem to show that: & = 5

e k=2 — a=0.5 ...wesometimes measure this for radio sources!
e Butoftenmeasure a> 05 = k> 2

...Same as cosmic ray spectrum!

A I/=I/C

log(F,)

log(v)



Minimum energy

* By integrating the spectrum of a synchrotron emitting
object, we can measure the total energy density emitted
by the plasma (need as estimate for distance and size).



Minimum energy

* By integrating the spectrum of a synchrotron emitting
object, we can measure the total energy density emitted
by the plasma (need as estimate for distance and size).

* But energy density is Uy = U, + Uy,



Minimum energy

* By integrating the spectrum of a synchrotron emitting
object, we can measure the total energy density emitted
by the plasma (need as estimate for distance and size).

* But energy density is Uy = Uy + Upyg

* To break this degeneracy, and therefore measure B-field, we can use the
minimum energy method (Burbidge 1956)

B2
Uma — A
= 2u
N
U,= | E(y)—dy
dy



Minimum energy

* By integrating the spectrum of a synchrotron emitting
object, we can measure the total energy density emitted
by the plasma (need as estimate for distance and size).

* But energy density is Uy = Uy + Upyg

* To break this degeneracy, and therefore measure B-field, we can use the
minimum energy method (Burbidge 1956)

«—— Magnetic field
energy oB?

Total energy

/ Particle energy B2
-

Bmin
Magnetic field strength, B

* Plasma presumably finds ~lowest
energy state in equilibrium.




Minimum energy

Minimum energy requirement: U, ~ Umag (equipartition).
Will calculate true minimum energy relation for homework problem.

Roughly equipartition values expected from particles jiggling around and
sharing energy in the plasma.

See https://github.com/robfender/ThunderBooks/blob/master/
Equipartition%20analysis.ipynb

«—— Magnetic field
energy oB?

Total energy

i

/ Particle energy B2
-

Bmin
Magnetic field strength, B



https://github.com/robfender/ThunderBooks/blob/master/Equipartition%20analysis.ipynb
https://github.com/robfender/ThunderBooks/blob/master/Equipartition%20analysis.ipynb
https://github.com/robfender/ThunderBooks/blob/master/Equipartition%20analysis.ipynb

