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Black Holes
• All mass, M, in a singularity

• Event Horizon:              !

• Newtonian approx:

• This is correct for a non-spinning black hole!

• Size scale: gravitational radius: 

vesc = c
v2

esc = 2GM/r ⟹ rh = 2GM/c2

rg = GM/c2

Non-spinning black hole: Spacetime described by Schwarzschild metric



Black Holes
• All mass, M, in a singularity

• Event Horizon:              !

• Newtonian approx:

• This is correct for a non-spinning black hole!

• Size scale: gravitational radius: 

vesc = c
v2

esc = 2GM/r ⟹ rh = 2GM/c2

rg = GM/c2

Non-spinning black hole: Spacetime described by Schwarzschild metric

Symbol rg was gyroradius; is now gravitational radius!



Black Holes
• Black hole can have angular momentum: 

• Dimensionless spin parameter:

• Causality:                      …-ve for retrograde orbits.

• Horizon depends on spin: 

•

Jbh
a = Jbh/(Mcrg)

−1 ≤ a ≤ 1
rh/rg = 1 + 1 − a2

• Rotating spacetime provides centrifugal barrier, so can get closer to BH

Non-spinning black hole: Spacetime described by Kerr metric
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Innermost Stable Circular Orbit (ISCO)

Schwarszchild black hole

• Stable circular orbits: 
gravitational attraction balanced 
by centrifugal barrier.


• Always have stable circular 
orbits in Newtonian gravity.


• In GR, close to a black hole 
gravity overcomes the 
centrifugal term: no stable orbits.
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Innermost Stable Circular Orbit (ISCO)
ISCO depends on black hole spin: again, because spacetime is rotating (frame 
dragging effect), an orbiting test mass effectively has extra angular momentum, 
so black hole spin increases centrifugal barrier and enables stable orbits 
further in.
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~100 km ~millions-billions of  km

Black hole ~ 10 Solar masses

~100 km

Accreting Black Holes



Black Hole X-ray Binaries Active Galactic Nuclei

Black hole ~ 106-1010 Solar masses

~100 km ~millions-billions of  km

Black hole ~ 10 Solar masses

~100 km

Accreting Black Holes

Power supply: gravitational potential energy of accreting material.

Therefore luminosity is the rest mass energy of accreted material multiplied by 
some efficiency factor: L = ϵ ·Mc2
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• Above this, material will be thrown off in winds. So AGN can be much more 
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Eddington Limit
• Formally, the luminosity doesn’t depend on black hole mass, only on the 

accretion rate:

• BUT, the theoretical maximum luminosity is the Eddington limit, where 

outward radiation pressure balances gravitational attraction (derived in Prof 
Podsiodlowski’s course):


• Therefore, can define Eddington accretion rate:


• Above this, material will be thrown off in winds. So AGN can be much more 
luminous than X-ray binaries after all!


• But what is the efficiency?

LEdd =
4πGMcmp

σT
σT = Thomson cross-section

mp = Proton mass

Assumptions: photon-electron scattering opacity, spherical accretion

·MEdd =
4πGMmp

ϵcσT

L = ϵ ·Mc2
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Disc formation
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Black hole rest frame:

Companion star rest frame:

Disc formation
Roche Lobe 
overflow

BH orbital 
velocity

Therefore material has angular momentum about the black hole (similar 
arguments hold for AGN).



Disc formation
• Orbit quickly circularises via collisions (circular orbit is minimum energy 

configuration).
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• If material can lose angular momentum, it will slowly spiral towards the black 

hole.

• Conservation of angular momentum: ~flat disc forms



Disc formation
• Orbit quickly circularises via collisions (circular orbit is minimum energy 

configuration.

• If material can lose angular momentum, it will slowly spiral towards the black 

hole.

• Conservation of angular momentum: ~flat disc forms

r
h

• Disc scale height: h/r ∼ constant
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Thin disc model (Shakura & Sunyaev 1973)

• Rapid orbits, slow inward drift: 


• Therefore ~Keplerian orbits, angular velocity: 


• Gravitational potential energy (GPE) lost by mass m falling distance dr 
towards the black hole:


• Rate of change of GPE in an disc annulus of width dr:
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Thin disc model (Shakura & Sunyaev 1973)

• Rapid orbits, slow inward drift: 


• Therefore ~Keplerian orbits, angular velocity: 


• Gravitational potential energy (GPE) lost by mass m falling distance dr 
towards the black hole:


• Rate of change of GPE in an disc annulus of width dr:


• In-falling test mass loses GPE, but gains KE:


• Therefore half of the GPE liberated can be radiated away (virial theorem). 
Luminosity of annulus is:

vr ≪ vϕ
ω = (GM/r3)1/2

dE =
GMm

r2
dr

dE
dt

=
GM ·M

r2
dr

Ekinetic =
1
2

mv2 =
1
2

mr2ω2 =
1
2

GMm
r

=
1
2

Epotential

dL =
GM ·M

2r2
dr



dL =
GM ·M

2r2
dr

Thin disc model (Shakura & Sunyaev 1973)



• Integrate from inner to outer disc radius:


dL =
GM ·M

2r2
dr

L =
GM ·M

2 ∫
rout

rin

dr
r2

=
GM ·M

2 [ 1
r ]

rin

rout

Thin disc model (Shakura & Sunyaev 1973)



• Integrate from inner to outer disc radius:


• Large outer radius:


dL =
GM ·M
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• Integrate from inner to outer disc radius:


• Large outer radius:


dL =
GM ·M

2r2
dr

L =
GM ·M

2 ∫
rout

rin

dr
r2

=
GM ·M

2 [ 1
r ]

rin

rout

⟹ L =
GM ·M
2rin

=
·Mc2

2(rin/rg)
∴ ϵ =

1
2(rin/rg)

Thin disc model (Shakura & Sunyaev 1973)



• Integrate from inner to outer disc radius:


• Large outer radius:


• Inner disc radius? ISCO(a=0) is 6 rg, ISCO(a=1) is 1 rg:


dL =
GM ·M

2r2
dr

L =
GM ·M

2 ∫
rout

rin

dr
r2

=
GM ·M

2 [ 1
r ]

rin

rout

⟹ L =
GM ·M
2rin

=
·Mc2

2(rin/rg)
∴ ϵ =

1
2(rin/rg)

ϵ =
1
12

Schwarszchild BH:

ϵ =
1
2

Maximally spinning BH:

Thin disc model (Shakura & Sunyaev 1973)



• Integrate from inner to outer disc radius:


• Large outer radius:


• Inner disc radius? ISCO(a=0) is 6 rg, ISCO(a=1) is 1 rg:


• This is enormous! Nuclear fusion has efficiency

dL =
GM ·M

2r2
dr

L =
GM ·M

2 ∫
rout

rin

dr
r2

=
GM ·M

2 [ 1
r ]

rin

rout

⟹ L =
GM ·M
2rin

=
·Mc2

2(rin/rg)
∴ ϵ =

1
2(rin/rg)

ϵ =
1
12

Schwarszchild BH:

ϵ =
1
2

Maximally spinning BH:

ϵ ≈ 0.007

Thin disc model (Shakura & Sunyaev 1973)
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Angular Momentum Transport
But how does the gas lose angular momentum to accrete in the first place?

ω(r + λ)

ω(r − λ)
ω(r)

• Differentially rotating gas (inner ring rotates faster).

• Turbulent motions (thermal motions of molecules and/or hydrodynamic 

turbulence) with typical velocity    and typical scale     mean some particles 
cross to the neighbouring annulus.


• No net mass transfer: mass in = mass out.

• Therefore angular momentum transfer, since particles from the inner ring 

have larger angular velocity around BH than those from outer ring.

• In other words: viscosity (~friction) slows down the inner ring and speeds up 

the outer ring

• i.e. angular momentum transported outwards, material can spiral towards 

the BH.

v̄ λ



Angular Momentum Transport

ω(r + λ)

ω(r − λ)
ω(r)

So what is causing the turbulent motions (~viscosity)?



Angular Momentum Transport

• For viscosity due to random thermal motions of particles:


• The calculation is lengthy (see Longair or FKR) but it turns out that the mean 
free path is far too small (by a factor ~1012) to provide the required viscosity.


v̄ ∼ cs λ ∼ mean free path of particles

ω(r + λ)

ω(r − λ)
ω(r)

So what is causing the turbulent motions (~viscosity)?

= sound speed
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• For viscosity due to random thermal motions of particles:


• The calculation is lengthy (see Longair or FKR) but it turns out that the mean 
free path is far too small (by a factor ~1012) to provide the required viscosity.


• Effective viscosity must be provided by hydrodynamic turbulence.

• The magneto-rotational instability provides the required viscosity: B-field 

lines connect parcels of gas, differential rotation stretches distance between 
these parcels, causes field lines to become tangled and generate 
turbulence. Like winding an elastic band round and round the disc.

Angular Momentum Transport

ω(r + λ)

ω(r − λ)
ω(r)

So what is causing the turbulent motions (~viscosity)?

v̄ ∼ cs λ ∼ mean free path of particles= sound speed



Angular Momentum Transport

Krolik, de Villiers & Hawley



• Shakura & Sunyaev (1973) famously assumed for the kinematic viscosity:


•     is a dimensionless constant: speed of eddies          ; length scale of 
eddies


• The “alpha-disc” model has been remarkably successful.

Angular Momentum Transport
So what is causing the turbulent motions (~viscosity)?

ν = αcsh
α ≲ cs

≲ h , therefore            .α ≲ 1

ω(r + λ)

ω(r − λ)
ω(r)



• Inside of ISCO, no stable orbits so material is in free fall.


• Often assumed there is therefore no “stress” at ISCO (i.e. viscosity 
parameter drops to zero).


• The free falling material just drops into the black hole without radiating.

• What happens to the remaining                      of lost GPE?

What happens at risco?

(1 − ϵ) ·Mc2



• Inside of ISCO, no stable orbits so material is in free fall.


• Often assumed there is therefore no “stress” at ISCO (i.e. viscosity 
parameter drops to zero).


• The free falling material just drops into the black hole without radiating.

• What happens to the remaining                      of lost GPE?

What happens at risco?

(1 − ϵ) ·Mc2

…It increases the mass of the black hole!



• Inside of ISCO, no stable orbits so material is in free fall.


• Often assumed there is therefore no “stress” at ISCO (i.e. viscosity 
parameter drops to zero).


• The free falling material just drops into the black hole without radiating.

• What happens to the remaining                      of lost GPE?


• Therefore lower spin supermassive black holes can presumably grow faster 
than higher spin ones.

What happens at risco?

(1 − ϵ) ·Mc2

…It increases the mass of the black hole!



Disc vertical structure

r
zFgrav

Ignore self-gravity of disc material

θ
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• Disc in hydrostatic equilibrium, therefore vertical pressure gradient:


r
zFgrav
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acceleration, ρ is mass density
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Disc vertical structure

• Disc in hydrostatic equilibrium, therefore vertical pressure gradient:


• Vertical component of gravitational acceleration is:


r
zFgrav

dP
dz

= − ρgz
gz is vertical component of gravitational 

acceleration, ρ is mass density

gz =
GM

r2 + z2
sin θ ≈

GM
r2

z
r

(small angle approximation)
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Disc vertical structure

• Disc in hydrostatic equilibrium, therefore vertical pressure gradient:


• Vertical component of gravitational acceleration is:


• Pressure and density related via sound speed cs:


r
zFgrav

dP
dz

= − ρgz
gz is vertical component of gravitational 

acceleration, ρ is mass density

(small angle approximation)

θ

dP = c2
s dρ

gz =
GM

r2 + z2
sin θ ≈

GM
r2

z
r



Disc vertical structure

• Disc in hydrostatic equilibrium, therefore vertical pressure gradient:


• Vertical component of gravitational acceleration is:


• Pressure and density related via sound speed cs:


• Therefore vertical density gradient is:

r
zFgrav

dP
dz

= − ρgz
gz is vertical component of gravitational 

acceleration, ρ is mass density

gz =
GM

r2 + z2
sin θ ≈

GM
r2

z
r

(small angle approximation)

θ

dP = c2
s dρ

dρ
dz

= − ρ
GMz
r3c2

s



Disc vertical structure
dρ
dz

= − ρ
GMz
r3c2

s



Disc vertical structure

• Integrate to get:


dρ
dz

= − ρ
GMz
r3c2

s

ρ(r) = ρ0 exp [−
GM
c2

s r3

z2

2 ]



Disc vertical structure

• Integrate to get:


• Therefore density is Gaussian with peak at z=0 and width h:


dρ
dz

= − ρ
GMz
r3c2

s

ρ(r) = ρ0 exp [−
GM
c2

s r3

z2

2 ]
h = cs(GM/r3)−1/2 = cs/ω ρ(r) = ρ0 exp [−

z2

2h2 ]such that:



Disc vertical structure

• Integrate to get:


• Therefore density is Gaussian with peak at z=0 and width h:


• Therefore:


dρ
dz

= − ρ
GMz
r3c2

s

ρ(r) = ρ0 exp [−
GM
c2

s r3

z2

2 ]
h = cs(GM/r3)−1/2 = cs/ω ρ(r) = ρ0 exp [−

z2

2h2 ]such that:

h
r

=
cs

rω



Disc vertical structure

• Integrate to get:


• Therefore density is Gaussian with peak at z=0 and width h:


• Therefore:


dρ
dz

= − ρ
GMz
r3c2

s

ρ(r) = ρ0 exp [−
GM
c2

s r3

z2

2 ]
h = cs(GM/r3)−1/2 = cs/ω ρ(r) = ρ0 exp [−

z2

2h2 ]such that:

h
r

=
cs

rω

disc rotation is highly supersonic.
h
r

≪ 1 ⟹
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Disc Spectrum
• The disc is very optically thick => thermalised => it locally radiates a 

blackbody spectrum. But what is the blackbody temperature?


• Recall the radiated luminosity from a disc annulus:


• This is radiated from the top and bottom of the disc, so the radiating area is:


• Therefore the flux is:


dL =
GM ·M

2r2
dr

dA = 2 × 2πrdr

F(r) =
GM ·M
8πr3



Disc Spectrum
• The disc is very optically thick => thermalised => it locally radiates a 

blackbody spectrum. But what is the blackbody temperature?


• Recall the radiated luminosity from a disc annulus:


• This is radiated from the top and bottom of the disc, so the radiating area is:


• Therefore the flux is:


• From Stefan-Boltzmann law, the temperature is:

dL =
GM ·M

2r2
dr

dA = 2 × 2πrdr

F(r) =
GM ·M
8πr3

T(r) = ( GM ·M
8πσr3 )

1/4



Disc Spectrum
• Hotter blackbody spectrum radiated by 

annuli closer to the black hole.


• For X-ray binaries, the inner disc is so 
hot that it emits X-rays.

T(r) = ( GM ·M
8πσr3 )

1/4

Energy
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Disc Spectrum
• Hotter blackbody spectrum radiated by 

annuli closer to the black hole.


• For X-ray binaries, the inner disc is so 
hot that it emits X-rays.


• Total spectrum is the sum of 
blackbodies.

T(r) = ( GM ·M
8πσr3 )

1/4

Energy
Flu
x

• Lowest frequencies: Rayleigh-Jeans 
tail of black body spectrum from 
outer radius;


• Highest frequencies: Wein tail of 
black body spectrum from inner 
radius;  

Fν ∝ ν2

Fν ∝ exp(−hν/kTin)
F ν

∝
ν2

F
ν ∝

exp(−
hν/kT

in )



Disc Spectrum
Intermediate frequencies:

Energy

Flu
x

Fν = ∫
rout

rin

Bν[T(r)]dΩ(r) ≈ ∫
rout

rin

Bν[T(r)]
2πr cos i dr

D2

i
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rdr

• Change variable to 1/T:
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• Change variable to               :


• Sub in to the integral:
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Disc Spectrum
Intermediate frequencies:

Energy

Flu
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Fν ∝ ∫
rout

rin

Bν[T(r)]rdr ∝ ∫
rout

rin

ν3

exp(hν/kT ) − 1
rdr

• Change variable to 1/T:


• Change variable to               :


• Sub in to the integral:


• Bringing frequency out of the integral:

T ∝ r−3/4 ⟹ rdr ∝ (1/T )5/3d(1/T )

x =
hν
kT

⟹ (1/T )5/3d(1/T ) ∝ x5/3ν−8/3dx

Fν ∝ ∫
xout

xin

ν3

exp(x) − 1
x5/3ν−8/3dx

Fν ∝ ν1/3 ∫
xout

xin

x5/3

exp(x) − 1
dx
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• Change variable to               :


• Sub in to the integral:


• Bringing frequency out of the integral:

T ∝ r−3/4 ⟹ rdr ∝ (1/T )5/3d(1/T )

x =
hν
kT

⟹ (1/T )5/3d(1/T ) ∝ x5/3ν−8/3dx

Fν ∝ ∫
xout

xin

ν3

exp(x) − 1
x5/3ν−8/3dx

Fν ∝ ν1/3 ∫
xout

xin

x5/3

exp(x) − 1
dx

Fν ∝ ν1/3
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LMC X-3

Flu
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Do we see this disc spectrum from black 
hole X-ray binaries?


• Yes!


• Brightness changes on ~day. 
timescales, temp changes like              . 


• Assuming rin=ISCO, can measure spin!


• BUT, need estimate of distance and 
inclination angle to get rin.


• Then need estimate of mass to get to 
rin/rg 


• Find a range a~0.2-0.99 for different 
stellar-mass black holes

F ∝ T4

Fν ≈
2π cos i

D2 ∫
rout

rin

Bν[T(r)] r dr
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Observations
Do we see this disc spectrum from AGN?

• Well, kind of: Disc spectrum peaks in ~UV instead of soft X-rays (you will 

see how disc temperature scales with BH mass in problem set).

• See “big blue bump” at expected frequency range.

• But see lots of other stuff, some of which we will study over the following 

two lectures.

3C 273
(M ∼ 109M⊙)

Big Blue Bump


