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Lecture 8 
Galaxy Clusters



Galaxy Clusters
• Largest gravitationally bound structures in the Universe.

• Intra Cluster Medium (ICM): hot gas in between the galaxies with 

characteristic temperature kT~1-15 keV [kT=1 keV => T=1.16⨉107 K] — 
glows in X-rays (blue in picture).


• Dark matter mass ~10⨉ ICM mass ~10⨉ mass in stars.
• Typical total mass ~1014-15 M☉.

Pictured: Cluster IDCS J1426.5+3508 
in X-rays (Chandra, blue), optical (HST, 
green) and IR (Spitzer, red). Mass 
~5⨉1014 M☉

• Typically ~100-1000 galaxies.

• Typical size ~2-10 Mpc across.



Galaxy Clusters
• Fritz Zwicky was the first to suggest “invisible” mass in clusters in the 1930s.

• He found that the orbital speeds of galaxies were too fast for the structures 

to stay bound without more invisible (in optical at least) gravitating mass.

• We now see the ICM in X-rays, but only see the influence of dark matter.

Fritz Zwicky

Spherical bastards!
Whatever way you look at
them, they’re bastards!

Fritz Zwicky



Galaxy Clusters
• Fritz Zwicky was the first to suggest “invisible” mass in clusters in the 1930s.

• He found that the orbital speeds of galaxies were too fast for the structures 

to stay bound without more invisible (in optical at least) gravitating mass.

• We now see the ICM in X-rays, but only see the influence of dark matter.

• We also infer DM from gravitational lensing of background galaxies (Zwicky 

also suggested this)
Fritz Zwicky

Spherical bastards!
Whatever way you look at
them, they’re bastards!

Fritz Zwicky



The Intra Cluster Medium
• Plasma particles in the ICM have large random thermal motions, preventing 

gravitational collapse in the cluster’s potential well.


• In equilibrium, we can estimate the temperature from the viral theorem: 
Thermal energy = (1/2) gravitational potential energy


• Ignoring some pre-factors of order unity, gives:

kBTe = kBTi ∼
GMmH

R

M = total cluster mass

R = radius of cluster

Te = electron temp

Ti = ion temp

mH = mass of hydrogen atom

R

M



The Intra Cluster Medium
• ICM is thermalised; i.e. electrons have Maxwellian velocity distribution.


• BUT plasma density is too low for blackbody radiation (i.e. photons are not 
in thermal equilibrium with electrons).


• Dominant emission mechanism: thermal bremsstrahlung radiation.
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Electron, charge = e

Ion, charge = q

br

θ

v

• Bremsstralung radiation = “Breaking radiation”

• Electron moving at velocity v on a trajectory to miss an ion by a distance b.

• b = the impact parameter.

• Coulomb force will accelerate the electron towards the ion.

• Power of EM radiation given by Larmor formula.

• i.e. like synchrotron, except an ion deflects the electron instead of a 

magnetic field.

Bremsstrahlung



Bremsstrahlung

Electron, charge = e

Ion, charge = q

br

θ

v

• Vertical acceleration from Coulomb formula:


az = −
qe

4πmeϵ0r2
sin θ

sin θ = b/r



Bremsstrahlung

Electron, charge = e

Ion, charge = q

br

θ

v

• Vertical acceleration from Coulomb formula:


• Replace r with b:


az = −
qe

4πmeϵ0r2
sin θ

r = b/sin θ

sin θ = b/r

⟹ az = −
qe

4πmeϵ0b2
sin3 θ



Bremsstrahlung

Electron, charge = e

Ion, charge = q

br

θ

v

• Vertical acceleration from Coulomb formula:


• Replace r with b:


• Ignore horizontal acceleration (acceleration before collision, deceleration 
after)

az = −
qe

4πmeϵ0r2
sin θ

r = b/sin θ

sin θ = b/r

⟹ az = −
qe

4πmeϵ0b2
sin3 θ



Bremsstrahlung

Electron, charge = e

Ion, charge = q

br

θ

v

sin θ = b/r

az = −
qe

4πmeϵ0b2
sin3 θ



Bremsstrahlung

Electron, charge = e

Ion, charge = q

br

θ

v

• Radiation power (Larmor formula derived in lecture 3):


sin θ = b/r

az = −
qe

4πmeϵ0b2
sin3 θ

P =
e2a2

6πϵ0c3



Bremsstrahlung

Electron, charge = e

Ion, charge = q

br

θ

v

• Radiation power (Larmor formula derived in lecture 3):


• Sub in:


sin θ = b/r

az = −
qe

4πmeϵ0b2
sin3 θ

P =
e2a2

6πϵ0c3

⟹ P =
q2e4

96π3m2
e ϵ3

0b4c3
sin6 θ



Bremsstrahlung

• Radiation power (Larmor formula derived in lecture 3):


• Sub in:


• Thomson cross-section:


az = −
qe

4πmeϵ0b2
sin3 θ

P =
e2a2

6πϵ0c3

⟹ P =
q2e4

96π3m2
e ϵ3

0b4c3
sin6 θ

σT =
1

6π ( e2

ϵ0mec2 )
2

⟹ P =
q2σTc

16π2ϵ0b4
sin6 θ



Bremsstrahlung

Electron, charge = e

Ion, charge = q

br

θ

v

• Solve equation of motion to get P(t). Hard in general but get a feel by 
ignoring vertical motion of electron:


• v is constant and x=0 when t=0.

• In this case:


tan θ = b/x

x(t) = vt

tan[θ(t)] = b/x(t); P(t) ∝ sin6[θ(t)]

x = 0
x



Bremsstrahlung
• Solve equation of motion to get P(t). Hard in general but get a feel by 

ignoring vertical motion of electron:

• v is constant and x=0 when t=0.

• In this case:


x(t) = vt

tan[θ(t)] = b/x(t); P(t) ∝ sin6[θ(t)]
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Bremsstrahlung
• To get the spectrum, we need the same trick we used for synchrotron 

radiation: take the Fourier transform
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Bremsstrahlung
• Can estimate the break frequency by appreciating that most of the energy in 

the pulse is irradiated between                and 
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Bremsstrahlung
• Can estimate the break frequency by appreciating that most of the energy in 

the pulse is irradiated between                and 

• Corresponds to 

• Therefore pulse is ~a top hat with duration 
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Bremsstrahlung
• To get the spectrum, we need the same trick we used for synchrotron 

radiation: take the Fourier transform
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Bremsstrahlung
• Approximate spectrum as constant below          and zero above.νmax

ν

dE
dν

ν = νmax



Bremsstrahlung
• Approximate spectrum as constant below          and zero above.

• Total energy in the pulse:


νmax

E = ∫
∞

0

dE
dν

dν = ∫
∞

−∞
P(t)dt ≈ PmaxΔt

ν

dE
dν

ν = νmax

E = PmaxΔt



Bremsstrahlung
• Approximate spectrum as constant below          and zero above.

• Total energy in the pulse:


• Therefore energy radiated per unit frequency (per event):


νmax

E = ∫
∞

0

dE
dν

dν = ∫
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−∞
P(t)dt ≈ PmaxΔt

dE
dν

≈
d
dν [PmaxΔt]

ν
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ν = νmax

E = PmaxΔt



Bremsstrahlung
• Approximate spectrum as constant below          and zero above.

• Total energy in the pulse:


• Therefore energy radiated per unit frequency (per event):


νmax

E = ∫
∞

0

dE
dν

dν = ∫
∞

−∞
P(t)dt ≈ PmaxΔt

dE
dν

≈
d
dν [PmaxΔt] ≈

PmaxΔt
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= Pmax(Δt)2

ν
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dν

ν = νmax

E = PmaxΔt



Bremsstrahlung
• Approximate spectrum as constant below          and zero above.

• Total energy in the pulse:


• Therefore energy radiated per unit frequency (per event):


νmax

E = ∫
∞

0

dE
dν

dν = ∫
∞

−∞
P(t)dt ≈ PmaxΔt

dE
dν

≈
d
dν [PmaxΔt] ≈

PmaxΔt
νmax

= Pmax(Δt)2

ν

dE
dν

ν = νmax

E = PmaxΔt

dE
dν

≈
q2σTc

4π2ϵ0b2v2



Bremsstrahlung
• This is the spectrum for a single event, whereby the electron has a particular 

speed v and impact parameter b.

ν

dE
dν

ν = νmax

E = PmaxΔt

dE
dν

≈
q2σTc

4π2ϵ0b2v2



Bremsstrahlung
• This is the spectrum for a single event, whereby the electron has a particular 

speed v and impact parameter b.

• We need the overall spectrum for the whole velocity distribution, integrated 

over all impact parameters.

• Number of collisions with impact parameter between b and b+db that a 

given ion will have is:
 dN
dt

= nev2πbdb

P1: JZP Trim: 246mm × 189mm Top: 10.193 mm Gutter: 18.98 mm

CUUK1326-05 CUUK1326-Longair 978 0 521 75618 1 August 12, 2010 15:25

133 5.2 Ionisation losses – non-relativistic treatment

Fig. 5.2 Illustrating the cylindrical volume within which collisions with collision parameters b to b + db take place in the
distance increment dx.

We now need to find the average energy loss per unit path length and so we work out
the number of encounters with collision parameters in the range b to b+ dband integrate
over collision parameters. From the geometry of Fig. 5.2, the total energy loss of the high
energy particle, −dE , in length dx is:

(number of electrons in volume 2πbdbdx) × (energy loss per interaction)

= z2e4 Ne

8π2ε2
0v

2me
×

∫ bmax

bmin

2πb
b2

dbdx , (5.5)

where Ne is the number density, or concentration, of electrons. Notice that the limits
bmax and bmin to the range of collision parameters have been included in this integral.
Integrating,

−dE
dx

= z2e4 Ne

4πε2
0v

2me
ln

(
bmax

bmin

)
. (5.6)

Notice how the logarithmic dependence upon bmax/bmin comes about. The closer the en-
counter, the greater the momentum impulse, p ∝ b−2. However, there are more electrons
at large distances (∝ bdb) and hence, on integrating, we obtain only a logarithmic de-
pendence of the energy loss upon the range of collision parameters. We will encounter
the same phenomenon in the case of bremsstrahlung (Sect. 6.4) and in working out the
conductivity of a plasma (Sect. 11.1). You may well ask, ‘Why introduce the limits bmax

and bmin, rather than work out the answer properly?’ The reason is that the proper sum is
significantly more complicated and would take account of the acceleration of the electron
by the high energy particle and include a quantum mechanical treatment of the inter-
action. Our approximate methods give remarkably good answers, however, because the
limits bmax and bmin only appear inside the logarithm and hence need not be known very
precisely.

5.2.1 Upper limit bmax

An upper limit to the range of integration over collision parameters, corresponding to the
smallest energy transfer, occurs when the duration of the collision is of the same order as the
period of the electron in its orbit in the atom. Then, the interaction is no longer impulsive. In
the limit in which the duration of the collision is much greater than the period of the orbit,

In time interval dt, the volume swept out by 
this range of impact parameters is 2π b db dx. 

Volume swept out per unit time is 2π b db v. 



Bremsstrahlung
• This is the spectrum for a single event, whereby the electron has a particular 

speed v and impact parameter b.

• We need the overall spectrum for the whole velocity distribution, integrated 

over all impact parameters.

• Number of collisions with impact parameter between b and b+db that a 

given ion will have is:


• Total number of collisions per unit time per unit volume with impact 
parameter between b and b+db:


dN
dt

= nev2πbdb
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133 5.2 Ionisation losses – non-relativistic treatment

Fig. 5.2 Illustrating the cylindrical volume within which collisions with collision parameters b to b + db take place in the
distance increment dx.

We now need to find the average energy loss per unit path length and so we work out
the number of encounters with collision parameters in the range b to b+ dband integrate
over collision parameters. From the geometry of Fig. 5.2, the total energy loss of the high
energy particle, −dE , in length dx is:

(number of electrons in volume 2πbdbdx) × (energy loss per interaction)

= z2e4 Ne

8π2ε2
0v

2me
×

∫ bmax

bmin

2πb
b2

dbdx , (5.5)

where Ne is the number density, or concentration, of electrons. Notice that the limits
bmax and bmin to the range of collision parameters have been included in this integral.
Integrating,

−dE
dx

= z2e4 Ne

4πε2
0v

2me
ln

(
bmax

bmin

)
. (5.6)

Notice how the logarithmic dependence upon bmax/bmin comes about. The closer the en-
counter, the greater the momentum impulse, p ∝ b−2. However, there are more electrons
at large distances (∝ bdb) and hence, on integrating, we obtain only a logarithmic de-
pendence of the energy loss upon the range of collision parameters. We will encounter
the same phenomenon in the case of bremsstrahlung (Sect. 6.4) and in working out the
conductivity of a plasma (Sect. 11.1). You may well ask, ‘Why introduce the limits bmax

and bmin, rather than work out the answer properly?’ The reason is that the proper sum is
significantly more complicated and would take account of the acceleration of the electron
by the high energy particle and include a quantum mechanical treatment of the inter-
action. Our approximate methods give remarkably good answers, however, because the
limits bmax and bmin only appear inside the logarithm and hence need not be known very
precisely.

5.2.1 Upper limit bmax

An upper limit to the range of integration over collision parameters, corresponding to the
smallest energy transfer, occurs when the duration of the collision is of the same order as the
period of the electron in its orbit in the atom. Then, the interaction is no longer impulsive. In
the limit in which the duration of the collision is much greater than the period of the orbit,

In time interval dt, the volume swept out by 
this range of impact parameters is 2π b db dx. 

Volume swept out per unit time is 2π b db v. 

dN
dVdt

= neniv2πbdb



Bremsstrahlung
• Therefore energy radiated per unit frequency per unit time per unit volume:


dE
dνdtdV

= ∫
bmax

bmin

Pmax(Δt)2 . nev2πbdb

Energy per frequency 
per event

Events per time per 
volume



Bremsstrahlung
• Therefore energy radiated per unit frequency per unit time per unit volume:


• Now just need to work out limits bmin and bmax.

dE
dνdtdV

= ∫
bmax

bmin

Pmax(Δt)2 . nev2πbdb

Energy per frequency 
per event

Events per time per 
volume

ν

dE
dν

ν = νmax = v/(2b)



Bremsstrahlung
• Therefore energy radiated per unit frequency per unit time per unit volume:


• Now just need to work out limits bmin and bmax.

dE
dνdtdV

= ∫
bmax

bmin

Pmax(Δt)2 . nev2πbdb

Energy per frequency 
per event

Events per time per 
volume

ν

dE
dν

ν = νmax = v/(2b)

ν <
v

2b



Bremsstrahlung
• Therefore energy radiated per unit frequency per unit time per unit volume:


• Now just need to work out limits bmin and bmax.

dE
dνdtdV

= ∫
bmax

bmin

Pmax(Δt)2 . nev2πbdb

Energy per frequency 
per event

Events per time per 
volume

ν

dE
dν

ν = νmax = v/(2b)

ν <
v

2b

b <
v

2ν



Bremsstrahlung
• Therefore energy radiated per unit frequency per unit time per unit volume:


• Now just need to work out limits bmin and bmax.

dE
dνdtdV

= ∫
bmax

bmin

Pmax(Δt)2 . nev2πbdb

Energy per frequency 
per event

Events per time per 
volume

ν

dE
dν

ν = νmax = v/(2b)

ν <
v

2b

b <
v

2ν

∴ bmax =
v

2ν



Bremsstrahlung
• Therefore energy radiated per unit frequency per unit time per unit volume:


• Now just need to work out limits bmin and bmax.


• Max:


• Minimum impact parameter given by the quantum limit:

dE
dνdtdV

= ∫
bmax

bmin

Pmax(Δt)2 . nev2πbdb

Energy per frequency 
per event

Events per time per 
volume

bmax = v/(2ν)

mev . bmin = ℏ

∴ bmin = ℏ/(mev)



Bremsstrahlung

dE
dνdtdV

≈ ∫
bmax

bmin

Pmax(Δt)2 . nev2πbdb =
q2cneniσT

4πϵ0v
ln ( bmax

bmin )
Pmax =

q2σTc
16π2ϵ0b4

⟹



Bremsstrahlung

dE
dνdtdV

≈ ∫
bmax

bmin

Pmax(Δt)2 . nev2πbdb =
q2cneniσT

4πϵ0v
ln ( bmax

bmin )
bmax = v/(2ν)

Pmax =
q2σTc

16π2ϵ0b4
⟹

⟹
dE

dνdtdV
≈

q2cneniσT

4πϵ0v
ln

1
2 mev2

ℏν

bmin = ℏ/(mev)



Bremsstrahlung

• Thermal distribution of electrons:

dE
dνdtdV

≈ ∫
bmax

bmin

Pmax(Δt)2 . nev2πbdb =
q2cneniσT

4πϵ0v
ln ( bmax

bmin )
bmax = v/(2ν)

1
2

mev2 ∼ kBTe

Pmax =
q2σTc

16π2ϵ0b4
⟹

⟹
dE

dνdtdV
≈

q2cneniσT

4πϵ0v
ln

1
2 mev2

ℏν

bmin = ℏ/(mev)

(recall from lecture 6 that we are ignoring a pre-factor of ~3/2 on the RHS here.)



Bremsstrahlung

• Thermal distribution of electrons:


• Ion density:

• Therefore spectrum: 

dE
dνdtdV

≈ ∫
bmax

bmin

Pmax(Δt)2 . nev2πbdb =
q2cneniσT

4πϵ0v
ln ( bmax

bmin )
bmax = v/(2ν)

1
2

mev2 ∼ kBTe

Pmax =
q2σTc

16π2ϵ0b4
⟹

⟹
dE

dνdtdV
≈

q2cneniσT

4πϵ0v
ln

1
2 mev2

ℏν

bmin = ℏ/(mev)

ni ∝ ne

Fν ∝
dE

dνdtdV
∝

n2
i

T1/2
e

ln ( 2πkBTe

hν )



• Simple calculation (red) gets the basic characteristics (n & T dependence 
plus cut-off energy), but misses exact shape (black).


• Can measure cluster temperature and density from X-ray spectrum.

Bremsstrahlung

Fν ∝
n2
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ln ( 2πkBTe

hν )
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• A fraction of Cosmic Microwave Background (CMB) photons passing 
through a cluster with be Compton up-scattered by hot electrons in the ICM.


• CMB photons have long wavelengths and the electrons are reasonably hot 
(kTe ~ few keV), therefore photons gain energy (let’s say fractional gain is x)

Sunyaev-Zeldovich Effect

R

M

CMB photons



• A fraction of Cosmic Microwave Background (CMB) photons passing 
through a cluster with be Compton up-scattered by hot electrons in the ICM.


• CMB photons have long wavelengths and the electrons are reasonably hot 
(kTe ~ few keV), therefore photons gain energy (let’s say fractional gain is x)

Sunyaev-Zeldovich Effect

R

M

CMB photons

ϵs = xϵ0 = (1 + Δϵ/ϵ)ϵ0

ϵs

ϵ0

ϵ0



• A fraction of Cosmic Microwave Background (CMB) photons passing 
through a cluster with be Compton up-scattered by hot electrons in the ICM.


• CMB photons have long wavelengths and the electrons are reasonably hot 
(kTe ~ few keV), therefore photons gain energy (let’s say fractional gain is x)


• Since the scattered photons on average gain energy, the blackbody function 
of the scattered photons has a higher effective temperature.

Sunyaev-Zeldovich Effect
lo

g
I ν

log ν

T0 Ts = xT0

CMB, no 
scattering

single 
scattering



• Scattering conserves photons, so if the input spectrum were                     
and each photon were scattered once, the output spectrum would be:

Sunyaev-Zeldovich Effect
I0
ν = Bν(T0)

Is
ν = ABν(Ts)

∫
∞

0

Is
ν

hν
dν = ∫

∞

0

I0
ν

hν
dνwhere:



• Scattering conserves photons, so if the input spectrum were                     
and each photon were scattered once, the output spectrum would be:

Sunyaev-Zeldovich Effect
I0
ν = Bν(T0)

Is
ν = ABν(Ts)

∫
∞

0

Is
ν

hν
dν = ∫

∞

0

I0
ν

hν
dνwhere:

Bν(T ) =
2hν3/c2

exp(hν/kT ) − 1



• Scattering conserves photons, so if the input spectrum were                     
and each photon were scattered once, the output spectrum would be:

Sunyaev-Zeldovich Effect
I0
ν = Bν(T0)

Is
ν = ABν(Ts)

∫
∞

0

Is
ν

hν
dν = ∫

∞

0

I0
ν

hν
dνwhere:

Bν(T ) =
2hν3/c2

exp(hν/kT ) − 1

∴ A∫
∞

0

ν2

exp(kTs/hν) − 1
dν = ∫

∞

0

ν2

exp(kT0/hν) − 1
dν



• Scattering conserves photons, so if the input spectrum were                     
and each photon were scattered once, the output spectrum would be:

Sunyaev-Zeldovich Effect
I0
ν = Bν(T0)

Is
ν = ABν(Ts)

∫
∞

0

Is
ν

hν
dν = ∫

∞

0

I0
ν

hν
dνwhere:

Bν(T ) =
2hν3/c2

exp(hν/kT ) − 1

∴ A∫
∞

0

ν2

exp(kTs/hν) − 1
dν = ∫

∞

0

ν2

exp(kT0/hν) − 1
dν

• Sub in                : μ = ν/x

A∫
∞

0

x3μ2

exp(kT0/hμ) − 1
dμ = ∫

∞

0

ν2

exp(kT0/hν) − 1
dν

(dν/dμ = x)



• Scattering conserves photons, so if the input spectrum were                     
and each photon were scattered once, the output spectrum would be:

Sunyaev-Zeldovich Effect
I0
ν = Bν(T0)

Is
ν = ABν(Ts)

∫
∞

0
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hν
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ν

hν
dνwhere:

Bν(T ) =
2hν3/c2

exp(hν/kT ) − 1

∴ A∫
∞

0

ν2

exp(kTs/hν) − 1
dν = ∫

∞

0

ν2

exp(kT0/hν) − 1
dν

• Sub in                : μ = ν/x

A∫
∞

0

x3μ2

exp(kT0/hμ) − 1
dμ = ∫

∞

0

ν2

exp(kT0/hν) − 1
dν

(dν/dμ = x)

∴ A = 1/x3 ∴ Is
ν = x−3Bν(Ts)



• Scattering reduces the specific intensity for low photon frequencies 
(Rayleigh-Jeans) and increases it for high photon frequencies (Wien).

Sunyaev-Zeldovich Effect
lo

g
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log ν

T0 Ts = xT0
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ν = x−3Bν(Ts)
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• The CMB spectrum we see from the cluster includes some photons that 
underwent no scatterings and some that underwent one (plus higher orders, 
but assume low optical depth).


• Low optical depth:

Sunyaev-Zeldovich Effect

τ ≪ 1 ⟹ Iν ≈ (1 − τ)I0
ν + τIs

ν
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• The CMB spectrum we see from the cluster includes some photons that 
underwent no scatterings and some that underwent one (plus higher orders, 
but assume low optical depth).


• Low optical depth:

• Therefore fractional change in CMB specific intensity compared with a patch 

of sky containing no cluster:


• Let’s look at radio frequencies, well below CMB peak:
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• The CMB spectrum we see from the cluster includes some photons that 
underwent no scatterings and some that underwent one (plus higher orders, 
but assume low optical depth).


• Low optical depth:

• Therefore fractional change in CMB specific intensity compared with a patch 

of sky containing no cluster:


• Let’s look at radio frequencies, well below CMB peak:


• Therefore for radio frequencies:
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x = 1 + (Δϵ/ϵ) ⟹ x−2 ≈ 1 − 2(Δϵ/ϵ) (first order binomial 
expansion)



Sunyaev-Zeldovich Effect
δIν
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≈ τ(x−2 − 1)

x = 1 + (Δϵ/ϵ) ⟹ x−2 ≈ 1 − 2(Δϵ/ϵ) (first order binomial 
expansion)
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ϵ



• Confusing jargon warning: radio astronomers are mad-keen on brightness 
temperature, so it is common to hear that the SZ effect reduces the CMB 
temperature. It doesn’t really, it just decreases the brightness temperature 
inferred by observing only in a radio band (the colour temperature increases).


• This is what the homework problem means about a “diminution” of 
temperature by a cluster:
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x = 1 + (Δϵ/ϵ) ⟹ x−2 ≈ 1 − 2(Δϵ/ϵ) (first order binomial 
expansion)
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δTb
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=

δIν

Iν



• Electrons are thermal and so we can go back to our thermal Comptonisation 
discussion from lecture 6:
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• Electrons are thermal and so we can go back to our thermal Comptonisation 
discussion from lecture 6:


• It is for some reason common to ignore the factor of 4 in discussions of the 
SZ effect. I will follow suit here to reproduce the formula in the homework 
problems:
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• Electrons are thermal and so we can go back to our thermal Comptonisation 
discussion from lecture 6:


• It is for some reason common to ignore the factor of 4 in discussions of the 
SZ effect. I will follow suit here to reproduce the formula in the homework 
problems:


• The optical depth of the cluster is:                   , where R is radius of the 
cluster


• Therefore:
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δIν

Iν
≈ − 2τ
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⟨ Δϵ
ϵ ⟩ = 4
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−
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≈ 4
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(Since we are considering 
very long wavelengths)

⟨ Δϵ
ϵ ⟩ ≈

kTe
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∴
δIν
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≈ − 4RneσT
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τ ≈ 2RneσT



• We can be a little more precise by allowing for changes of density and 
electron temperature within the cluster:

Sunyaev-Zeldovich Effect
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≈ − 4RneσT

kTe

mec2

δIν

Iν
≈ − 2σT ∫

∞

0
ne

kTe

mec2
dℓ

R

M



There is another very profound consequence: whatever the
distance to the cluster, the fractional change in the CMBR
spectrum is the same. A cluster at z = 0.01 gives the same
Sunyaev-Zel’dovich effect as one at z = 1 or more!

• The beauty of this is that we can measure the cluster 
density and temperature from X-ray observations of 
the hot gas, and then use the SZ effect to infer the 
radius of the cluster, R.
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There is another very profound consequence: whatever the
distance to the cluster, the fractional change in the CMBR
spectrum is the same. A cluster at z = 0.01 gives the same
Sunyaev-Zel’dovich effect as one at z = 1 or more!

• The beauty of this is that we can measure the cluster 
density and temperature from X-ray observations of 
the hot gas, and then use the SZ effect to infer the 
radius of the cluster, R.


• We can then compare R with the measured angular 
radius to get the distance to the cluster.


• Comparison with redshift gives a measure of the 
Hubble constant!
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There is another very profound consequence: whatever the
distance to the cluster, the fractional change in the CMBR
spectrum is the same. A cluster at z = 0.01 gives the same
Sunyaev-Zel’dovich effect as one at z = 1 or more!

• The beauty of this is that we can measure the cluster 
density and temperature from X-ray observations of 
the hot gas, and then use the SZ effect to infer the 
radius of the cluster, R.


• We can then compare R with the measured angular 
radius to get the distance to the cluster.


• Comparison with redshift gives a measure of the 
Hubble constant!


• Non-spherical, but averages out if we do this for 
many clusters.
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