

Big Telescopes, Big Science, Big Questions

Astronomy is still in a state of exploration

Its advance is sometimes limited by current technology, but it also drives new technologies (e.g. WIFI)

By Prof Colin Cunningham & the UK E-ELT team http://www.roe.ac.uk/elt/E-ELT_Impact.pdf

New large telescopes lead to new & fundamental discoveries Innovative science, technology, computing & engineering Inspires & trains next generation of scientists & engineers

2

L.

If I have seen further, it is by standing upon the shoulders of Giants Sir Isaac Newton, in a letter to Robert Hooke, 1675

- Cumbersome design and chromatic aberrations overcome by Isaac Newton's reflective telescope design using concave primary mirror + flat secondary mirror
- 1663: James Gregory discusses the reflecting telescope concept in Optica Promota
- 1668: First reflecting telescope made
- 1672: Cassegrain reflector, convex secondary

Modern Astronomy Born

Credit: © WGBH Educational Foundation

Heavy Glass Mirrors

- Palomar Hale 5m mirror remained the largest for several decades
- Heavy, sturdy
- Mirror: 40 tonnes alone!
- Sturdy structural & precision engineering needed to make it move incredibly smoothly (structure based on battleship engineering!)

The next generation: Aluminized thin mirrors

- Solution thin layers of aluminium on toughened material that is relatively insensitive to temperature
- Light manoeuvrable

Why is mirror size important?

- Collect more light like pupils dilating in the dark allow to harness more light Spatial resolution becomes finer as mirror diameter increases 0
- - ➤ A deeper, finer view of the Universe
- Spatial resolution becomes coarser with wavelength e.g. radio telescope need larger diameters to resolve fine scales
- Surface alignment 10% wavelength (λ) •
 - Technologically challenging Why we've hard large radio telescopes longer than optical ones

Bigger the better?

An exercise in precision!

VLT mirror Diameter: 8.2m Precision of the mirror surface: 0.00005mm

... on the Atlantic ocean!

The Dome

- Fully air-conditioned and wind shielded
- Equipped with several heavy duty cranes and a lifting platform for instruments

- Two dome design studies were carried out, both choosing spherical design
- The E-ELT dome: base of 84m diameter, and 74m high
 - The size of a football stadium

Other International ELTs

Thirty Meter Telescope

30m telescope U. California (10), Caltech, Canada Japan, China, India (\$100M) Construction proposal complete NSF partnership sought www.tmt.org

Giant Magellan Telescope

24m diameter (7x 8m segments) Collaboration of private US universities, Australia (ANU + AAL) + Korea First mirror polished, 2nd mirror cast Site blasted (Mar 2012) & levelling www.gmto.org

E-ELT instrumentation

Phase-A studies completed (Spring 2010) collaborations with institutes in ESO community

- 8 instruments
- 2 AO modules

Two selected for first light

Full instrument suite to be built up over first decade

	Phase A Instrume	ent Studies	
CODEX	Ultra-high-resolution optical spectrograph Luca Pasquini (ESO) (UK: <u>Martin Haehnelt, Cambridge</u>)		
EAGLE	Multi-IFU, AO-fed near-IR spectrometer Jean-Gabriel Cuby (LAM), <u>Simon Morris (Univ Durham)</u>		
EPICS	XAO imager/spectro-polarimeter for exo-planets Markus Kasper (ESO) (UK: <u>Matthias Tecza, Oxford</u>)		
HARMONI	Diffraction-limited, visible-NIR IFU <u>Niranian Thatte (Univ Oxford)</u>	😒 ELT-IFU	
METIS	Mid-IR (3-14µm) imager & spectrometer Bernhard Brandl (NOVA, Leiden) (UK: <u>Alistair Glasse</u> , ATC)	S ELT-MIR	
MICADO	Near-IR, high-resolution imaging camera Reinhard Genzel (Max Planck Institute for Extraterrestrial Physics)	SELT-CAM	
OPTIMOS	Seeing-limited/GLAO high-multiplex spectrograph Olivier Le Fevre (LAM), Francois Hammer (GEPI) <u>, Gavin Dalton</u> (Univ Oxford)		
SIMPLE	Near-IR, high-resolution spectrograph Livia Origlia (INAF, Bologna) (UK <u>: Roberto Maiolino</u> , Cambridge)		
AO-relays	MAORY (MCAO relay) & ATLAS (LTAO relay)		

What happens next for the E-ELT? Chile has donated land for the telescope in return 10% of the observing time Preparations for the site & infrastructure are underway Program is approved subject to confirmation of funding 6 partners confirmed 4 partners to confirm in the near future 4 preparing finances commitments to the project Accession of Brazil

	Anticipated Se	chedule
	Start assumed	Jan 2012
	AIV Starts	Jan 2020
	Technical First Light	Dec 2021
Children .	First Instrument	Jun 2022
	Observatory Operations	Oct 2022
and the second second		

