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ABSTRACT
In Paper I of this series we introduced a volume-limited parent sample of 871 galaxies from
which we extracted the ATLAS3D sample of 260 ETGs. In Paper II and III we classified
the ETGs using their stellar kinematics, in a way that is nearly insensitive to the projection
effects, and we separated them into fast and slow rotators. Here we look at galaxy morphol-
ogy and note that the edge-on fast rotators generally are lenticular galaxies. They appear like
spiral galaxies with the gas and dust removed, and in some cases are flat ellipticals (E5 or
flatter) with disky isophotes. Fast rotators are often barred and span the same full range of
bulge fractions as spiral galaxies. The slow rotators are rounder (E4 or rounder, except for
counter-rotating disks) and are generally consistent with being genuine, namely spheroidal-
like, elliptical galaxies. We propose a revision to the tuning-fork diagram by Hubble as it
gives a misleading description of ETGs by ignoring the large variation in the bulge sizes of
fast rotators. Motivated by the fact that only one third (34%) of the ellipticals in our sample
are slow-rotators, we study for the first time the kinematic morphology-density T −Σ relation
using fast and slow rotators to replace lenticulars and ellipticals. We find that our relation is
cleaner than using classic morphology. Slow rotators are nearly absent at the lowest density
environments (f(SR)<∼ 2%) and generally constitute a small fraction (f(SR) ≈ 4%) of the
total galaxy population in the relatively low density environments explored by our survey,
with the exception of the densest core of the Virgo cluster (f(SR) ≈ 20%). This contrasts
with the classic studies that invariably find significant fractions of (misclassified) ellipticals
down to the lowest environmental densities. We find a clean log-linear relation between the
fraction f(Sp) of spiral galaxies and the local galaxy surface density Σ3, within a cylinder
enclosing the three nearest galaxies. This holds for nearly four orders of magnitude in the sur-
face density down to Σ3 ≈ 0.01 Mpc−2, with f(Sp) decreasing by 10% per dex in Σ3, while
f(FR) correspondingly increases. The existence of a smooth kinematic T −Σ relation in the
field excludes processes related to the cluster environment, like e.g. ram-pressure stripping,
as main contributors to the apparent conversion of spirals into fast-rotators in low-density en-
vironments. It shows that the segregation is driven by local effects at the small-group scale.
This is supported by the relation becoming shallower when using a surface density estimator
Σ10 with a cluster scale. Only at the largest densities in the Virgo core does the f(Sp) relation
break down and steepens sharply, while the fraction of slow-rotators starts to significantly
increase. This suggests that a different mechanism is at work there, possibly related to the
stripping of the gas from spirals by the hot intergalactic medium in the cluster core and the
corresponding lack of cold accretion.

Key words: galaxies: classification – galaxies: elliptical and lenticular, cD – galaxies: evolu-
tion – galaxies: formation – galaxies: structure – galaxies: kinematics and dynamics

1 INTRODUCTION

Models of galaxy formation in the ΛCDM paradigm (White & Rees
1978) predict a strong dependence of galaxies properties on envi-
ronment. As galaxies evolve via mergers one expects a faster galaxy
evolution in groups or clusters, where the interactions or tidal dis-
turbance are more frequent than in the isolated field and where the
denser hot diffuse gas can strip galaxies of their cold gas (e.g. Blu-
menthal et al. 1984; Lacey & Cole 1993; Kauffmann et al. 1993;
Moore et al. 1996; Kauffmann et al. 1999; Cole et al. 2000; Diafe-
rio & et al. 2001; Springel et al. 2005).

Since the pioneering papers by Oemler (1974) and Davis &
Geller (1976) discovering a dependence of galaxy morphology on
environment and the classic work by Dressler (1980), which dis-
covered the clear and nearly universal T − Σ relation from a sam-
ple of about 6000 galaxies in 55 clusters, galaxy density has of-
ten been correlated to galaxy properties in large surveys to pro-
vide constraints on and test galaxy formation models (see Blanton

⋆ E-mail: cappellari@astro.ox.ac.uk
† Dunlap Fellow

& Moustakas 2009, for a review). Subsequent observations for lo-
cal galaxies generally confirmed the original finding of a tight and
nearly universal T−Σ relation in all environments, extending to the
group environment (e.g Postman & Geller 1984; Giovanelli et al.
1986), with samples of galaxies reaching up to 105 objects in the
case of the Galaxy Zoo project (Bamford et al. 2009; Skibba et al.
2009). Studies have quantified how morphology separately varies
as a function of mass, colours and galaxy shape at given environ-
mental density (van der Wel 2008; Bamford et al. 2009; Skibba
et al. 2009; van der Wel et al. 2010). However a long standing open
questions is still whether the T − Σ relation is driven by the clus-
ter/group environment, and related to the distance from the cluster
center, or to the local galaxy density, as originally proposed (Whit-
more et al. 1993; Goto et al. 2003; Bamford et al. 2009).

A large set of papers have extended the observations of the
T − Σ relation to higher redshift using visual morphologies ob-
tained from Hubble Space Telescope images to study its evolution:
initial studies focused on lower redshifts z <∼ 0.5 (e.g. Dressler et al.
1997; Fasano et al. 2000; Treu et al. 2003; Wilman et al. 2009) but
are now routinely performed around z ∼ 1 (e.g. Stanford et al.
1998; van Dokkum et al. 2000; Smith et al. 2005; Postman et al.
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Table 1. Main characteristics of the ATLAS3D parent sample

Survey Volume: Vol ≈ 9× 104 Mpc3

Galaxy K-band luminosity: L > 8.2× 109 L⊙,K

Galaxy stellar mass: M⋆ >∼ 6× 109 M⊙
Galaxy B-band total mag: MB

<∼ − 18.0 mag
Galaxy SDSS r-band total mag: Mr <∼ − 18.9 mag

Total number of galaxies: Ngal = 871
Spiral and irregular galaxies: NSp = 611 (70%)

S0 galaxies in ATLAS3D (T > −3.5): NS0 = 192 (22%)
E galaxies in ATLAS3D (T ≤ −3.5): NE = 68 (8%)

2005; Cooper et al. 2006; Capak et al. 2007; Poggianti et al. 2008).
There is general consensus for an observed smaller fraction of S0s
and a correspondingly larger one of spirals at larger redshift in high
density environments, while no evolution is observed in the field.
This is interpreted as due to the fact that the morphological segre-
gation proceeds faster, and thus affects earlier, the denser cluster
environments (Dressler et al. 1997; Fasano et al. 2000; Postman
et al. 2005; Smith et al. 2005). Moreover little evolution was ob-
served at the largest masses, for galaxies generally classified as el-
lipticals, suggesting that the most massive galaxies are already in
place beyond z ∼ 1 (Stanford et al. 1998; Postman et al. 2005;
Tasca et al. 2009), while most of the observed evolution consists of
a transformation of spirals into S0s (Smith et al. 2005; Moran et al.
2007).

In this paper we study the T − Σ relation for the volume-
limited nearly mass-selected ATLAS3D parent sample of 871
nearby (D < 42 Mpc) galaxies with MK < −21.5 mag (stel-
lar mass M⋆

>∼ 6×109 M⊙) that we introduced in Cappellari et al.
(2011, hereafter Paper I) and whose properties are summarized in
Table 1. Our survey, with its relatively modest sample size can
shed little new light on the T − Σ relation itself. However (for
the first time) we have high-quality integral-field observations of
the stellar kinematics (Paper I) for all the ETGs in the sample. This
exquisite level of detail allows us to properly classify the ETGs into
genuinely spheroidal systems, the slow rotators, and lenticular-like
galaxies, the fast rotators, in a robust way that is nearly insensitive
to projection effects (Cappellari et al. 2007; Emsellem et al. 2007).

The classification utilizes the specific angular momentum pa-
rameter defined in Emsellem et al. (2007) as

λR ≡ ⟨R|V |⟩
⟨R

√
V 2 + σ2⟩

=

∑N

n=1
Fn Rn|Vn|∑N

n=1
Fn Rn

√
V 2
n + σ2

n

, (1)

where Fn is the flux contained inside the n-th Voronoi bin and Vn

and σn the corresponding measured line-of-sight mean stellar ve-
locity and velocity dispersion. We adopt here an improved criterion
which is based on the classification of the velocity maps presented
in Krajnović et al. (2011, hereafter Paper II) and is introduced in
Emsellem et al. (2011, hereafter Paper III). The slow rotators are
defined as those having λR(Re) < 0.31

√
ε, where Re is the ef-

fective (half light) radius (Paper I) and ε is the ellipticity within
1Re. The kinematic classification eliminates the well known high
fractions of E/S0 misclassification that affect standard morpholog-
ical classification using photometry alone. Our aim is to quantify
the influence of the misclassification in the T − Σ relation and its
interpretation.

In this paper in Section 2 we give an overview of some of the
limitations of the morphological classification by Hubble (1936)
and we show that with the help from the kinematic classifica-

tion one can derive an improved description of the morphology of
nearby galaxies. Motivated by our findings in Section 3 we derive
the kinematic morphology-density relation for the galaxies in our
sample and briefly discuss its interpretation in Section 4. A sum-
mary is given in Section 5.

2 MORPHOLOGY OF NEARBY GALAXIES

2.1 Limitations of Hubble’s tuning-fork diagram

In the Hubble (1936) tuning-fork diagram for the morphological
classification of galaxies (see Sandage 2005, for a review of the
history of the development), the S0 class is a transition class be-
tween the spiral classes and the elliptical one (de Vaucouleurs 1959;
Sandage 1961). The bulge fraction in spiral galaxies increases from
the later spiral types Sc towards the earlier types Sa, which are
connected to the S0 class in the middle of the tuning-fork. This
arrangement gives the impression that S0 galaxies should all have
large bulge fractions, intermediate between Sa and elliptical galax-
ies.

This is in contrast with the observations by Spitzer & Baade
(1951) who first reported in the literature the S0 classification by
Hubble and stated that “the galaxies classed together as S0 by Hub-
ble represent actually a series of forms paralleling the series of nor-
mal spirals, Sa, Sb, Sc. But the galaxies of the S0 series contain no
obscuring matter and presumably are therefore unable to develop
spiral structure.” This was acknowledged by Sandage et al. (1970),
who noted that “S0 galaxies have the appearance of spirals without
arms”. This point was strongly reinforced by van den Bergh (1976),
who pointed out that “Normal spirals, which exhibit a strong dis-
play of Population I, and S0 galaxies, which contain few if any
young stars, form parallel sequences. These two sequences differ
primarily in their total gas content and hence in the mean age of
their stellar populations”.

van den Bergh (1976) went on by proposing a new trident-
like classification scheme in which he introduced the morphologi-
cal types S0a, S0b and S0c, which are parallel to the Sa, Sb, and
Sc sequence, and look like spirals with the dust removed. The pro-
posed classification also introduced the class of Anemic Spirals:
Aa, Ab and Ac, being the spirals with small amounts of gas, in-
termediate between normal spirals and S0s. The existence of “pas-
sive spirals” and the difficulty of robustly recognizing S0 and spiral
galaxies, especially in clusters, was also recognized by Koopmann
& Kenney (1998); Dressler et al. (1999); Poggianti et al. (1999).
The existence of these intermediate spiral systems, recently named
“red spirals”, is now being clearly recognized in large galaxy sur-
veys using multi-colour CCD imaging (Goto et al. 2003; Moran
et al. 2006; Wolf et al. 2009; Masters et al. 2010).

Although a number of authors agreed on the morphological
similarity of S0 and spirals, and the existence of an intermediate
class, the Hubble tuning-fork diagram is still in general use. This
is perhaps due to the fact that the flattening and bulge fraction can-
not be robustly measured in non-edge-on S0s, due to the difficulty
of inferring the galaxies inclination and due to the mathematical
degeneracy in the deprojection of the surface brightness, when the
galaxy is not edge-on (Rybicki 1987). This makes the trident-like
scheme of van den Bergh (1976) more difficult to apply in practice
than the tuning-fork of Hubble (1936). However we show in the
next section that our observations of the ATLAS3D parent sample
strongly support the findings by Spitzer & Baade (1951) and van
den Bergh (1976).
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Figure 1. Morphology of nearby galaxies from the ATLAS3D parent sample. The volume-limited sample consists of spiral galaxies (70%), fast rotators ETGs
(25%) and slow rotators ETGs (5%). The ATLAS3D sample consists of the ETGs only, classified according to the absence of spiral arms or an extended dust
lane. The edge-on fast rotators appear morphologically equivalent to S0s, or to flat ellipticals with disky isophotes. Many of the apparently-round fast-rotators
display bars or dusty disks, indicating that they are far from edge-on. All the galaxies classified as ‘disky’ ellipticals E(d) by Bender et al. (1994) belong to
the fast-rotators class. However contrary to E(d) and S0 galaxies, the fast-rotators can be robustly recognized from integral-field kinematics even when they
are nearly face-on (Emsellem et al. 2007; Cappellari et al. 2007). They form a parallel sequence to spiral galaxies as already emphasized for S0 galaxies by
van den Bergh (1976), who proposed the above distinction into S0a–S0c. Fast rotators are intrinsically flatter than ε>∼ 0.4 and span the same full range of
shapes as spiral galaxies, including very thin disks. However very few Sa have spheroids as large as those of E(d) galaxies. The slow rotators are rounder than
ε<∼ 0.4, with the important exception of the flat S0 galaxy NGC 4550 (not shown), which contains two counter-rotating disks of nearly equal mass. The black
solid lines connecting the galaxy images indicate an empirical continuity, while the dashed one suggests a possible dichotomy.

2.2 Morphology of fast and slow rotators

A striking impression derived from inspection of the galaxies in
the postage-stamp images of fig. 5 and 6 of Paper I is the struc-
tural similarity between many nearly edge-on fast-rotator galaxies
and spiral galaxies (not shown) in the parent sample. In particu-
lar for every fast rotator ETG that is known to be close to edge-
on, from the presence of nuclear dusty disks, one can find a cor-
responding spiral galaxy with the same general shape, except for
the presence of a prominent dust lane. This seems true even for the
most spheroidal dominated fast rotators, although spirals with large
spheroid are extremely rare in our sample. The morphological sim-
ilarity is even more striking when looking at near-infrared K-band
images from 2MASS (Skrutskie & et al. 2006), where the dust ab-
sorption is essentially invisible. This is in agreement with the clas-
sification scheme proposed by Spitzer & Baade (1951) and van den
Bergh (1976), if one associates our fast-rotators with S0 galaxies.
The large variation of bulge fractions of S0 and their overlap with
the one of spirals was recently confirmed and accurately quantified
by Laurikainen et al. (2010). A number of anemic spiral galaxies

with only weak evidence of dust is also present in the ATLAS3D

parent sample, also in agreement with van den Bergh (1976). The
tuning-fork of Hubble (1936) instead completely ignores the strong
variations in the bulge fractions of S0 galaxies and does not allow
for transition objects between the flat S0 and disk dominated Sc
spirals. A modified version of van den Bergh (1976) scheme, which
illustrates the morphology of the parent sample is presented using
postage-stamp images of real galaxies in Fig. 1 and in schematic
form in Fig. 2. Apart from morphology, other galaxy properties
vary smoothly along this ‘hairbrush’ shaped classification scheme.
In fact, in an average sense, galaxy luminosity decreases from left
to right and colours become bluer from the bottom to the top (e.g.
figures 4 and 7 of Paper I).

In addition to the connection between the morphology of fast-
rotators and spiral galaxies, our diagrams also indicate an empiri-
cal continuity between the morphology of S0 fast-rotator galaxies,
with increasing bulge fractions, and the flattest fast-rotator ellipti-
cal galaxies, which often show disky isophotes. The same concept
was illustrated in the classification scheme of Kormendy & Bender

c⃝ 2011 RAS, MNRAS 000, 1–18
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Figure 2. Same as in Fig. 1, but in schematic form. As in previously proposed revisions (van den Bergh 1976; Kormendy & Bender 1996) of Hubble’s tuning-
fork classification scheme, this diagram represents intrinsic galaxy properties. For this reason the slow-rotator (E0–E4) and fast-rotator (E5–S0c) early-type
galaxies are visualized as edge-on. Together with the spiral galaxies (Sa–Sc) and the early-type galaxies, here we also explicitly included in the diagram the
class of Anemic Spirals (Aa–Ac) by van den Bergh (1976). These represent transition objects between the genuine spirals, with obvious large-scale spiral arms
and the fast rotators, with no evidence of spiral structure in optical images.

(1996), where these galaxies are termed “disky” ellipticals E(d).
All the galaxies classified as E(d) by Bender et al. (1994) belong
to the fast-rotator class. The complement however is not true as the
weak disks of E(d) galaxies are only visible near the edge-on ori-
entation, while the fast-rotator class can be recognized also near
face-on view (Paper III).

The plot also illustrates the fact that the slow rotators appear
to be intrinsically quite round (see fig. 5 of Paper I and Paper III),
as already noticed in the SAURON survey (Emsellem et al. 2007;
Cappellari et al. 2007). The only slow-rotator flatter than E4 in the
ATLAS3D sample, and treated as ‘exception’ in the diagram, is the
S0 galaxy NGC 4550, which was indicated by Rubin et al. (1992)
and Rix et al. (1992) for containing two counter-rotating disks of
comparable mass. A detailed dynamical model of this galaxy, con-
firming the original interpretation and the nearly equal mass for the
two disks was presented in Cappellari et al. (2007). This object is
not unique: a similar one (NGC 4473), classified as a fast-rotator
due to the smaller fraction of counter-rotating stars, was also mod-
eled by Cappellari et al. (2007) and a number of additional ones
were newly discovered in ATLAS3D (Paper II), where they are
termed “double σ” galaxies. Most of them are classified as fast-
rotators, but some other are rounder slow rotators (Paper III). The
resulting classification of this special class of objects seems to de-
pend on the amount of accreted counter-rotating mass and the ge-
ometry of the orbit during the accretion event (Bois et al. 2011,
hereafter Paper VI)

The ellipticity distribution in the outer parts of the galaxies in
our sample (Paper II) is characterized by a roughly constant fraction
of galaxies up to ellipticities ε ≈ 0.75. Under the reasonable as-
sumption of random orientations for the galaxies in our sample, this
indicates that most of the galaxies, even when they appear round in
projection, must possess quite flat disks as previously reported for
S0 galaxies (Sandage et al. 1970; Binney & de Vaucouleurs 1981).
This is confirmed via Monte Carlo simulations in Paper III, while
a quantitative statistical study of the shape of fast rotators will be
presented in another paper of this series. This implies that the sam-
ple galaxies shown in Fig. 1 are not exceptions, but are represen-
tative of our ETGs sample. Additional indications of the flatness

of most of the galaxies in our sample comes from the fact that the
inclination of the galaxies as derived from a sub-sample of objects
with nuclear dusty disks agrees with the inclination derived from
the shape of the outer isophotes, under the assumption of a flat disk
(Davis et al. 2011, hereafter Paper V).

A recent dynamical modeling study suggests that the stellar
dynamics of the fast rotators appear to be indistinguishable from
that of spiral galaxies of comparable flattening (Williams et al.
2009), both being well described by the simple anisotropic Jeans
models of Cappellari (2008). Within the limits of the small size of
the studied sample this further confirms the structural similarity of
the two classes of objects. From a purely empirical point of view
the difference between fast rotator ETGs and spiral galaxies is in
their dust content, visible as spiral arms in optical photometry, and
their cold gas content, as detected via molecular lines, which is sig-
nificantly lower than spiral galaxies (Young et al. 2011, hereafter
Paper IV).

The similarity of the morphologies illustrated in Fig. 1 and 2
however does not implies a similarity in the distribution of bulge
fractions, which appears qualitatively different between spirals and
fast-rotators, with the latter being on average characterized by
larger bulges. This was quantified for S0 galaxies by Simien & de
Vaucouleurs (1986) and recently by Laurikainen et al. (2010), who
note that S0 tend to have bulge fractions comparable to that of Sa
galaxies, but larger than later spiral types. The same is expected to
hold for fast rotators, which contain large fractions of S0 galaxies.
An indication of this trend for the galaxies of our sample was illus-
trated in fig. 4 of Paper I, which shows the K-band size-luminosity
relation for the parent sample as a function of the morphological
type. The fast-rotators indeed have a significant overlap in this di-
agram with the spiral galaxies of type Sa–Sb. However there is a
clear trend in the Re − LK diagram as a function of galaxy mor-
phology. The observed trend is due to a variation in the bulge size,
with bulges progressively increasing (by definition) from Sd-Sc to
Sb-Sa and to fast rotators ETGs.

The novelty of our project, with respect to all previous mor-
phological studies, is that it provides integral-field observations of
the stellar kinematics for all the galaxies. This allows us to rec-
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Figure 3. Histogram of the local density, as measured by ρ10, for all the
galaxies of the ATLAS3D parent sample. There is a clear bimodality of the
distribution, above or below log ρ10 ≈ −0.4. Nearly all galaxies in Virgo
have log ρ10 > −0.4, while the ones outside Virgo have log ρ10 < −0.4.

ognize disk-like systems even when they are close to face on and
could be morphologically misclassified as genuine elliptical galax-
ies. The close connection illustrated in Fig. 1 and 2 between (i)
slow-rotators and genuine elliptical galaxies and (ii) fast-rotators
and S0-like galaxies, all seen at various orientations, is the motiva-
tion for revisiting the classic morphology-density T −Σ relation in
the next section.

3 THE MORPHOLOGY-DENSITY RELATION

3.1 Three estimators of galaxies environment

For all galaxies of the ATLAS3D parent sample we computed a
set of density parameters describing the number and luminosity of
galaxies around each galaxy. For our density estimate we followed
the same steps as in Paper I to extract the galaxy sample and derive
distances. However here we considered all galaxies in a volume
which fully encloses that defined by the parent sample with MK <
−21.5 mag and D < 56 Mpc (Vhel < 4000 km s−1), ignoring
observability selections, to prevent possible incompleteness at the
edges of our volume. As recession velocities for the ETGs we used
our own accurate SAURON heliocentric velocities Vhel from stellar
kinematics (table 5 of Paper I), instead of the NED values.

We defined two types of density estimators. They are both
based on the adaptive method of Dressler (1980), but one is mea-
sured inside spheres, while the others are determined inside redshift
cylinders. In all cases the density refers to the subset of galaxies
with MK < −21.5 mag, which is the brightness limit of the sur-
vey. All these quantities are tabulated in Table 2 and Table 3 for the
ETGs and spiral galaxies in the parent sample:

(i) ρ10 = Ngal/(
4
3
πr310) is the volume density in Mpc−3 of

galaxies inside a sphere of radius r10 centered on a galaxy, which
includes Ngal = 10 nearest neighbors. For all estimators Ngal

excludes the galaxy under consideration. For this estimator we
adopted the best distance estimates and the sky coordinates of all
the galaxies in the parent sample to compute the three-dimensional
Cartesian coordinates of all the galaxies inside the local volume.
This allows for an accurate density estimation in Virgo, where a
number of accurate distances, based on SBF are available (Mei

Figure 4. Projection of the local volume enclosing the ATLAS3D parent
sample. The blue ellipses with axis are fast-rotators ETGs, the red filled cir-
cles are slow rotators ETGs, while the green spirals are spiral galaxies. The
Earth equatorial plane lies on the x−y plane, with the x-axis points towards
RA = 0. The small black circle centered on Virgo has a radius R = 3.5

Mpc, while the large one defines our selection volume with R = 42 Mpc.
The dashed lines indicate the intersection between the (inclined) Galaxy
zone-of-avoidance and the x − y plane. This exclusion zone explains the
most empty region of the plot. The filamentary nature of galaxy clustering
and the large range of volume densities sampled by the survey are evident.

et al. 2007). For the Virgo galaxies without SBF distance, to avoid
overestimating the local density, this was estimated after adding a
Gaussian scatter with σ = 0.6 Mpc, as measured by Mei et al.
(2007), to the Virgo distance of D = 16.5 Mpc. The resulting me-
dian value of the sampled radius for our sample r10 = 4.5 Mpc.
The ρ10 estimator has the limitation that a galaxy with inaccurate
redshift-independent distance, inside a group of galaxies with only
redshift distance, may incorrectly appear outside the group. In that
case the density of galaxies around it will be underestimated. In
practice we found this to be a problem only for a handful of galax-
ies.

(ii) Σ10 = Ngal/(πR
2
10) is the surface density in Mpc−2 of

galaxies inside a cylinder of radius R10 and height h = 600 km s−1

(i.e. ∆Vhel < 300 km s−1) centered on the galaxy, which includes
Ngal = 10 nearest neighbors. Here we used the heliocentric veloc-
ity while ignoring redshift-independent distances. This estimator
is essentially the same as defined by Dressler (1980). The result-
ing median value of the sampled radius for our sample R10 = 3.8
Mpc.

(iii) Σ3 = Ngal/(πR
2
3) is the same as Σ10, but considers a

cylinder containing the Ngal = 3 nearest neighbors. The result-
ing median value of the sampled radius for our sample R3 = 1.3
Mpc.

In Fig. 3 we show a histogram of the density ρ10 for the
full parent sample. There is a clear bimodality, with a minimum
around log ρ10 ≈ −0.4 and the majority of the galaxies below
that value. It turns out that with only two exceptions, all galax-
ies in Virgo have log ρ10 > −0.4, while those outside Virgo have
log ρ10 < −0.4. According to this estimator the sample includes

c⃝ 2011 RAS, MNRAS 000, 1–18
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Figure 5. Comparison between the density estimators Σ3 and Σ10. Virgo
galaxies are indicated by the magenta filled circles, while non-virgo ones are
black filled triangles. Using the Σ10 estimator a rough separation between
cluster/field is obtained at Σ10 ≈ 0.4, however no clean separation can be
obtained using the Σ3 estimator: for many bins of Σ3 there are galaxies
both inside and outside the cluster.

differences of four orders of magnitudes between the high density
(Virgo) and low density environments. The Virgo membership is
given in table 5 and 6 of Paper I and was defined as being within a
radius R = 3.5 Mpc from the center of the cluster assumed at co-
ordinates RA=12h28m19s and DEC=+12◦40′ (Mould et al. 2000)
and distance D = 16.5 Mpc (Mei et al. 2007). The radius corre-
sponds to an angular size of 12◦ on the sky.

A comparison between the Σ10 surface density estimator and
the more local Σ3 is shown in Fig. 5. The plot illustrates the fact
that, while the Σ10 broadly separates the Virgo cluster environment
from the rest, the Σ3 estimator eliminates the distinction. Using
Σ3 one finds that some small groups of Ngal = 4 galaxies are as
closely packed as galaxies in the core of Virgo, while many small
groups are as dense as the outskirts of the Cluster.

To put our survey in a general context, we compare the den-
sity of galaxies in the survey, with the density of galaxies in other
environments in the nearby universe. Using the numbers from Ta-
ble 7.1 of Sparke & Gallager (2007) we find that inside the core of
the Virgo cluster there is a density of about 560 galaxies Mpc−3

above a luminosity LB = 109L⊙. This density is comparable to
the one of 900 galaxies Mpc−3 inside the core of the Fornax clus-
ter but it is still significantly lower than the value of about 13,400
galaxies Mpc−3 in the core of the Coma cluster.

A global view of the local galaxy volume of the ATLAS3D

sample is given in Fig. 4. It shows the quite inhomogeneous distri-
bution of ETGs in the local volume and the variety of environment
sampled by the survey. In some cases galaxies appear to be asso-
ciated to filaments, but the survey also includes extremely isolated
objects. When the size of our volume is compared with the scale
of the filamentary structure of dark matter predicted by numerical
simulations (e.g. Springel et al. 2005), one can see that our volume
is expected to sample a large number of sub clusters and filaments,
although the volume is still affected by cosmic variance (Khochfar
et al. 2011, hereafter Paper VIII).

Figure 6. λR versus density. The specific angular momentum for all the
galaxies in the ATLAS3D sample is plotted against the density ρ10. The
blue ellipses with vertical axis and the red circles represent the fast and
slow rotators respectively (Paper III). The dashed vertical line marks the
separation between galaxies inside (log ρ10 < −0.4) and outside the Virgo
Cluster. The green solid line with error bars indicates the ratio NSR/NFR

of slow rotator versus fast rotator galaxies as a function of ρ10, while the
dotted horizontal line is the global ratio NSR/NFR for the survey. The
fraction is nearly constant outside Virgo, but it shows a dramatic decrease
in the outskirts of Virgo and an increase inside the cluster core.

3.2 Specific angular momentum of ETGs versus local density

Here we revisit the T−Σ relation that was studied in the past, using
the kinematical classification based on λR, instead of the classic
morphology. We first focus on the ETGs alone and we use the fast
and slow rotators to replace S0 and elliptical galaxies, due to their
closely related morphologies (Section 2.2). The fast/slow rotator
classes and the λR values for the galaxies in the ATLAS3D sample
are given in Paper III.

Here we study the dependence of λR on the galaxy environ-
ment defined in Section 3.1. In Fig. 6 we plot λR versus the density
ρ10. We find that slow rotator galaxies are not only found in dense
environments. If we restrict our analysis to the ETGs alone, the
fraction of slow versus fast rotators is nearly insensitive to environ-
ment, outside the Virgo cluster, over more than two orders of mag-
nitude in the density ρ10, and within the errors is consistent with the
global value NSR/NFR ≈ 16±3% found for the whole ATLAS3D

sample. However inside the Virgo cluster the situation changes dra-
matically and the slow rotators there are all segregated in the most
dense environment, in the cluster core, where the fraction becomes
NSR/NFR ≈ 38 ± 16% compared to NSR/NFR ≈ 4 ± 4% in
the outer parts of the cluster. The prevalence of slow rotators in the
core of the Virgo cluster is already evident in Fig. 7 which show
the distribution on the sky of fast and slow rotators ETGs and spi-
ral galaxies. A clear feature is that 8/9 of the slow rotators ETGs are
contained within the innermost R < 0.5 Mpc (small solid circle)
from the cluster center, while the fast rotators and spiral galaxies
appear to share a similar and more uniform distribution.

The findings of this section suggest the presence of at least
two different processes for the formation of slow rotators: (i) in the
field or in small groups the slow rotators form via a quite inefficient
process, which is nearly insensitive to the environment, (ii) while in
dense cluster environment a much more efficient process is at work,
which depends sensitively on the local density, or on the distance
from the cluster core.
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Figure 7. Fast/slow rotators and spirals in the Virgo Cluster. The symbols
are as in Fig. 4. All Virgo galaxies with MK < −21.5 mag are shown. The
large dotted circle centered on the Virgo core has a radius of 12◦ (R = 3.5
Mpc) and defines our adopted limits of the cluster, the solid circle indicates
cluster A, centered on M87, the dashed circle indicates cluster B, centered
on M49, and the dash-dotted circle is the cloud W′ as defined in Binggeli
et al. (1987). The top panel shows the full cluster extent, while the bottom
one zooms on the Virgo core. Out of 9 slow rotators in Virgo, 8 are con-
centrated inside the core of cluster A (solid circle with R = 0.5 Mpc) and
one is M49, which defines the center of cluster B. The fast rotators are more
uniformly distributed. The spiral galaxies overlap with the fast rotators, but
tend to be more common in the outskirts of the cluster.

3.3 The kinematic Morphology-Density relation

In the previous section we saw that the ratio between fast and slow
rotators has a very small sensitivity to environment, at least within
the density ranges explored by our local volume, except in the Virgo
core. One may wonder whether this is due to the fact that we do
not explore a sufficiently wide range of densities. We show in this
section that this is not the case and in fact the picture changes dra-
matically when one includes spiral galaxies in the study.

In Fig. 8 we show the T −Σ relation for fast and slow rotator
ETGs and spiral galaxies using, from top to bottom, the three differ-
ent density estimators ρ10, Σ10 and Σ3 respectively (Section 3.1).
In agreement with the previously reported studies we find a clear
trend for the spiral fraction f(Sp) to gradually decrease with en-
vironmental density while the fraction of ETGs correspondingly
increases. This trend continues smoothly over nearly four orders
of magnitude in density and does not flatten out even at the low-
est densities. The fraction of spirals is equal to that of ETGs at a
volume density that corresponds to a region within the core of the
Virgo cluster.

Broadly speaking the three density estimators provide qualita-
tively similar trends and we first focus on Σ3, which provides the
cleanest relation. We find two new results:

(i) The extreme low densities explored by our local volume al-
low us to demonstrate that the most isolated galaxies are almost
invariably spirals. In fact as much as f(Sp) = 36/39 = 92% of
the galaxies in the lowest density bin (Σ3 = 0.01 Mpc−2) are spi-
rals. Considering the two lowest log Σ3 density bins, to improve the
statistics, we find f(Sp) = 177/213 = 83%. This spiral fraction
is consistent with the estimate for the AMIGA sample of isolated
galaxies (Sulentic et al. 2006);

(ii) The use of our kinematic classification shows that genuine
spheroidal ETGs, the slow-rotators, make up only a very small
fraction (f(SR) ≈ 4%) of the total galaxy population except in
the Virgo core where they contribute to ≈ 20% of the total. The
slow rotators contribute even lower fractions at the lowest densities:
there are no slow rotators in the lowest density bin, while consider-
ing the two lowest log Σ3 bins we find f(SR) = 4/213 = 1.9%.
Of the four slow rotators in the two bins, one (NGC 6703) is in-
dicated in Paper III as a possible face-on fast rotators and another
one (UGC 03960) has a low data quality. This implies that the frac-
tion of genuine slow rotators in the two lowest density bins may
be as low as 1%. This is in strong contrast to traditional studies of
the T − Σ relation that never find less than ∼ 10% of (misclas-
sified) elliptical galaxies even in the lowest density environments
(e.g. Postman & Geller 1984; Bamford et al. 2009).

Looking in more detail, there is a notable difference between
the T − Σ relation obtained using the Σ10 and Σ3 estimators. Us-
ing both estimators the fraction of spirals f(Sp) and fast-rotators
f(FR) are well described by two linear relations of log Σ (see also
Dressler et al. 1997). However using Σ3 the relations become no-
ticeably steeper and more cleanly defined. Moreover using Σ3 the
fraction of slow rotators f(SR) does not show the drop that is ob-
served using Σ10 in the outskirts of the Virgo cluster (as pointed
out regarding Fig. 7). The best fitting T −Σ relations using the two
surface-density estimators are:

f(Sp) = 0.69− 0.07× log Σ10 (2)

f(FR) = 0.28 + 0.06× log Σ10. (3)

using the Σ10 estimator and restricting the linear fit to the range
0.01<∼Σ10

<∼ 20 Mpc−2, and
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Figure 8. The T − Σ relation for fast rotators (blue ellipse with vertical
axis), slow rotators (red filled circle) and spiral galaxies (green spiral). The
dashed vertical line in the top two panels indicates an approximate separa-
tion between the density of galaxies inside/outside Virgo. In the bottom two
panels the solid blue and magenta lines are best fit to the first six values.
The numbers above the symbols represent the number of galaxies included
in each of the seven density bins.

f(Sp) = 0.69− 0.11× log Σ3 (4)

f(FR) = 0.26 + 0.09× log Σ3. (5)

using the Σ3 estimator in the range 0.01<∼Σ3
<∼ 50 Mpc−2. The re-

lations for f(Sp) and f(FR) have nearly opposite slopes so that the
decrease of spirals is compensated by an increase of fast-rotators,
with an insignificant contribution from slow rotators.

To provide a direct connection of our work with the ones of

Figure 9. Morphology versus density for elliptical (black filled circles),
lenticular (open diamonds) and spiral galaxies (spirals), versus the local
surface density Σ10. The numbers above the symbols represent the number
of galaxies included in each of the seven density bins.

previous authors on the T − Σ relation, in Fig. 9 we show the
usual relation using the morphological classification given by the
HyperLeda1 database (Paturel et al. 2003), using the morphologi-
cal T -type (tabulated in Paper I) where ellipticals have T ≤ −3.5,
S0s have −3.5 < T ≤ −0.5 and spirals have −0.5 < T . The
adopted surface density estimator Σ10 closely reproduces the one
introduced by Dressler (1980). The spiral fraction is nearly identi-
cal to the one in the middle panel of Fig. 8, as expected, given the
excellent agreement between our morphology and the HyperLeda
one. However the ratio between the ellipticals and S0 appears to be
quite different from that between slow-rotators and fast-rotators. Of
the 68/871 elliptical galaxies in our volume-limited sample, only
23/871 are genuinely spheroidal slow rotators (even fewer if one
excludes the counter-rotating disks like NGC 4550). This implies
that only about one third (34%) of the elliptical galaxies are prop-
erly classified using photometry alone, while the majority of them
is composed of misclassified disk-like fast-rotators. This is quali-
tatively consistent with the statistical estimations of elliptical mis-
classifications made twenty years ago (Rix & White 1990; van den
Bergh 1990; Jorgensen & Franx 1994; Michard 1994). However the
key difference of our kinematic classification is that we can finally
properly classify ETGs on an individual basis.

4 DISCUSSION

One possible explanation for the existence of a smoothly decreas-
ing T−Σ relation for f(Sp), over nearly four orders of magnitudes
in Σ3, matched by the increase in f(FR), is that spirals trans-
form into fast rotators in the relatively low density environments
explored by our survey. This is consistent with the close morpho-
logical similarity between the two classes of objects indicated in
Section 2. Assuming the current local density is related to the one
in which the spiral evolved into a fast-rotator, the relation for f(Sp)
down to the most isolated environments, excludes mechanisms re-
lated to the cluster environment, like e.g. the ram-pressure strip-
ping of the gas due to the inter-galactic medium (IGM) (Spitzer &

1 http://leda.univ-lyon1.fr/
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Baade 1951; Gunn & Gott 1972; Abadi et al. 1999), as the dom-
inant way to transform spirals into fast rotators in the low-density
regime Σ3

<∼ 50 Mpc−2. Moreover, the fact that galaxy morphol-
ogy is more closely related to Σ3 than Σ10, confirms that, the pro-
cess which produces the morphological segregation acts on small
groups rather than cluster scales. Given that galaxies are thought
to fall into clusters in small groups, the morphological segregation
may have happened already before the galaxies enter the cluster
and this may explains the existence of a smooth T − Σ relation
with Σ3 even inside the Virgo cluster.

Possible processes (see Boselli & Gavazzi 2006, for a review)
that can transform spiral galaxies into fast-rotators in the field, or
reduce spiral formation via cold accretion (Dekel et al. 2009) in
the first place, include quenching produced by galaxy harassment
(Moore et al. 1996, 1999), or gravitational heating by minor merg-
ing, which may suppress star formation (Khochfar & Ostriker 2008;
Johansson et al. 2009). Additional reduction of star formation will
result from morphological quenching (Martig et al. 2009) caused
by the thickening of the disks and growth of the bulges during
close encounters, minor mergers, or secular evolution (Kormendy
& Kennicutt 2004; Debattista et al. 2006). The negative trend be-
tween the amount of gas and the bulge fraction predicted by all
these process is in general agreement with the observations (fig. 4
of Paper I; Dressler 1980), as is the presence of thick disks in S0s
(Burstein 1979), which are expected to form via dynamical distur-
bances (Read et al. 2008).

The change in slope and the sharp decrease in the spiral frac-
tion above Σ3

>∼ 50 Mpc−2 indicates that a different process starts
playing a role at the highest densities which are reached for our
sample only towards the Virgo core (R<∼ 0.5 Mpc). In that density
regime the warm IGM of the Virgo cluster as traced by the X-ray
observations (Böhringer et al. 1994) starts ram-pressure stripping
spiral galaxies of their gas (Giovanelli & Haynes 1985; di Serego
Alighieri et al. 2007; Morganti et al. 2006) and prevents further cold
accretion (Oosterloo et al. 2010), thus rapidly transforming the spi-
ral galaxies into red and passive fast rotators. This is qualitatively
in agreement with numerical simulations (Tonnesen et al. 2007)
and with detailed predictions computed for a sample of eight clus-
ters, as part of the LoCuSS survey, indicating that ram-stripping
becomes important inside r <∼ r200/3 (Smith et al. 2010, see also
Moran et al. 2007), where for Virgo the virial radius is r200 ≈ 1.6
Mpc (Hoffman et al. 1980; McLaughlin 1999; Côté et al. 2001).
Ram stripping would explain the existence of very thin and dy-
namically cold fast rotators which are unlikely to have suffered
from significant gravitational disturbances (Fig. 1; see also van der
Wel et al. 2010). The importance of the IGM near the cluster core
(R < 0.5 Mpc) is also evident in the studies of Chung et al. (2007,
2009), who find only truncated and displaced H I disks in spirals
in that region, while more extended and regular disks reside further
out. The steepening of the T − Σ relation then indicates the addi-
tion of the IGM effect on top of the pre-processing of the galaxies
morphology that likely happened in groups before the galaxies en-
tered the cluster. Our conclusions are entirely consistent with the
ones by Moran et al. (2007), based on the analysis of the stellar
population of two clusters at intermediate redshift. The role of the
environment and the IGM on the gaseous components of galaxies
is discussed in detail in other papers of this series (Paper IV; Serra
et al. in preparation).

The sharp increase in the fraction of slow rotators inside the
Virgo core, as opposed to its outskirts, may be related to the large
number of frequent close encounter and minor mergers among the
numerous gas-poor galaxies, combined with the lack of cold ac-

cretion, and lack of recycling of gas lost during stellar evolution
(Leitner & Kravtsov 2010), due to the hot IGM. Gas poor mergers
in fact generally produce slow rotators (e.g. Jesseit et al. 2009; Bois
et al. 2010; Hoffman et al. 2010) and large numbers of minor dry
mergers (Bournaud et al. 2007) could explain the observed nearly
round shape of slow rotators, both inside and outside Virgo. The
dominance of massive slow rotators in the Virgo core may also be
due to mass segregation that brought them there from larger radii
via dynamical friction, towards the bottom of the cluster potential
well.

Paper VIII presents a semi-analytic model for galaxy forma-
tion within the hierarchical ΛCDM scenario. It demonstrates that
making the assumption, empirically discussed in Section 2, that all
fast rotators are characterized by the presence of stellar disks with
a range of mass fractions (Fig. 2), and by quantitatively treating
many of the effects discussed in this section, one can reproduce in
detail the observed fractions of fast and slow rotators as a function
of luminosity (Paper III). A key additional test to future models is
provided by the observed environmental dependencies presented in
this paper.

5 SUMMARY

In Paper I we introduced the volume-limited parent sample of 871
galaxies from which we extracted the ATLAS3D sample of 260
ETGs. In Paper II and III we illustrated the kinematic classification
of the ETGs into fast and slow rotators, according to their stellar an-
gular momentum parameter λR. In this paper we looked at the mor-
phology of the galaxies. We gave an overview of the limitations of
the classic Hubble (1936) tuning-fork diagram, and the usefulness
of a scheme similar to the one proposed by van den Bergh (1976), to
properly understand the morphological content of the ETGs of our
sample. These are composed of two classes of objects: (i) the slow-
rotators which are consistent with being genuinely elliptical-like
objects, with intrinsic ellipticity ε<∼ 0.4 and (ii) the fast-rotators
which are generally flatter than ε>∼ 0.4 and are morphologically
similar to spiral galaxies with the dust removed, or in some cases to
flat ellipticals with disky isophotes, and span the same full range of
bulge sizes of spirals. We presented a revised scheme to illustrate
the morphology of nearby galaxies, which overcomes the limita-
tions of the tuning-fork diagram.

Only one third (34%) of the morphologically classified ellip-
ticals are genuine spheroidal slow-rotators (even less considering
counter-rotating disks like systems like NGC 4550), while the rest
are misclassified lenticular-like systems. Motivated by these find-
ings, we study for the first time the T −Σ relation (Dressler 1980)
using a robust kinematic classification for ETGs, as refined and
measured for our ATLAS3D sample. This method separates ETGs
into fast and slow rotators, instead of lenticular and elliptical galax-
ies, in a way that is nearly insensitive to projection effects. With re-
spect to the numerous previous studies of the T −Σ relation based
on morphology alone we find the following new results:

(i) The slow-rotator elliptical-like galaxies are nearly absent at
the lowest densities (f(SR)<∼ 2%) and generally constitute a small
(f(SR) ≈ 4%) contribution by number to the entire galaxy pop-
ulation in all environments, with the exception of the Virgo core
(f(SR) ≈ 20%). The process that forms slow rotators must be
very inefficient in the field and in small groups;

(ii) There is a decrease of the spirals fraction f(Sp) and a cor-
responding increase of the fast rotators fraction f(FR), which is
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well described by a log-linear relation over nearly four orders of
magnitude of the surface density down to Σ3 ≈ 0.01 Mpc2, with
the fractions changing by 10% per decade in Σ3. The fact that the
rate of transformation continues unchanged at the lowest densities,
excludes processes related to the cluster environment, like e.g. ram-
pressure stripping as significant contributors of this segregation in
low-density environments.

(iii) When using a less-local density estimator Σ10 the linear re-
lation becomes shallower and less well-defined. The average mor-
phology of a galaxy depends on the distance to the third nearest
galaxies, independently on the environment at larger distances or
on whether the galaxy belongs to Virgo or not. The observed T −Σ
relation is driven by group-scale and not cluster-scale effects;

(iv) The T − Σ relation shows a break and dramatically steep-
ens inside the densest core of the Virgo cluster, and there the frac-
tion of slow-rotators also dramatically increases. A different pro-
cess must start acting inside the densest environment of the Virgo
cluster. There the presence of hot gas and the ram-pressure strip-
ping can be a viable mechanism for the transformation of spirals
into anemic spirals and later into fast-rotators by fading, due to the
lack of cold accretion. The dry mergers will produce slow rotators
and the large number of minor ones could explain their generally
round shape.

The nearby Universe does not include very high density en-
vironments. For this reason it would be important in the future to
extend the study of the kinematic T −Σ relation to denser environ-
ments than discussed in this paper and to increasingly higher red-
shifts as currently done for the classic T − Σ relation. This would
allow one to better understand the effect of extreme environments
on the formation of the fast and slow rotator ETGs and their time
evolution.
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Table 2. The local galaxy density for the ATLAS3D sample of 260 early-type galaxies

Galaxy log ρ10 log Σ10 log Σ3 log ν10 log I10 log I3
(Mpc−3) (Mpc−2) (Mpc−2) (L⊙KMpc−3) (L⊙KMpc−2) (L⊙KMpc−2)

(1) (2) (3) (4) (5) (6) (7)

IC0560 -1.91 -0.76 0.05 8.57 9.74 10.43
IC0598 -2.31 -1.33 -1.71 8.27 9.28 8.91
IC0676 -1.41 -0.62 -0.62 9.19 9.96 9.79
IC0719 -1.91 -1.02 -1.21 8.93 9.73 9.17
IC0782 -0.65 0.28 0.96 10.11 11.00 11.67
IC1024 -0.85 0.17 -0.10 9.82 10.91 10.53
IC3631 -2.05 -1.10 -1.06 8.89 9.58 9.80

NGC0448 -1.79 -1.01 -1.08 9.09 9.60 9.54
NGC0474 -1.78 -0.55 -0.04 9.02 10.36 11.27
NGC0502 -1.46 -0.25 1.10 9.06 10.63 11.58
NGC0509 -1.28 -0.25 1.27 9.56 10.64 12.11
NGC0516 -1.42 0.10 1.71 9.41 10.74 12.56
NGC0524 -2.22 0.01 1.80 8.44 10.79 12.32
NGC0525 -1.48 -0.57 1.27 9.38 10.41 12.06
NGC0661 -2.51 -0.89 0.07 8.39 10.02 11.05
NGC0680 -1.77 -1.03 1.47 9.09 9.71 12.15
NGC0770 -2.03 -1.31 -0.71 8.89 9.62 10.49
NGC0821 -2.12 -1.32 -1.02 8.90 9.30 9.51
NGC0936 -1.59 -0.48 -0.56 9.34 10.35 10.60
NGC1023 -2.42 -1.45 -0.16 8.09 9.24 10.30
NGC1121 -1.98 -0.95 -0.80 8.70 9.74 10.11
NGC1222 -1.90 -1.01 -0.53 8.60 9.58 9.88
NGC1248 -1.97 -1.03 -0.25 8.57 9.52 10.05
NGC1266 -2.11 -1.15 -0.43 8.40 9.35 9.94
NGC1289 -2.12 -1.17 -1.10 8.46 9.43 9.44
NGC1665 -1.89 -0.96 0.38 8.47 9.40 10.65
NGC2481 -2.29 -1.18 -1.08 8.20 9.40 9.40
NGC2549 -1.99 -0.71 -0.77 8.65 9.70 9.71
NGC2577 -2.31 -1.30 -1.03 8.15 9.26 9.52
NGC2592 -2.29 -1.02 -0.79 8.29 9.46 9.73
NGC2594 -2.18 -1.44 -1.32 8.31 9.08 9.18
NGC2679 -1.99 -0.84 -0.78 8.49 9.59 9.56
NGC2685 -1.82 -1.12 -0.90 8.98 9.45 9.90
NGC2695 -2.23 -1.08 1.42 8.43 9.68 11.88
NGC2698 -1.94 -0.96 1.84 8.69 9.82 12.58
NGC2699 -1.91 -0.93 1.87 8.74 9.85 12.66
NGC2764 -2.01 -1.52 -0.91 8.47 8.86 9.50
NGC2768 -1.81 -0.69 -0.07 8.85 9.95 10.43
NGC2778 -1.98 -0.92 -0.05 8.56 9.48 10.26
NGC2824 -2.08 -1.67 -0.79 8.41 8.85 9.61
NGC2852 -1.88 -0.82 -0.91 8.67 9.74 9.46
NGC2859 -1.69 -0.61 -0.72 8.70 9.83 9.78
NGC2880 -1.73 -0.64 -0.19 9.06 10.05 10.61
NGC2950 -1.77 -0.13 -0.05 8.91 10.52 10.77
NGC2962 -2.15 -0.47 -0.71 8.27 9.96 9.62
NGC2974 -2.05 -0.52 -0.49 8.69 9.91 9.89
NGC3032 -1.52 -0.46 -0.23 8.99 10.16 10.43
NGC3073 -2.06 -1.06 -0.75 8.36 9.60 9.94
NGC3098 -1.18 -0.38 -0.56 9.41 10.37 10.18
NGC3156 -1.87 -1.05 -0.58 8.79 9.55 10.31
NGC3182 -1.92 -1.06 -0.96 8.51 9.47 9.41
NGC3193 -2.43 -0.29 0.56 8.23 10.32 11.32
NGC3226 -1.11 0.16 0.16 9.49 10.86 10.77
NGC3230 -1.78 -0.75 -0.76 8.68 9.83 9.69
NGC3245 -1.36 -0.27 -0.44 8.93 10.25 10.22
NGC3248 -1.12 -0.28 -0.03 9.57 10.47 10.80
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Table 2 (cont’d)

Galaxy log ρ10 log Σ10 log Σ3 log ν10 log I10 log I3
(Mpc−3) (Mpc−2) (Mpc−2) (L⊙KMpc−3) (L⊙KMpc−2) (L⊙KMpc−2)

(1) (2) (3) (4) (5) (6) (7)

NGC3301 -1.03 -0.06 -0.16 9.57 10.68 9.97
NGC3377 -1.25 -0.14 0.64 9.41 10.44 11.23
NGC3379 -1.13 -0.08 1.25 9.51 10.60 11.88
NGC3384 -1.27 0.03 1.12 9.37 10.64 11.69
NGC3400 -1.11 -0.08 0.38 9.41 10.45 10.93
NGC3412 -1.27 0.18 1.32 9.41 10.80 12.01
NGC3414 -1.18 -0.16 0.71 9.23 10.26 10.80
NGC3457 -1.01 -0.17 -0.26 9.61 10.34 9.97
NGC3458 -1.50 -0.22 -0.48 9.09 10.35 10.16
NGC3489 -1.38 -0.26 0.35 9.28 10.31 10.88
NGC3499 -1.53 -0.35 -0.38 9.06 10.18 10.28
NGC3522 -1.33 -0.30 -0.43 9.32 10.19 10.16
NGC3530 -1.56 -0.27 0.04 9.07 10.37 10.74
NGC3595 -1.98 -1.05 -1.15 8.88 9.71 9.57
NGC3599 -1.19 -0.45 -0.43 9.42 10.31 10.44
NGC3605 -1.18 -0.72 -0.50 9.44 9.86 10.05
NGC3607 -0.92 -0.95 -0.88 9.55 9.59 9.30
NGC3608 -0.96 -0.12 0.15 9.63 10.28 10.62
NGC3610 -1.04 -0.20 0.82 9.63 10.39 11.36
NGC3613 -1.58 -0.76 0.29 8.77 9.63 10.60
NGC3619 -1.38 -0.21 0.34 9.27 10.30 11.12
NGC3626 -1.36 -0.37 0.36 9.22 10.07 10.90
NGC3630 -1.96 -0.99 0.22 8.62 9.83 11.06
NGC3640 -2.02 -1.08 -0.93 8.42 9.60 9.62
NGC3641 -1.99 -1.04 -0.92 8.62 9.75 9.63
NGC3648 -1.96 -1.31 -0.16 8.78 9.40 10.77
NGC3658 -1.96 -1.22 0.21 8.71 9.51 11.12
NGC3665 -1.94 -1.24 0.30 8.74 9.35 10.82
NGC3674 -1.75 -0.94 0.15 8.88 9.64 10.77
NGC3694 -1.97 -1.25 -0.45 8.77 9.40 9.64
NGC3757 -0.88 -0.06 0.21 9.75 10.65 10.37
NGC3796 -0.85 -0.15 0.21 9.99 10.54 10.87
NGC3838 -0.84 0.12 0.16 9.88 10.76 10.73
NGC3941 -1.20 -0.04 -0.26 9.20 10.65 10.42
NGC3945 -0.79 -0.04 0.25 9.94 10.53 11.02
NGC3998 -1.01 0.52 0.94 9.49 11.25 11.57
NGC4026 -0.74 0.55 0.77 9.83 11.32 11.51
NGC4036 -0.69 -0.09 -0.06 9.97 10.56 10.68
NGC4078 -1.32 -0.50 -0.73 9.72 10.22 9.82
NGC4111 -0.61 0.28 0.79 9.91 10.89 11.65
NGC4119 -0.05 0.42 0.06 10.49 10.88 10.03
NGC4143 -0.66 0.22 0.33 9.81 10.78 10.87
NGC4150 -1.18 -2.03 -1.24 9.49 8.74 9.39
NGC4168 -1.93 -1.05 -1.12 9.07 10.07 10.21
NGC4179 -0.34 0.07 -0.12 10.14 10.54 10.51
NGC4191 -1.03 0.06 -0.12 9.67 10.75 10.80
NGC4203 -1.02 -0.47 -0.25 9.54 10.11 10.20
NGC4215 -1.59 -0.76 0.16 9.24 9.83 10.91
NGC4233 -1.26 0.19 0.69 9.54 10.86 11.61
NGC4249 -0.81 0.28 0.98 9.90 11.01 11.32
NGC4251 -1.37 -0.81 -0.47 9.59 10.03 9.90
NGC4255 -1.45 -0.81 0.59 9.48 9.85 11.24
NGC4259 -0.57 0.32 1.25 10.25 11.05 11.99
NGC4261 -1.55 -0.90 -0.46 9.13 10.15 10.65
NGC4262 0.46 1.08 1.14 11.19 11.69 11.45
NGC4264 -0.61 0.37 1.00 10.16 11.14 11.49
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Table 2 (cont’d)

Galaxy log ρ10 log Σ10 log Σ3 log ν10 log I10 log I3
(Mpc−3) (Mpc−2) (Mpc−2) (L⊙KMpc−3) (L⊙KMpc−2) (L⊙KMpc−2)

(1) (2) (3) (4) (5) (6) (7)

NGC4267 0.57 1.17 0.92 11.10 12.05 11.68
NGC4268 -1.53 -0.74 1.03 9.27 9.92 11.68
NGC4270 -0.85 0.43 1.23 9.83 11.01 11.67
NGC4278 -1.13 -0.85 0.36 9.72 10.01 11.55
NGC4281 -1.76 0.52 1.34 9.24 11.21 11.53
NGC4283 -1.07 -0.56 0.15 9.83 10.07 10.77
NGC4324 0.43 0.88 1.21 10.82 11.28 11.86
NGC4339 0.46 0.83 1.11 10.85 11.63 11.35
NGC4340 0.11 1.09 1.15 10.91 11.87 11.42
NGC4342 0.52 0.94 1.09 11.06 11.69 11.27
NGC4346 -0.69 0.35 0.85 9.90 10.88 11.41
NGC4350 0.31 1.24 1.40 11.02 12.02 11.64
NGC4365 -1.74 -0.47 0.18 9.21 10.59 11.28
NGC4371 1.20 1.34 1.53 12.14 12.16 11.66
NGC4374 0.10 1.34 1.89 10.50 12.06 12.82
NGC4377 0.54 1.24 1.14 10.95 11.80 11.56
NGC4379 0.69 1.47 1.52 11.44 11.98 12.22
NGC4382 -0.12 0.74 0.75 10.34 11.38 11.59
NGC4387 0.45 1.41 1.98 11.25 12.28 13.17
NGC4406 1.18 1.56 2.14 11.96 12.31 13.10
NGC4417 0.75 1.13 1.58 11.12 11.99 12.10
NGC4425 1.25 1.80 1.95 12.21 12.65 13.02
NGC4429 1.08 1.30 1.19 11.82 11.70 11.56
NGC4434 -1.54 -0.37 -0.19 9.47 10.79 11.12
NGC4435 1.26 1.78 1.95 11.98 12.62 12.54
NGC4442 0.56 1.19 1.44 10.87 11.68 11.80
NGC4452 0.85 1.43 1.43 11.43 12.19 11.68
NGC4458 1.03 1.72 1.97 11.83 12.54 12.73
NGC4459 0.79 1.51 1.55 11.45 12.23 12.25
NGC4461 1.04 1.71 1.97 11.95 12.50 12.66
NGC4472 0.72 1.07 1.27 11.21 11.59 11.56
NGC4473 0.65 1.65 2.15 11.40 12.42 12.72
NGC4474 0.79 1.47 1.53 11.65 12.25 12.52
NGC4476 0.65 1.59 2.20 11.40 12.34 13.25
NGC4477 0.88 1.48 1.79 11.70 12.21 12.51
NGC4478 1.41 1.57 2.55 12.33 12.31 13.58
NGC4483 0.81 1.19 1.26 11.74 12.09 11.50
NGC4486 1.13 1.52 2.38 11.86 11.96 12.60

NGC4486A 0.17 1.40 2.17 11.04 12.11 13.21
NGC4489 0.34 1.12 0.87 11.08 11.56 11.54
NGC4494 -0.93 -0.91 -0.26 10.03 9.82 10.82
NGC4503 1.04 1.37 0.98 11.92 12.14 11.23
NGC4521 -1.29 0.01 0.98 9.33 10.64 11.41
NGC4526 0.83 1.03 1.21 11.21 11.84 11.82
NGC4528 0.74 1.37 1.54 11.26 12.24 12.07
NGC4546 -1.14 -0.31 -0.43 9.56 10.66 10.40
NGC4550 0.81 1.55 1.46 11.62 12.29 12.41
NGC4551 0.99 1.49 1.42 11.71 12.24 12.37
NGC4552 0.91 1.38 1.51 11.54 12.23 11.70
NGC4564 0.75 1.43 1.71 11.33 12.07 12.60
NGC4570 0.52 0.99 0.92 11.35 11.85 11.77
NGC4578 0.85 0.98 0.82 11.50 11.47 11.33
NGC4596 0.85 1.14 0.80 11.42 11.97 11.37
NGC4608 0.67 1.11 0.82 11.49 11.94 11.38
NGC4612 0.51 0.71 0.50 11.06 11.30 11.34
NGC4621 0.30 1.38 2.00 11.06 12.22 12.41
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Table 2 (cont’d)

Galaxy log ρ10 log Σ10 log Σ3 log ν10 log I10 log I3
(Mpc−3) (Mpc−2) (Mpc−2) (L⊙KMpc−3) (L⊙KMpc−2) (L⊙KMpc−2)

(1) (2) (3) (4) (5) (6) (7)

NGC4623 0.22 0.73 0.54 11.11 11.35 11.16
NGC4624 -0.18 0.24 0.17 10.34 10.72 10.81
NGC4636 -0.70 0.05 0.08 9.95 11.08 10.81
NGC4638 0.41 1.21 2.13 11.38 12.08 13.30
NGC4643 -0.29 0.07 0.22 10.23 10.54 10.86
NGC4649 0.57 1.15 1.80 11.10 11.79 12.52
NGC4660 0.18 1.24 1.75 10.92 12.03 12.86
NGC4684 -1.24 0.16 0.34 9.44 11.00 11.27
NGC4690 -1.63 -0.66 -0.44 8.99 10.22 9.97
NGC4694 0.62 1.00 1.02 11.50 11.80 11.52
NGC4697 -1.63 0.56 0.53 9.13 11.35 10.75
NGC4710 0.09 0.45 0.42 10.77 11.08 10.72
NGC4733 -0.32 0.88 1.02 10.50 11.71 11.47
NGC4753 -1.23 -0.25 -0.01 9.58 10.48 10.23
NGC4754 0.25 0.74 1.04 10.75 11.51 11.11
NGC4762 -1.61 -0.68 -0.71 9.34 10.43 9.87
NGC4803 -1.90 -0.80 -0.28 8.59 9.52 10.10
NGC5103 -2.01 -1.03 -0.73 8.47 9.54 9.99
NGC5173 -1.72 -0.78 0.63 9.00 9.89 11.23
NGC5198 -1.63 -0.73 0.78 8.98 9.84 11.07
NGC5273 -1.74 -0.76 -0.62 9.14 9.94 10.01
NGC5308 -1.34 -0.46 0.32 9.44 10.34 11.31
NGC5322 -1.22 -0.38 0.56 9.43 10.29 11.33
NGC5342 -1.76 -0.59 0.07 9.05 10.20 11.00
NGC5353 -1.35 -0.54 2.34 9.26 10.10 12.99
NGC5355 -0.81 0.93 2.53 9.98 11.84 13.59
NGC5358 -0.63 0.92 1.98 10.08 11.84 13.05
NGC5379 -1.17 -0.22 0.63 9.67 10.63 11.83
NGC5422 -0.98 -0.27 0.65 9.85 10.45 11.43
NGC5473 -1.37 -0.27 0.85 9.19 10.26 11.49
NGC5475 -1.21 -0.29 0.71 9.65 10.56 11.46
NGC5481 -1.78 -0.07 0.23 8.74 10.59 10.87
NGC5485 -1.80 -0.05 0.74 8.76 10.57 11.56
NGC5493 -1.96 -0.59 0.06 8.64 10.01 10.48
NGC5500 -1.40 -0.22 -0.03 9.37 10.53 10.52
NGC5507 -1.46 -0.62 -0.14 9.18 10.08 10.43
NGC5557 -1.60 -0.38 0.30 8.91 10.41 10.73
NGC5574 -0.98 -0.11 1.06 9.68 10.54 11.99
NGC5576 -0.86 -0.16 1.03 9.71 10.46 11.80
NGC5582 -2.01 -1.44 -1.12 8.59 8.97 8.91
NGC5611 -2.37 -1.13 -1.29 8.18 9.58 9.73
NGC5631 -1.58 -0.06 -0.13 9.23 10.64 10.56
NGC5638 -0.76 0.00 0.02 10.09 10.70 10.63
NGC5687 -1.66 -0.23 -0.56 8.97 10.49 10.18
NGC5770 -1.96 0.32 1.32 8.86 11.17 11.99
NGC5813 -1.64 -0.22 -0.04 9.23 10.79 10.98
NGC5831 -0.97 0.10 0.77 9.97 11.09 11.96
NGC5838 -1.45 -0.39 0.87 9.27 10.20 11.45
NGC5839 -1.44 -1.19 0.53 9.33 9.49 11.27
NGC5845 -1.08 0.02 1.32 9.88 10.82 12.35
NGC5846 -1.00 0.10 0.71 9.63 10.96 11.37
NGC5854 -0.97 0.03 0.63 9.97 10.92 11.62
NGC5864 -1.33 -0.30 0.11 9.67 10.64 11.05
NGC5866 -2.12 -1.17 -0.73 8.58 9.43 9.88
NGC5869 -1.09 -0.58 -0.12 9.71 10.22 10.87
NGC6010 -1.99 -1.07 -0.66 8.48 9.34 9.74
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Table 2 (cont’d)

Galaxy log ρ10 log Σ10 log Σ3 log ν10 log I10 log I3
(Mpc−3) (Mpc−2) (Mpc−2) (L⊙KMpc−3) (L⊙KMpc−2) (L⊙KMpc−2)

(1) (2) (3) (4) (5) (6) (7)

NGC6014 -2.27 -1.73 -1.84 8.15 8.92 9.00
NGC6017 -1.81 -0.78 -1.01 8.68 9.71 9.59
NGC6149 -2.55 -1.86 -1.36 8.02 8.70 9.25
NGC6278 -2.52 -1.47 -1.36 8.01 9.18 9.23
NGC6547 -2.20 -1.46 -1.44 8.40 9.10 9.17
NGC6548 -2.62 -1.42 -0.38 8.02 9.21 10.33
NGC6703 -2.92 -1.57 -1.33 7.73 9.05 9.39
NGC6798 -2.68 -1.63 -1.40 7.99 9.07 9.25
NGC7280 -2.13 -1.58 -1.12 8.43 8.89 9.25
NGC7332 -2.34 -1.91 -1.20 8.29 8.68 9.53
NGC7454 -1.99 -1.34 -0.35 8.61 9.14 10.11
NGC7457 -2.44 -1.37 -1.23 8.21 9.30 9.70
NGC7465 -1.97 -1.53 -0.33 8.54 8.89 10.24
NGC7693 -2.09 -1.45 -0.11 8.58 9.31 10.29
NGC7710 -2.13 -1.55 -0.03 8.56 9.14 10.09

PGC016060 -1.97 -0.95 -0.05 8.42 9.43 10.38
PGC028887 -2.03 -0.87 -0.44 8.46 9.60 9.75
PGC029321 -2.00 -0.96 -0.20 8.48 9.57 10.13
PGC035754 -2.20 -1.23 -0.14 8.55 9.30 10.55
PGC042549 -1.36 -0.51 0.84 9.17 10.32 11.99
PGC044433 -2.14 -1.16 -1.05 8.40 9.75 9.28
PGC050395 -1.70 -0.70 -0.84 8.92 10.06 9.88
PGC051753 -1.58 -0.69 -0.55 9.04 10.06 9.89
PGC054452 -1.41 -0.57 -0.16 9.46 10.41 10.52
PGC056772 -2.60 -1.83 -1.81 7.87 8.94 8.59
PGC058114 -2.31 -1.34 -1.04 8.22 9.45 9.38
PGC061468 -2.35 -1.78 -0.86 8.30 8.93 9.92
PGC071531 -2.06 -1.45 -1.21 8.63 9.04 9.22
PGC170172 -2.20 -1.36 -1.37 8.65 9.38 8.67
UGC03960 -2.36 -1.10 -0.98 8.23 9.51 9.77
UGC04551 -2.24 -1.27 -1.45 8.15 9.26 9.06
UGC05408 -2.09 -1.14 0.51 8.26 9.18 10.93
UGC06062 -2.18 -1.38 -1.29 8.50 9.11 9.22
UGC06176 -2.41 -1.35 -1.58 8.32 9.30 9.06
UGC08876 -1.43 -0.45 -0.48 9.45 10.16 10.10
UGC09519 -2.45 -1.48 -1.58 8.19 8.96 8.75

Note. — Column (1): The Name is the principal designation from LEDA, which is used as standard designation for the ATLAS3D survey.
Column (2): Mean density of galaxies inside a sphere centered on the galaxy and containing the 10 nearest neighbors. All density estimators only
include galaxies brighter than MK < −21.5 mag. Column (3): Mean surface density of galaxies inside a cylinder of height h = 600 km s−1 (i.e.
∆Vhel < 300 km s−1) centered on the galaxy which contains the 10 nearest neighbors. For galaxies in Virgo the cylinder includes all the cluster
galaxies along the line-of-sight. Column (4): Same as in column 3, but using the three nearest neighbors. Column (5): Mean K-band luminosity
density of galaxies inside the sphere defined in column 2. The galaxy luminosity is defined as LK ≡ 10

−0.4(MK−M⊙K
), where the solar absolute

luminosity M⊙K = 3.29 mag (Blanton & Roweis 2007). Column (6): Mean K-band luminosity surface density of galaxies inside the cylinder
defined in column 3. Column (7): same as in column 6, but using the three nearest neighbors.
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Table 3. The local galaxy density for the 611 spiral galaxies in the ATLAS3D parent sample.

Galaxy log ρ10 log Σ10 log Σ3 log ν10 log I10 log I3
(Mpc−3) (Mpc−2) (Mpc−2) (L⊙KMpc−3) (L⊙KMpc−2) (L⊙KMpc−2)

(1) (2) (3) (4) (5) (6) (7)

IC0065 -3.12 -1.86 -1.54 7.59 8.66 8.72
IC0163 -1.68 -0.78 0.08 9.21 10.11 11.09
IC0239 -2.48 -1.56 -1.53 8.15 9.45 9.07
IC0540 -1.72 -0.82 0.65 8.82 9.72 11.24
IC0591 -1.98 -0.93 -0.11 8.50 9.53 10.21
IC0610 -1.18 -0.08 0.15 9.30 10.66 10.83
IC0750 -2.29 -0.68 -0.14 8.42 9.93 10.45
IC0777 -2.27 -1.23 -1.00 8.29 9.32 9.29
IC0800 -1.87 -0.95 -0.96 9.09 10.00 10.39
IC0851 -2.31 -1.23 -1.36 8.24 9.31 9.36

Note. — The meaning of the columns is the same as in Table 2. Only the first 10 rows are shown while the full 611 will be published
electronically. Both Table 2 and 3 are available from our project website http://purl.org/atlas3d.
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