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ABSTRACT
We present high spatial resolution (≈ 12 pc) Atacama Large Millimeter/sub-millimeter Array
12CO(J = 3 − 2) observations of the nearby lenticular galaxy NGC4429. We identify 217
giant molecular clouds within the 450 pc radius molecular gas disc. The clouds generally have
smaller sizes and masses but higher surface densities and observed linewidths than those of
Milky Way disc clouds. An unusually steep size – line width relation (σ ∝ R0.8

c ) and large
cloud internal velocity gradients (0.05 – 0.91 km s−1 pc−1) and observed Virial parameters
(〈αobs,vir〉 ≈ 4.0) are found, that appear due to internal rotation driven by the background
galactic gravitational potential. Removing this rotation, an internal Virial equilibrium appears
to be established between the self-gravitational (Usg) and turbulent kinetic (Eturb) energies of
each cloud, i.e. 〈αsg,vir ≡

2Eturb
|Usg |
〉 ≈ 1.3. However, to properly account for both self and external

gravity (shear and tidal forces), we formulate a modified Virial theorem and define an effective
Virial parameter αeff,vir ≡ αsg,vir +

Eext
|Usg |

(and associated effective velocity dispersion). The
NGC4429 clouds then appear to be in a critical state in which the self-gravitational energy
and the contribution of external gravity to the cloud’s energy budget (Eext) are approximately
equal, i.e. Eext

|Usg |
≈ 1. As such, 〈αeff,vir〉 ≈ 2.2 and most clouds are not virialised but remain

marginally gravitationally bound. We show this is consistent with the clouds having sizes
similar to their tidal radii and being generally radially elongated. External gravity is thus as
important as self-gravity to regulate the clouds of NGC4429.

Key words: galaxies: elliptical and lenticular, cD – galaxies: individual: NGC4429 – galaxies:
nuclei – galaxies: ISM – ISM: clouds – radio lines: ISM

1 INTRODUCTION

It is well-known that giant molecular clouds (GMCs) are the major
gas reservoirs for star formation (SF) and the sites where essentially
all stars are born. Understanding the properties of GMCs is thus key
to unraveling the interplay between gas and stars within galaxies.
Early GMC studies were restricted to our ownMilkyWay (MW) and
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the late-type galaxies (LTGs) in our Galactic neighbourhood (e.g.
Engargiola et al. 2003; Rosolowsky 2005, 2007; Rosolowsky et al.
2007; Gratier et al. 2012; Colombo et al. 2014;Wu et al. 2017; Faesi
et al. 2018), where GMCs have relatively uniform properties and
generally follow the so-called Larson relations (between size, ve-
locity dispersion and luminosity; e.g. Blitz et al. 2007; Bolatto et al.
2008). However, more recent studies of other local galaxies have
raised doubts on the universality of cloud properties. The cloud
properties in some LTGs (such as M51 and NGC253) vary with
galactic environment and do not universally obey the usual scaling
relations (e.g. Hughes et al. 2013; Leroy et al. 2015; Schruba et al.
2019). The first study of individual GMCs in an early-type galaxy
(ETG; NGC4526) has also clearly shown that the clouds in that
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galaxy do not follow the usual size – linewidth correlation and tend
to be more luminous, denser and to have larger velocity dispersions
than the GMCs in the MW and other Local Group galaxies (Utomo
et al. 2015). The differences in NGC4526 may be due to a higher
interstellar radiation field (and/or cloud extinctions), a different ex-
ternal pressure relative to each cloud’s self-gravity, and/or different
galactic dynamics. GMCs in ETGs seem to have shorter orbital
periods and be subjected to stronger shear/tidal forces, analogous
to the highly dynamic environment in the MW central molecular
zone (CMZ; e.g. Kruijssen et al. 2019; Henshaw et al. 2019; Dale
et al. 2019). Although we are entering an era of large surveys of
GMC populations (e.g. Sun et al. 2018), current samples of ETGs
are still very limited. More studies of GMCs in varied LTGs and
ETGs are thus required to provide a comprehensive census of GMC
properties across different galaxy environments.

A model introduced by Meidt et al. (2018) suggests that gas
motions at the cloud scale combine the effects of gas self-gravity
and the gas response to the forces exerted by the background host
galaxy. In the ETG NGC4526, the gas motions at cloud scales ap-
pear to be driven by the galactic potential. The measured line widths
of the GMCs are much larger than their Virial line widths (the line
widths predicted by assuming the clouds’ Virial masses are equal
to their gaseous masses), an effect that appears to be due to domi-
nant gas motions associated with the background galactic potential.
Cloud-scale velocity gradients aligned with the large-scale velocity
field indeed suggest a dominance of rotational motions due to the
galactic potential (Utomo et al. 2015). It is thus important to inves-
tigate whether cloud-scale gas motions are generally dominated by
motions due to self-gravity (generally random) ormotions due to the
galactic potential (generally circular), as this has implications for
the observed size – linewidth relation, the Virial parameter, cloud
morphologies and the processes governing star formation (Meidt
et al. 2018).

The dynamical state of a molecular cloud provides important
insights into its evolution. It also plays an important role to deter-
mine its ability to form stars and stellar clusters (e.g. Hennebelle &
Chabrier 2013; Padoan et al. 2017). In most Virial balance analy-
ses of molecular clouds, the gravitational term entering the Virial
theorem includes only the cloud’s own self-gravitational energy.
However, in some galactic environments (e.g. in galactic nuclei),
the external (i.e. galactic) gravitational potential could also play
an important role to regulate the cloud dynamics (e.g. Rosolowsky
& Blitz 2005; Thilliez et al. 2014; Yusef-Zadeh et al. 2016). To
analyse the Virial balance of GMCs in such environments, one thus
needs to add another gravitational term related to the background
gravitational field (e.g. Ballesteros-Paredes et al. 2009; Chen et al.
2016).

The net effect of the external gravitational potential on the dy-
namics of GMCs should however also include an additional kinetic
energy term related to the gas motions driven by the galactic poten-
tial, as they provide another source of support against the cloud’s
self-gravity. In this paper, we therefore revisit the Virial theorem by
adding two crucial terms that take into account the background
galactic gravitational potential: an external gravitational energy
term and a kinetic energy term associated with the gas motions
due to galactic potential. Although an extended Virial theorem in-
cluding a background tidal field has been formulated before (see,
e.g., Chen et al. 2016), our resulting Virial equation contains new
terms that were previously missing and is thus more general.

Early studies of GMCs suggested they are long-lived, quasi-
equilibrium entities, isolated from their interstellar environment
(e.g. Solomon et al. 1987; Elmegreen 1989; Blitz 1993). How-

ever, recent findings that the properties of GMCs vary with galactic
environment imply that the clouds are not decoupled from their
surroundings (e.g. Hughes et al. 2013; Colombo et al. 2014; Faesi
et al. 2018). The main physical factors determining cloud properties
include: (1) the interstellar radiation field (e.g. McKee 1989); (2)
large-scale dynamics (e.g. galactic tides and shear due to differen-
tial galactic rotation; Dib et al. 2012; Meidt et al. 2015; Melchior &
Combes 2017); (3) interstellar gas pressure (e.g. Heyer et al. 2009;
Hughes et al. 2013; Meidt 2016); and (4) the large-scale atomic
gas distribution and H i column density (e.g. Engargiola et al. 2003;
Blitz et al. 2007; Rosolowsky et al. 2007). In this work, we will
focus on the roles of galactic tide/shear to regulate the properties of
GMCs. One of our main purposes is indeed to quantitatively inves-
tigate the effects of galactic tidal and shear forces on the physical
properties and dynamical states of the clouds.

We note an important conceptual point. We will not assume
here that the clouds are in dynamical equilibrium, to then infer
the clouds’ gravitational motions due to the external (i.e. galactic)
potential. Instead, we will attempt to directly estimate the clouds’
gravitational motions due to the external potential, to then infer
whether the clouds are indeed in dynamical equilibrium or not. The
question of whether GMCs are in dynamical equilibrium (and thus
long-lived) or out of equilibrium (and thus transient) has remained
unanswered for decades. We thus believe this approach is not only
well-justified and worthwhile, but ultimately desirable.

The mm-Wave Interferometric Survey of Dark Object Masses
(WISDOM) aims to use the high angular resolution of the Atacama
Large Millimeter/sub-millimeter Array (ALMA) to study: (1) the
masses and properties of the supermassive black holes (SMBHs)
lurking at the centres of galaxies (e.g. Onishi et al. 2017; Davis
et al. 2017, 2018; Smith et al. 2019; North et al. 2019; Smith et al.
2020a,b); (2) the physical properties and dynamics of GMCs in the
central parts of the same galaxies. As part of WISDOM, we analyse
here the properties and dynamics of individual GMCs in the bulge
of NGC4429, an SA0-type galaxy located in the centre of the Virgo
cluster. This paper is the first of a series studying the GMCs inWIS-
DOM galaxies, and it introduces many of the methods and tools we
will use to identify GMCs and analyse their properties and dynam-
ics. The paper is structured as follows. In Section 2 we describe the
data and the methodology used to identify GMCs in NGC4429. We
use a modified version of the code CPROPSTOO, that is more robust
and efficient at identifying clouds in complex and crowded environ-
ments. The cloud properties, their probability distribution functions
and their mass distribution functions are reported in Section 3. Our
analysis of the kinematics of individual GMCs is presented in Sec-
tion 4.We investigate the dynamical states of theGMCs utilising our
modified Virial theorem (taking into account the background galac-
tic gravitational potential) in Section 5. The shear motions within
clouds, the effects of self-gravity and the cloud morphologies are
discussed in Section 6. We conclude briefly in Section 7.

2 DATA AND CLOUD IDENTIFICATION

2.1 Target

NGC4429 is a lenticular galaxy located in the centre of the Virgo
cluster, with a bar and stellar inner ring morphology (Alatalo et al.
2013). It contains a nuclear dust disc visible in extinction against
the stellar continuum in Hubble Space Telescope (HST) imaging
(Fig. 1 and Davis et al. 2018). NGC4429 has a total stellar mass of
≈ 1.5× 1011 M� , a luminosity-weighted stellar velocity dispersion
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Figure 1. 12CO(3-2) molecular gas distribution of NGC4429 from our
ALMA observations (blue contours; Davis et al. 2018), overlaid on a HST
Wide-Field Planetary Camera 2 (WFPC2) F606W image of a 2.8×2.8 kpc2
region around its nucleus.

within one effective radius σe = 177 km s−1 (Cappellari et al.
2013), and is a fast rotator (specific angular momentum within one
effective radius λRe = 0.4; Emsellem et al. 2011).

The total molecular gas mass of NGC4429 detected via
12CO(1-0) single-dish observations is (1.1±0.08)×108 M� (Young
et al. 2011). The 12CO(1-0) Combined Array for Research in
Millimeter-wave Astronomy (CARMA) interferometric map shows
the molecular gas is co-spatial with the nuclear dust disc and regu-
larly rotates in the galaxy mid-plane (Davis et al. 2011, 2013, 2018),
with an inclination angle of 68◦ (Davis et al. 2011; Alatalo et al.
2013). The 12CO(3-2) distribution is more compact than that of
12CO(1-0), the 12CO(3-2) gas being present only in the inner parts
of the nuclear dust disc visible in HST images (see Fig. 1). The
star formation rate (SFR) within this molecular gas disc has been
estimated at 0.1 M� yr−1 using mid-infrared and far-ultraviolet
emission (Davis 2014). The spatially-unresolved (sub-arcsecond)
radio continuum emission from the central regions of NGC4429
implies the presence of a low-luminosity active galactic nucleus
(LL-AGN; Nyland et al. 2016). The kinematics of the central CO
gas, as probed by the same dataset as used here, imply the presence
of a (1.5 ± 0.1) × 108 M� SMBH (Davis et al. 2018). Throughout
this paper we assume a distance D of 16.5± 1.6 Mpc for NGC4429
(Cappellari et al. 2011). One arcsecond then corresponds to a phys-
ical scale of ≈ 80 pc.

2.2 Data

NGC4429 was observed in the 12CO(3-2) line (345 GHz) using
ALMA as part of the WISDOM project. The data were calibrated
and reduced in a standard manner (Davis et al. 2018), and the final
12CO(3-2) data cube we adopt has a synthesised beam of 0.′′18 ×
0.′′14 (14×11 pc2) at a position angle of 311◦ and a channel width of
2 km s−1. It covers a region of 17.′′5×17.′′5 (1400×1400 pc2), thus
comprising the entire nuclear dust and molecular gas disc. Pixels
of 0.′′05 were chosen as a compromise between spatial sampling
and cube size, resulting in approximately 3.5 × 2.8 pixels2 across
the synthesised beam (Davis et al. 2018). Our spatial and spectral
resolutions allow for reliable estimates of the radii and velocity
dispersions of individual GMCs, that have a typical size of ≈ 50 pc
(Blitz 1993) and a typical linewidth of several km s−1 (e.g. Solomon
et al. 1987). The root mean square (RMS) noise in line-free channels
of the cube is σrms = 1.34 mJy beam−1 (≈ 0.5 K) in 2 km s−1

channels. The integrated 12CO(3-2) spectrum of NGC4429 exhibits
the classic double-horn shape of a rotating disc, with a total flux of
75.5 ± 7.6 Jy km s−1.

As shown in Davis et al. (2018), the molecular gas disc of
NGC4429 is flocculent. Our ALMA observations reveal that the
CO(3-2) gas surface density does not decrease smoothly to our
detection limit, but instead appears to be truncated at an inner radius
of 48 ± 3 pc and an outer radius of 406 ± 10 pc (Davis et al. 2018).
As mentioned above, the 12CO(3-2) disc thus lies only in the inner
parts of the nuclear dust disc visible inHST images (see Fig. 1), and
it has an extent smaller than that of the 12CO(1-0) emission (that
extends to the edge of the nuclear dust disc; Davis et al. 2013). As
CO(3-2) is excited in denser and warmer gas than CO(1-0) (with
critical densities of ≈ 7 × 104 and ≈ 1.4 × 103 cm−3 and excitation
temperatures of ≈ 15 and 5.5 K, respectively), we are likely to
identify a cloud population that is associated with H ii regions and
thus ongoing star formation at the centre of NGC4429 only. High-
resolution observations of lower-J CO transitions may be required
to conduct a study of the NGC4429 GMC population over the entire
molecular gas disc (if indeed additional clouds exist beyond the
CO(3-2) extent probed here).

Continuum 345 GHz emission was also detected in NGC4429,
with a centre of R.A. (J2000) = 12h27m26.s504 ± 0.s013 and
Dec. (J2000) = 11◦06′27.′′57 ± 0.′′01 derived by Gaussian fitting.
This position is consistent with the optical centre of NGC4429
(Adelman-McCarthy et al. 2008) and will be used as the centre of
the galaxy in this work.

2.3 Cloud identification

We use our own modified version of the CPROPSTOO algorithms
(Leroy et al. 2015) to identify cloud structures. CPROPSTOO is an
updated version of CPROPS (Rosolowsky & Leroy 2006), one of
the cloud identification algorithms most widely used in the litera-
ture. The keymodifications of CPROPSTOO compared to CPROPSwere
noted by Leroy et al. (2015): CPROPSTOO (1) deconvolves the beam
in two dimensions; (2) employs a larger suite of size and linewidth
measures, including measuring the area of and fitting an ellipse at
the half maximum flux level (in addition to measuring the second
moment); and (3) introduces additional extrapolation (aperture cor-
rection) approaches, that essentially assume a Gaussian distribution
to extrapolate the ellipse fits. In this work we have further modified
CPROPSTOO, to make it more robust when decomposing clouds in
complex and crowded environments.

The cloud identification algorithm first calculates a spatially-
varying estimate of the noise in the data cube, and then uses the
noise cube generated to create a three-dimensional (3D) mask of
bright emission. The mask initially includes only pixels where two
adjacent channels (at the same position) both have intensities above
3σrms. It is then expanded to include all neighbouring emission
above a lower threshold – two adjacent channels above 2σrms. The
regions thus identified are referred to as “islands”. If an island has a
projected area of less than two synthesised beams, it is assumed to
be a noise peak and is removed from the mask. The resulting mask
contains ≈ 60% of the integrated flux of the galaxy, consistent with
the fractions yielded by CPROPS in other studies of extragalactic
clouds (50 – 70%; Wong et al. 2011; Hughes et al. 2013; Donovan
Meyer et al. 2013; Colombo et al. 2014; Leroy et al. 2015; Pan &
Kuno 2017; Miura et al. 2018; Faesi et al. 2018; Wong et al. 2019;
Imara & Faesi 2019). We checked the stringency of the mask by
applying the same criteria to the inverted data set (scaled by −1)
and found no false positive, so the masking criteria are likely robust.
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Once regions of significant emission (i.e. islands) have been
identified, these islands are further decomposed into individual
“cloud” structures. Clouds are identified as local maxima within
a moving 3D box of area 3 × 3 spaxels2 (≈ 12 × 12 pc2) and ve-
locity width of 3 channels (6 km s−1). In our modified version of
CPROPSTOO, we add another criterion to find local maxima, checking
whether the (3×3×3 pixels3) box centred on a local maximum also
represents a local maximum on a larger scale, as suggested by Yang
& Ahuja (2014). This is to eliminate the impact of noisy pixels or
outliers, as a noise peak can easily become a local maximum within
a single box, but much less so on a larger scale. We thus consider a
(3× 3× 3 pixels3) box centred on each local maximum, and require
the sum of the flux densities in that box to be larger than that in all
eight spatially-adjacent (3 × 3 × 3 pixels3) boxes. The detection of
local maxima in this way is much more robust and efficient.

For each local maximum, the original CPROPSTOO algorithm
requires all emission uniquely associated with that maximum (i.e.
all emission within the faintest intensity isosurface uniquely asso-
ciated with that maximum) to have a minimum area (minarea),
minimum number of pixels (minpix) and minimum number of ve-
locity channels (minvchan). It also requires the local maximum’s
brightness temperature to lie at least ∆Tmax above the merger level
with any other maximum (i.e. the brightest contour level enclosing
another local maximum). However, this decomposition algorithm
often leads to cloud size and velocity dispersion distributions that
peak around the chosen minarea, minpix and minvchan. This
is a well-known bias that reflects the hierarchical structure of the
ISM from parsec to kiloparsec scales (e.g. Verschuur 1993; Hughes
et al. 2013; Leroy et al. 2016). It becomes especially problematic
for complex and crowded environments where the emission has
low contrast and extends over a range of scales (e.g. the centre of
M51; Hughes et al. 2013; Colombo et al. 2014). Small minarea
and minpix tend to identify the sub-structures of a cloud (“over-
decompositon”), whereas large minarea and minpix tend to miss
out small structures (“under-decomposition”).

To remove this bias and identify cloud structures across mul-
tiple scales, we modified CPROPSTOO by setting each of minarea
and minpix to a range of values rather than a single value. In our
work, we assign minarea a range of 100 to 10 spaxels (the syn-
thesised beam area) with a step of 5 spaxels (half the beam area),
similarly in pixels for minpix. We start by searching for the largest
cloud structures using the largestminarea (100 spaxels) andminpix
(100 pixels), and then repeat the search process to identify increas-
ingly small clouds in the volume of the cube not yet assigned to any
cloud. We use a minarea (resp. minpix) 5 spaxels (resp. 5 pixels)
smaller than the previous one at each step, until all the cloud struc-
tures larger than the beam size (10 spaxels) are identified. As long
as minarea and minpix cover large ranges, the final results hardly
depend on the specified ranges. We are therefore able to remove two
free parameters in the algorithm, making our results less arbitrary
and more robust. A schematic of our modified CPROPSTOO technique
is shown in Figure 2 for a one-dimensional (1D) line profile.

The main concern about our newly-developed approach, how-
ever, is that we may identify large clouds while ignoring potentially
significant sub-structures. To solve this problem, we introduce a new
parameter, convexity, inspired by an analogous quantity in studies
of biological structures (Lin et al. 2007), that describes how signif-
icant the sub-structure of a cloud is. The parameter convexity is
defined as the ratio of the volume of the cloud (i.e. the volume of its
3D intensity distribution) to the volume of the smallest convex hull
encompassing all of its flux (i.e. the volume of the smallest convex
envelope enclosing all of the cloud’s 3D intensity distribution; see
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Figure 2. Schematic diagram of the cloud identification process using our
modified CPROPSTOO algorithm. Each panel shows a different step in the
decomposition of a 1D line profile with five distinct kernels, each kernel
corresponding to a local maximum and being identified by a different colour.
Circles inmatching colours indicate the kernels that are preserved or selected
(solid circles) and rejected (open circles) at each step. Grey horizontal lines
indicate characteristic brightness levels through the data. Each coloured
dotted line indicates the unique level of the kernel in matching colour (i.e.
the faintest level that is uniquely associated with that kernel), while each
coloured region shows the emission uniquely associated with that kernel.
Step 1: removal of kernels that do not meet the selection criteria given
by ∆Tmax, minvchan and minpix/minarea (here kernel 2 and 5).
Step 2: removal of kernels that do not meet the selection criterion given by
minconvexity (here kernel 1). The convexity parameter is defined as
the ratio of the volume (or area in this 1D example) of the cloud (i.e. the
coloured region of each kernel in matching colour) to the volume (or area)
of the smallest convex hull encompassing the cloud (i.e. the associated grey
regions). Only kernel 3 and 4 are preserved in this step. Step 3: Repeat of
steps 1 and 2 adopting increasingly smaller minpix and minarea (here
kernel 1 and 2 are re-selected due to the lower cloud size threshold; both have
sufficient convexity). Step 4: assigment of remaining emission (e.g. grey
regions in the bottom-left panel) to the preserved kernels (using a friends-
of-friends algorithm ensuring any pair of pixels in a kernel is connected by
a continuous path).

the top-right panel of Fig. 2 for an examplewith a 1D line profile, i.e.
a two-dimensional (2D) intensity distribution). The convexity of a
cloud should thus be close to 1 if the cloud has only one intensity
peak and no sub-structure, and be less than 1 if the cloud has some
sub-structures. The lower the value of convexity, the more signif-
icant the sub-structure of a cloud. Our modified CPROPSTOO code
requires all clouds to have a minimum convexity (minconvexity).
Typical useful values are 0.5 – 0.7, as determined by visual inspec-
tion, to ensure clouds are not over- or under-decomposed. In this
work, we set minconvexity to 0.55. Overall, our new refinements
allows CPROPSTOO to identify structures over multiple scales, with
less arbitrariness than previously.

We set the parameters minvchan and ∆Tmax based on physi-
cal priors described by Rosolowsky & Leroy (2006), that suggest
a cloud has a minimum velocity dispersion ∆Vmax = 2 km s−1
(minvchan = 2

√
2 ln 2∆Vmax ≈ 4 km s−1) and ∆Tmax = 1 K, mo-

tivated by the properties of Galactic GMCs. A factor of 2
√
2 ln 2 is

applied to ∆Vmax to convert the velocity dispersion to a full width
at half maximum (FWHM). We set the parameters in physical units
(km s−1 and K) rather than data units (channel, σrms) to reduce
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possible biases when comparing cloud properties from different
observations. Our excellent spectral resolution (channel width of
2 km s−1) and sensitivity (σrms ≈ 0.5 K) allow us to reach and thus
use those physical parameters.

According to our algorithm, each surviving local maximum
corresponds to a cloud. CPROPSTOO assigns the emission that is
uniquely associated with each local maximum (i.e. the emission
within the faintest intensity isosurface uniquely associated with that
maximum) to that cloud. The remaining emission shared among
clouds is then assigned to the “nearest” local maximum (i.e. the
local maximum with the shortest path through the data cube from a
given pixel). In our work, however, we apply a “friends-of-friends”
algorithm to assign all remaining emission, as for the ClumpFind
algorithm (Williams et al. 1994) and the original CPROPS code
(Rosolowsky & Leroy 2006). This friends-of-friends paradigm con-
nects pixels according to the brightnesses of neighbouring pixels,
without assuming a particular shape for the objects to decompose
(Rosolowsky& Leroy 2006). This method conserves flux, so that all
the flux within the island regions is assigned to a particular cloud
(Tasker & Tan 2009). As each pair of pixels in a cloud can then
be connected by a continuous path through that cloud, we avoid
assigning disconnected pixels to the same cloud.

The resulting sample of GMCs in NGC4429 contains 217
GMCs, 141 of which are spatially resolved, shown in Fig. 3. The
majority of the resolved clouds have a single-peaked Gaussian-
like spatially-integrated line profile, although a few do reveal a
double-peaked line profile possibly indicating significant rotation.
Most line profiles are symmetric but a few are asymmetric, with
significant skewness (blue or red wing). The clouds identified with
our new refinements are 15% fewer (217 versus 254 clouds), 18%
larger (median cloud size ≈ 13 versus ≈ 11 pc), 18% more massive
(median gaseous mass ≈ 2.0 × 104 versus 1.7 × 104 M�) and have
velocity dispersions 30% larger (median velocity dispersion 5.2
versus 4.0 km s−1) than those derived using the original CPROPSTOO
code. They also span a larger range of sizes. AGaussian fit to the size
distribution yields a mean of 16 ± 0.5 pc and a standard deviation
of ≈ 6 pc for our spatially-resolved clouds (see Section 3.3), but
14± 0.5 pc and ≈ 3.5 pc, respectively, for those identified using the
original CPROPSTOO. The resolved clouds identified here also seem to
have more regular morphologies, with a mean 〈convexity〉 = 0.57
(convexity > 0.55 by construction) compared to 〈convexity〉 ≈
0.45 (and ≈ 54% of resolved clouds with convexity < 0.55) for
CPROPSTOO-identified clouds. This confirms that our approach and
modified CPROPSTOO code have great potential to identify clouds
over large spatial scales in crowded and complex environments
(e.g. galactic centres and spiral arms).

3 CLOUD PROPERTIES

3.1 Definition of GMC properties

Once all the pixels of every cloud have been identified, we calcu-
late the physical properties of the clouds by following the standard
CPROPSTOO/CPROPS definitions (Rosolowsky & Leroy 2006). The
CPROPSTOO algorithm applies moment methods to derive the size,
linewidth and flux of a cloud from its distribution within a position-
position-velocity data cube. One advantage of CPROPSTOO over other
GMC identification algorithms is that it attempts to correct the
measured cloud properties for the finite sensitivity and instrumental
resolution (Rosolowsky & Leroy 2006). To reduce the sensitivity
bias, the algorithm measures the size, velocity width and luminos-
ity as a function of the boundary intensity isosurface (Tedge) and

extrapolates them to the case of infinite signal-to-noise ratio (S/N ;
i.e. Tedge = 0 K). The size and linewidth are extrapolated linearly,
while the luminosity is extrapolated quadratically. To correct for
the resolution bias, CPROPSTOO “deconvolves” the synthesised beam
size from the measured extrapolated cloud size in two dimensions.
Rosolowsky & Leroy (2006) argued that moment measurements
combined with beam deconvolution and extrapolation represent a
robust way to compare heterogeneous observations of molecular
clouds.

Cloud centre. The central position (xc, yc) and velocity (vc)
of each cloud are obtained directly from the intensity-weighted first
spatial and velocity moment,




xc ≡
∑cloud

i Ti xi∑cloud
i Ti

,

yc ≡
∑cloud

i Ti yi∑cloud
i Ti

,

vc ≡
∑cloud

i Ti vi∑cloud
i Ti

,

(1)

where (xi, yi ) is the position of a given pixel, vi its velocity and Ti
its flux (brightness temperature), and the sums are over all pixels i
of each cloud.

Cloud size. The radius Rc of each cloud is calculated as the
geometric mean of the second spatial moment of the intensity dis-
tribution along the major and the minor axis:

Rc ≡ η
√
σmaj,dc σmin,dc = 1.91√σmaj,dc σmin,dc , (2)

where σmaj,dc and σmin,dc are the deconvolved RMS spatial extent
along the major and the minor axis, respectively, extrapolated to the
Tedge = 0K isosurface, and η is a factor relating the one-dimensional
RMS extent to the radius of a cloud. While η formally depends on
the shape and density profile of the cloud, we follow Solomon et al.
(1987) and common practice and adopt η = 1.91 whenever we need
to evaluate expressions containing Rc. The major and minor axes
are thus defined as the principal axes of the moment of inertia tensor
of the cloud (see Eq. 1 in Rosolowsky & Leroy 2006).

Cloud velocity dispersion. The observed (i.e. 1D) linewidth
or velocity dispersion σobs,los of each cloud is measured from the
second moment of the intensity distribution along the velocity axis,
extrapolated toTedge = 0 K. To account for the potential bias toward
a higher velocity dispersion due to the finite spectral resolution,
we perform a deconvolution as suggested by Rosolowsky & Leroy
(2006):

σobs,los ≡

√
σ2
v −

∆V2
chan
2π

, (3)

whereσv is the extrapolated secondmoment along the velocity axis,
∆Vchan is the channel width and ∆Vchan√

2π
is the standard deviation of

a Gaussian that has an integrated area equal to a spectral channel of
width ∆Vchan.

The observed velocity dispersion σobs,los includes the effects
of turbulent motions, intrinsic rotation of the cloud, and shear mo-
tions due to the large-scale kinematics of the galactic disc (such as
galactic rotation and streaming motions).

In our work, we introduce another measured velocity dis-
persion, σgs,los, as defined by Utomo et al. (2015), although we
adopt the notation of Henshaw et al. (2019). We first calculate the
intensity-weighted mean velocity at each line of sight through a
cloud (v̄(xi, yi )), and measure its offset with respect to the mean
velocity at the cloud centre (v̄(x0, y0)). We assume that this offset
(v̄(xi, y j ) − v̄(x0, y0)) is produced by both intrinsic motions within
the cloud and/or large-scale galactic disc motions, and thereby shift
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Figure 3. Molecular gas distribution of NGC4429 with GMCs identified. The integrated intensity map is shown (colour scale), blanking out non-signal areas
using the mask generated by CPROPSTOO. The mask covers pixels with connected emission above 2σrms and at least two adjacent channels above 3σrms, where
σrms is the RMS noise in the cube. The ellipses displayed, each corresponding to one labelled cloud, have been extrapolated to the limit of perfect sensitivity
but have not been corrected for the finite spatial resolution. Dark blue (resp. cyan) ellipses indicate spatially-resolved (resp. unresolved) clouds. The two brown
dashed ellipses at galactocentric distances of 220 and 330 pc define the three regions (inner, intermediate and outer) discussed in the text. The synthesised
beam (0.′′18 × 0.′′14 or 14 × 11 pc2) is shown in the bottom-left corner along with a scale bar.

the velocities at each line of sight to match their mean velocity
to that of the cloud centre (v̄(x0, y0)). We then measure the sec-
ond moment of the shifted emission distribution along the velocity
axis and extrapolate it to Tedge = 0 K. The final derived gradient-
subtracted velocity dispersion, σgs,los, is also deconvolved for the
channel width as above. We thus obtain a measure of the turbulent
(random) motions within the cloud only, free of any bulk motion.

Cloud luminosity. The CO(3-2) luminosity of each cloud is
given by

LCO(3−2)

K km s−1 pc2
=

FCO(3−2)

K km s−1 arcsec2

(
D
pc

)2 (
π

180 × 3600

)2
, (4)

where FCO(3−2) is the zeroth moment (total flux) of the cloud ex-
trapolated to Tedge = 0 K using a quadratic extrapolation and D is
the distance to NGC4429.

Cloud gaseous mass. The CO luminosity-based mass of each
cloud is obtained from LCO(3−2) using

Mgas
M�

= 4.4
LCO

K km s−1 pc2
XCO

2 × 1020 cm−2 (K km s−1)−1
, (5)

where LCO is the cloud’s CO(1-0) luminosity (see Eq. 4 above)
and XCO is the assumed CO-to-H2 conversion factor. The CO(3-
2)/CO(1-0) intensity ratio was measured to be 1.06± 0.15 (in beam
temperature units) overall in NGC4429 (Davis et al. 2018), and we
assume that value for all the clouds here.We further adopt a standard
Galactic conversion factor XCO = 2.3 × 1020 cm−2 (K km s−1)−1
(including the mass contribution from helium; Strong et al. 1988;
Bolatto et al. 2013), commonly used in previous extragalactic stud-
ies (e.g. Hughes et al. 2013; Colombo et al. 2014; Utomo et al. 2015;
Sun et al. 2018), although it has been suggested that this conversion
factor depends on the environment of each molecular cloud, e.g.

metallicity and radiation field (see Bolatto et al. 2013 for a review).
The final gaseous mass of each cloud is thus obtained from

Mgas
M�

= 4.7
LCO(3−2)

K km s−1 pc2
. (6)

Cloud Virial mass. The Virial (i.e. dynamical) mass of each
cloud is calculated with the formula

Mvir =
σ2Rc
bsG

=
5σ2Rc

G
(7)

(MacLaren et al. 1988), where G is the gravitational constant, σ
the observed (i.e. 1D) cloud velocity dispersion, Rc the cloud ra-
dius (see Eq. 2) and bs is a geometrical factor that quantifies the
effects of inhomogeneities and/or non-sphericity of the cloud mass
distribution on its self-gravitational energy. For a cloud in which the
isodensity contours are homoeoidal ellipsoids, bs = bs1bs2 , where
bs1 quantifies the effects of the inhomogeneities and bs2 those of
the ellipticity (see Appendix A for more details on bs1 and bs2 ). We
adopt bs = 1

5 for a spherical homogeneous (i.e. constant density)
cloud whenever we need to evaluate Mvir. The Virial mass obtained
from Eq. 7 assumes that each cloud is spherical and virialised (with
isotropic velocity dispersions), with no magnetic support or pres-
sure confinement. We note that, to investigate the dynamical state
of each cloud in the presence of strong tidal/shear forces, in the
sections that follow we will define different Mvir using velocity
dispersions σ calculated in different ways. These will be clearly
labeled when used to avoid confusion.

Cloud distance from the centre. The deprojected distance
(Rgal) of a cloud from the centre of the galaxy (R.A. (J2000) =
12h27m26.s504 ± 0.s013 and Dec. (J2000) = 11◦06′27.′′57 ± 0.′′01
is calculated assuming the clouds are located in an infinitelly thin
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molecular gas disc with a position angle of 93◦ and an inclination
angle of 68◦ (i.e. an axis ratio of 0.37; see Davis et al. 2018).

Uncertainties. The uncertainties of our measured cloud prop-
erties are estimated via a bootstrapping technique. For each cloud,
we generate 1000 realisations of the data by randomly sampling
the initial distribution, with repetition allowed, to reach the same
number of cloud pixels. The cloud properties are measured for each
sampled structure, and the median absolute deviation is used to
estimate the fractional uncertainty of each property. The final un-
certainties are scaled by the square root of the number of spaxels per
synthesised beam area to account for the fact that not all of the pixels
are independent. Our bootstrap approach assumes the boundary of
each cloud is fixed, and therefore does not take into account the un-
certainties in defining the cloud themselves. Nevertheless, we have
compared the uncertainties produced by our bootstrapping method
to those derived from other techniques (e.g. Rosolowsky & Leroy
2006; Faesi et al. 2016), demonstrating that they are similar and
thus reliable.We note that the uncertainty of the gradient-subtracted
velocity dispersion σgs,los is derived via the same bootstrapping
technique, and thus includes the uncertainty of the adopted mean
velocity at the cloud centre.

The uncertainty of the adopted distance D to NGC4429 was
not propagated through the uncertainties of the measured quantities.
This is because an error on the distance to NGC4429 translates to
a systematic (rather than random) scaling of some of the measured
quantities (no effect on the others), i.e. Rc ∝ D, LCO(3−2) ∝ D2,
Mgas ∝ D2, ω ∝ D−1 and Rgal ∝ D.

3.2 Table of GMC properties

Table 1 lists the positions and properties of the 217 GMCs identi-
fied in our work. Around 65% (141/217) of the GMCs identified
are resolved spatially, i.e. with a deconvolved diameter larger than
or equal to the synthesised beam size. All are resolved spectrally,
i.e. with a deconvolved velocity width at least half of one (Han-
ning smoothed) velocity channel (Donovan Meyer et al. 2013). All
masked CO flux has been assigned to a cloud, and the total flux of
all clouds (≈ 43 Jy km s−1) is about 60% of the integrated flux of
the galaxy (75 Jy km s−1). The diffuse emission below the adopted
threshold of 2 times the RMS noise is not included in our analysis.
As our primary beam covers all the CO emission in NGC4429, our
derived GMC catalogue is complete at 12CO(3-2).

Table 1 lists each cloud’s identification number, central posi-
tion in both R.A. and Dec., local standard of rest velocity VLSR,
radius Rc, observed velocity dispersion σobs,los and gradient-
subtracted velocity dispersion σgs,los, total CO(3-2) luminosity
LCO(3−2) , gaseous mass Mgas, peak intensityTmax, angular velocity
ω and position angle of the rotation axis φrot (see Section 4.1), and
deprojected distance from the centre of the galaxy Rgal.

3.3 Probability distribution functions of GMC properties

The number distributions of Rc, log(Mgas/M�), σobs,los and
log(Σgas/M� pc−2) (where Σgas is the characteristic gaseous mass
surface density of each cloud, Σgas ≡

Mgas

πR2
c
) for the 141 spatially-

resolved clouds of NGC4429 are shown in Fig. 4. We divide the
galaxy into three distinct regions (separated by the two brown
dashed ellipses in Fig. 3): inner (Rgal ≤ 220 pc), intermediate
(220 < Rgal ≤ 330 pc) and outer (Rgal > 330 pc) region. In
each panel, the black histogram (data) and curve (Gaussian fit)
show the full sample, while the blue, green and red colours show

only the clouds in the inner, intermediate and outer region, respec-
tively. The insets show the median Rc, log(Mgas/M�), σobs,los and
log(Σgas/M� pc−2) as functions of the galactocentric distance Rgal.

The spatially-resolved clouds of NGC4429 have sizes Rc rang-
ing from 7 to about 50 pc (see Fig. 4, top-left panel). A Gaussian fit
to the size distribution yields a mean of 16 ± 0.5 pc and a standard
deviation of ≈ 6 pc. The clouds in NGC4429 appear to have sizes
smaller than those of clouds in the MW disc (typical sizes ≈ 30
– 50 pc; Miville-Deschênes et al. 2017b), Local Group galaxies
(typical sizes ≈ 20 – 70 pc; Rosolowsky et al. 2003; Rosolowsky
2007; Rosolowsky et al. 2007; Hirota et al. 2011) and most late-type
galaxies (typical sizes ≈ 20 – 200 pc; Donovan Meyer et al. 2012;
Hughes et al. 2013; Rebolledo et al. 2015), but slightly larger than
those of clouds in the Galactic Centre (typical sizes≈ 5 – 15 pc; Oka
et al. 2001; Kauffmann et al. 2017) and the ETG NGC4526 (typical
sizes ≈ 5 – 30 pc; Utomo et al. 2015). We note however that the CO
J = 3 − 2 transition used in our work traces the warm molecular
medium (10 − 50 K) around active SF regions, and has a higher
characteristic density than the J = 1−0 transition (≈ 7×104 versus
≈ 1.4 × 103 cm−3). The CO(3-2) line could therefore potentially
trace more compact structures than CO(1-0) (Miville-Deschenes
et al. 2017a; Colombo et al. 2018). The inset in the top-left panel
presents the median cloud size as a function of galactocentric dis-
tance. We note that the three innermost resolved clouds (clouds No.
32, 165 and 183; Rgal ≤ 100 pc), that all lie along the major axis,
have exceptionally large masses and/or surface densities. Except for
these three innermost resolved clouds, the clouds in the inner region
generally have slightly smaller sizes than the clouds at larger radii
(i.e. in the intermediate and outer regions). The sizes of the clouds
appear to slightly increase with galactocentric distance but drop at
the outer edge of the molecular disc (Rgal >∼ 375 pc).

The gaseous masses Mgas of the spatially-resolved clouds of
NGC4429 range from 2.8 × 104 to 8 × 105 M� (see Fig. 4, top-
right panel). The median cloud gaseous mass of the sample is ≈
1.6× 105 M� . More than one third (54/141) of the resolved clouds
are light (Mgas ≤ 105 M�), but they overall contribute only ≈ 16%
of the total molecular gas mass in clouds. There is no cloud more
massive than Mgas = 106M� inNGC4429. The clouds inNGC4429
have gaseousmasses slightly smaller than those of clouds in theMW
disc (≈ 104.5 – 107.0 M�; Rice et al. 2016), NGC4826 (≈ 106.0
– 107.2 M�; Rosolowsky & Blitz 2005), NGC1068 (≈ 104.2 –
107.6 M�; Tosaki et al. 2017), M51 (≈ 105.0 – 107.5 M�; Colombo
et al. 2014), NGC253 (≈ 106.3 – 107.8 M�; Leroy et al. 2015) and
the LMC (≈ 104.2 – 106.8 M�; Hughes et al. 2010), but similar to
those of clouds in M31 (≈ 104 – 106 M�; Rosolowsky 2007), M33
(≈ 104 – 106 M�; Rosolowsky et al. 2003, 2007), the SMC (≈ 104
– 106 M�; Muller et al. 2010) and the ETG NGC4526 (≈ 104.7
– 106.6 M�; Utomo et al. 2015). The clouds in the intermediate
region tend to be more massive than the clouds in the inner and
outer regions (see the inset in the top-right panel). The median
cloud mass also appears to drop abruptly in the outermost region of
the molecular disc (Rgal >∼ 375 pc).

The spatially-resolved clouds of NGC4429 have observed ve-
locity dispersions (linewidths) σobs,los between 2 and 16 km s−1
(see Fig. 4, bottom-left panel). A Gaussian fit to the velocity dis-
persion distribution yields a mean of 5.2 ± 0.2 km s−1. The clouds
in NGC4429 have observed velocity dispersions higher than those
of clouds with the same sizes in the MW and Local Group galax-
ies (where σobs,los is typically 2 – 3 km s−1; Rosolowsky et al.
2003; Rosolowsky 2007; Rosolowsky et al. 2007; Fukui et al. 2008;
Muller et al. 2010), but similar to those of the clouds in the ETG
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Table 1. Observed properties of the clouds in NGC4429.

ID RA(2000) Dec(2000) VLSR Rc σobs, los σgs, los LCO(3−2) Mgas Tmax ω φrot Rgal
(h:m:s) (◦ :′:′′) (km s−1) (pc) (km s−1) (km s−1) (104 K km s−1 pc2) (105 M�) (K) (km s−1 pc−1) (◦) (pc)

1 12:27:26.2 11:06:27.9 853.8 . . . 1.50 ± 1.06 . . . 0.92 ± 0.26 0.43 ± 0.12 3.8 . . . . . . 404
2 12:27:26.2 11:06:28.2 864.4 16.69 ± 5.27 4.81 ± 1.45 2.81 ± 1.02 3.01 ± 0.56 1.40 ± 0.26 3.3 0.36 ± 0.07 138 ± 12 372
3 12:27:26.2 11:06:27.6 864.6 23.45 ± 3.63 6.69 ± 1.00 3.79 ± 0.74 4.99 ± 0.71 2.32 ± 0.33 3.8 0.26 ± 0.02 194 ± 6 370
4 12:27:26.2 11:06:27.4 872.4 20.18 ± 4.12 4.47 ± 0.92 2.95 ± 0.85 2.59 ± 0.44 1.21 ± 0.21 3.4 0.10 ± 0.05 246 ± 9 339
5 12:27:26.2 11:06:27.8 875.9 46.89 ± 3.03 5.53 ± 0.54 2.35 ± 0.33 11.49 ± 1.01 5.35 ± 0.47 4.2 0.15 ± 0.01 175 ± 2 309
6 12:27:26.2 11:06:27.0 876.9 17.79 ± 3.15 4.51 ± 0.99 2.86 ± 0.90 2.34 ± 0.50 1.09 ± 0.23 3.4 0.24 ± 0.04 226 ± 12 394
7 12:27:26.2 11:06:26.8 883.7 17.76 ± 4.90 5.10 ± 1.05 2.93 ± 0.80 2.96 ± 0.50 1.38 ± 0.23 3.9 0.13 ± 0.02 146 ± 12 407
8 12:27:26.3 11:06:28.3 887.3 18.99 ± 4.82 3.58 ± 1.18 1.83 ± 1.07 1.50 ± 0.28 0.70 ± 0.13 3.8 0.23 ± 0.05 121 ± 24 296
9 12:27:26.2 11:06:28.5 885.2 . . . 3.62 ± 1.11 . . . 1.27 ± 0.30 0.59 ± 0.14 3.7 . . . . . . 345
10 12:27:26.3 11:06:27.7 888.2 29.40 ± 3.14 4.81 ± 0.75 2.97 ± 0.70 4.69 ± 0.59 2.18 ± 0.28 3.8 0.16 ± 0.01 197 ± 6 248
11 12:27:26.2 11:06:26.7 892.8 . . . 2.84 ± 0.74 . . . 0.99 ± 0.27 0.46 ± 0.13 4.2 . . . . . . 400
12 12:27:26.2 11:06:26.9 894.8 . . . 5.49 ± 1.42 . . . 1.38 ± 0.37 0.64 ± 0.17 3.5 . . . . . . 371
13 12:27:26.3 11:06:27.2 892.9 26.18 ± 2.65 6.34 ± 0.86 3.22 ± 0.58 6.12 ± 0.60 2.85 ± 0.28 4.8 0.31 ± 0.01 214 ± 3 285
14 12:27:26.3 11:06:27.8 898.0 26.25 ± 2.73 5.14 ± 0.62 2.52 ± 0.42 5.33 ± 0.56 2.49 ± 0.26 4.4 0.25 ± 0.01 179 ± 3 219
15 12:27:26.2 11:06:28.6 898.4 14.93 ± 4.44 3.36 ± 0.87 2.46 ± 0.68 2.37 ± 0.52 1.11 ± 0.24 3.5 0.21 ± 0.04 122 ± 19 330
16 12:27:26.3 11:06:26.9 900.3 . . . 5.08 ± 1.80 . . . 1.37 ± 0.41 0.64 ± 0.19 2.7 . . . . . . 342
17 12:27:26.3 11:06:27.0 902.0 . . . 4.76 ± 1.75 . . . 0.82 ± 0.19 0.38 ± 0.09 3.8 . . . . . . 296
18 12:27:26.3 11:06:28.3 901.2 16.35 ± 3.67 5.70 ± 1.23 2.18 ± 0.81 1.75 ± 0.40 0.81 ± 0.19 3.3 0.50 ± 0.10 127 ± 14 279
19 12:27:26.2 11:06:26.4 906.3 14.16 ± 5.81 6.04 ± 2.54 4.16 ± 2.67 1.48 ± 0.46 0.69 ± 0.21 2.8 0.32 ± 0.46 236 ± 60 438
20 12:27:26.3 11:06:27.3 908.3 20.56 ± 4.42 3.33 ± 0.84 2.51 ± 0.82 2.57 ± 0.50 1.20 ± 0.23 3.6 0.14 ± 0.02 220 ± 27 244
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

217 12:27:26.9 11:06:27.2 1344.3 20.42 ± 3.92 2.23 ± 0.68 1.58 ± 0.89 1.94 ± 0.34 0.90 ± 0.16 3.8 0.05 ± 0.02 123 ± 69 428

Notes. – Measurements of Mgas assume a CO(3-2)/CO(1-0) line ratio of 1.06 ± 0.15 (in beam temperature units; Davis et al. 2018) and a standard Galactic
conversion factor XCO = 2 × 1020 cm−2 (K km s−1)−1 (including the mass contribution from helium). All uncertainties are quoted at the 1σ level. As noted
in the text, the uncertainty of the adopted distance D to NGC4429 was not propagated through the tabulated uncertainties of the measured quantities. This is
because an error on the distance to NGC4429 translates to a systematic (rather than random) scaling of some of the measured quantities (no effect on the
others), i.e. Rc ∝ D, LCO(3−2) ∝ D2, Mgas ∝ D2, ω ∝ D−1 and Rgal ∝ D. Table 1 is available in its entirety in machine-readable form in the electronic
edition.

NGC4526 (σobs,los ≈ 5 – 16 km s−1; Utomo et al. 2015). Almost
all clouds with high velocity dispersions (σobs,los ≥ 10 km s−1)
are located in the inner and intermediate regions. We find a general
trend of slightly decreasing velocity dispersion with galatocentric
radius (see the inset in the bottom-left panel).

The gaseous mass surface densities Σgas of spatially-resolved
clouds in NGC4429 have a range of ≈ 40 – 650 M� pc−2 (see
Fig. 4, bottom-right panel). A Gaussian fit to the distribution of
log(Σgas/M� pc−2) yields a mean of 2.2 ± 0.17 dex. The clouds
in NGC4429 have an average gaseous mass surface density that
is lower than that of the clouds in the ETG NGC4526 (〈Σgas〉 ≈
1000 M� pc−2; Utomo et al. 2015), but is comparable to that of the
clouds in M33 and M64 (〈Σgas〉 ≈ 100 M� pc−2; Rosolowsky et al.
2003; Rosolowsky&Blitz 2005) and is larger than that of the clouds
in theMWdisc and the LMC (〈Σgas〉 ≈ 50M� pc−2; Lombardi et al.
2010; Heyer et al. 2009; Hughes et al. 2010; Miville-Deschênes
et al. 2017b). The gaseous mass surface densities of individual
clouds in NGC4429 vary by more than an order of magnitude. We
find that the clouds in the inner region tend to have a slightly larger
minimum gaseous mass surface density (Σgas ≥ 70 M� pc−2) than
the clouds in the intermediate (Σgas ≥ 60 M� pc−2) and outer
(Σgas ≥ 40 M� pc−2) region. The general trend is that the clouds
at smaller radii have higher gaseous mass surface densities (see the
inset in the bottom-right panel).

3.4 GMC mass spectra

The distribution of GMCs by mass is a critical diagnostic of a GMC
population and provides important clues to GMC formation and
destruction (Rosolowsky 2005; Colombo et al. 2014). We choose
the gaseousmass over theViralmass to determine themass function,
because gas mass does not require assumptions about the dynamical
state of the GMCs and is well defined even for spatially-unresolved

clouds. We fit the cumulative mass distribution (see Fig. 5) instead
of the differential mass distribution, as Rosolowsky (2005) argues
that the former is more reliable than the latter as it is not affected by
biases related to binning and it can account for uncertainties of the
cloud masses.

Cumulative mass distribution functions can be characterised
quantitatively by a power-law function

N (M ′ > M) =
(

M
M0

)γ+1
, (8)

where N (M ′ > M) is the number of clouds with a mass greater
than M , M0 sets the normalisation, and γ is the power-law index.
Alternatively, a truncated power-law function can be used,

N (M ′ > M) = N0



(
M
M0

)γ+1
− 1


, (9)

where M0 is now the cut-off mass of the distribution and N0 is the
number of clouds with a mass M > 21/(γ+1) M0, the cut-off point
of the distribution (for a meaningful truncation to exist, one expects
N0 � 1).

We fit the cumulative mass spectra by applying the “error in
variables” method developed by Rosolowsky (2005), that adopts an
iterative maximum-likelihood approach to estimate the best-fitting
parameters and account for uncertainties of both the cloud mass and
the number distribution. Fitting is only performed above the com-
pleteness limit of Mcom = 4 × 104 M� , shown as a black vertical
dashed line in Fig. 5.We estimate themass completeness limit based
on theminimumspatially-resolved cloud (gaseous)mass (Mmin) and
the observational sensitivity, i.e. Mcom ≡ Mmin + 10δM, where the
contribution to the mass due to noise, δM, is estimated by multi-
plying our RMS column density sensitivity limit of 10 M� pc−2
by the synthesised beam area of ≈ 180 pc2. The parameters of the
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Figure 4. Distributions of Rc, log(Mgas/M� ), σobs, los and log(Σgas/M� pc−2) with their Gaussian fits for the 141 spatially-resolved clouds identified in
NGC4429 (black histograms), and for only the clouds in the inner (blue histograms), intermediate (green histograms) and outer (red histograms) region of the
galaxy, respectively. The insets show the median Rc, log(Mgas/M� ), σobs, los and log(Σgas/M� pc−2) in elliptical annuli of constant Rgal (and equal width
∆Rgal = 30 pc).

Table 2. Parameters of the truncated power laws best fitting the cumulative
gaseous mass distributions of the clouds in NGC4429.

Region Distance γ M0 N0
(pc) (105 M�)

All 0 < Rgal ≤ 450 −2.18 ± 0.21 8.8 ± 1.3 6.9 ± 4.4
Inner 0 < Rgal ≤ 220 −2.32 ± 0.24 9.2 ± 2.5 1.4 ± 1.9
Intermediate 220 < Rgal ≤ 330 −1.83 ± 0.33 10.6 ± 1.6 5.2 ± 5.5
Outer 330 < Rgal ≤ 450 −2.08 ± 0.32 4.6 ± 0.4 6.6 ± 5.4

Notes. – All uncertainties are quoted at the 1σ level.

best-fitting truncated power laws to the cumulative (gaseous) mass
distributions of the clouds in NGC4429 are listed in Table 2.

We find strong evidence for a curtailment of very massive
GMCs in NGC4429, as a truncated power-law function (black solid

line in Fig. 5) with a high value of N0 (6.9 ± 4.4) fits the gaseous
mass distribution much better than a pure power-law function (black
dashed line). This implies that NGC4429 lacks the processes that
actively accumulate molecular gas clumps into high-mass GMCs.
The best truncated fit yields a slope γ = −2.18±0.21, a slope steeper
than −2 implying that most of the molecular gas mass of NGC4429
is in low-mass clouds and there should thus be a significant amount
of gas below our completeness limit. This is consistent with the fact
that only ≈ 60% of the emission is decomposed into clouds at our
resolution (see Section 3.2). However, there must also be a lower
gaseous mass limit for the molecular clouds or a turnover at low
mass for the total mass to remain finite.

Our derived slope γ is similar to that measured for the clouds in
in the outer Galaxy (−2.2±0.1; Rice et al. 2016), the ETGNGC4526
(−2.39 ± 0.03; Utomo et al. 2015), M51 (−2.3 ± 1; Colombo et al.
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Figure 5. Cumulative gaseous mass distribution of all the clouds of
NGC4429 (black data points) and only the clouds in the inner (blue data
points), intermediate (green data points) and outer (red data points) region,
respectively. Truncated (solid curve) and non-truncated (dashed curves)
power-law fits are overlaid in matching colours. Our mass completeness
limit is indicated by the black vertical dashed line.

2014) and the outer regions of M33 (−2.1 ± 1; Rosolowsky et al.
2007), but is steeper than that for the clouds in the inner Galaxy
(−1.6 ± 0.1; Rice et al. 2016), the spiral arms of M51 (−1.79 ±
0.09; Colombo et al. 2014), NGC1068 (−1.25 ± 0.07; Tosaki et al.
2017), the inner regions of M33 (−1.8±1; Rosolowsky et al. 2007),
NGC300 (−1.80 ± 0.07; Faesi et al. 2016) and the overall mass
spectrum of Local Group galaxies (≈ −1.7; Blitz et al. 2007).

The best-fitting cut-off gaseous mass M0 of our truncated dis-
tribution ((8.8±1.3)×105 M�) is comparable to that for the clouds
in the outer Galaxy ((1.5 ± 0.5) × 106 M�; Rice et al. 2016) and
the inner regions of M33 ((7.4 ± 0.5) × 105 M�; Rosolowsky et al.
2007), but is much lower than that for the clouds in most other
galaxies such as the inner Galaxy ((1.0± 0.2) × 107 M�; Rice et al.
2016), the ETG NGC4526 ((4.12 ± 0.08) × 106 M�; Utomo et al.
2015), M51 ((1.8±0.3)×106 M�; Colombo et al. 2014), NGC1068
((5.9 ± 0.6) × 107 M�; Tosaki et al. 2017) and the outer regions of
M33 ((3.4 ± 1.2) × 106 M�; Rosolowsky et al. 2007).

Variations of the GMC gaseous mass distribution as a function
of galactocentric distance can also be quantified. We find the cloud
cumulative gaseousmass functions of the three regions to be slightly
different, with a best-fitting truncated slope γ of −2.32 ± 0.24,
−1.83 ± 0.33 and −2.08 ± 0.32 and a cut-off gaseous mass M0 of
(9.2±2.5)×105, (10.6±1.6)×105 and (4.6±0.4)×105 M� in the
inner, intermediate and outer region, respectively. The distributions
of the clouds in the inner and outer regions appear to be similar at
gaseous masses below 2×105 M� , but the latter shows a truncation
while the former seems to be better fit by a pure power law even
at the high-mass end. Massive clouds appear to be suppressed at
the galaxy centre and especially in the outer regions of the disc.
Indeed, the distribution of clouds with gaseous masses greater than
the completeness limit cuts off abruptly inside 40 pc and beyond
450 pc (see Fig. 3). More than half of the most massive clouds
(> 2.5 × 105 M�) are located in the intermediate region, implying

that the survival of massive clouds is more favoured in this region.
Overall, the environmental dependence of the gaseous mass spec-
trum indicates that the formation and destruction mechanisms of
GMCs are (slightly) different at different galactocentric distances.

4 CLOUD KINEMATICS

4.1 Velocity gradients of individual clouds

We observe strong velocity gradients within individual GMCs.
Many authors argue that these gradients are the signature of cloud
rotation (e.g. Blitz 1993; Phillips 1999; Rosolowsky et al. 2003;
Rosolowsky 2007; Utomo et al. 2015). The observed velocity gra-
dient of each cloud can be quantified byfitting a plane to its intensity-
weighted firstmoment (i.e.mean line-of-sight velocity)map v̄(x, y):

v̄(x, y) = ax + by + c , (10)

where a and b are the projected velocity gradient along respec-
tively the x- and the y-axis on the sky (selected here in the stan-
dard/intuitive manner, i.e. respectively reversely proportional to the
right ascension and proportional to the declination). We adopt the
code lts_planefit to perform the fits. This code combines least-
trimmed-squares robust techniques (Rousseeuw & Driessen 2006)
into a least-squares fitting algorithm, and allows for intrinsic scatter,
uncertainties, possible large outliers and weighting of each pixel by
its flux (i.e. gaseous mass surface density). The projected angular
velocity ωobs (i.e. the magnitude of the projected velocity gradient)
and position angle of the rotation axis φrot are then given by the
best-fitting coefficients:

ωobs =
√

a2 + b2 , (11)

φrot = tan−1(b/a) . (12)

The uncertainties of ωobs and φrot are estimated from the uncer-
tainties of the parameters a and b using standard error propagation
rules. We note that these derived projected angular velocities ωobs
are underestimated by a factor 1 − cos(ϕ) compared to the intrinsic
ones (i.e. ωobs = cos(ϕ)ωint), where ϕ is the angle between the
cloud rotation axis and the plane of the sky. This is however incon-
sequential for all following analyses and discussions, as all modelled
quantities will themselves be projected onto the sky (according to
the model assumptions) before comparison.

Fitting a plane to the mean line-of-sight velocity map of each
cloud implicitly assumes cloud solid-body rotation. While this may
not be intrinsically true (i.e. the angular velocity may depend on the
radius within each cloud), because our clouds are generally rela-
tively poorly spatially resolved, ωobs as defined above nevertheless
provides a useful single quantity to quantify the bulk (projected)
rotation of each cloud.

Figure 6 provides one example of our plane fitting to the mean
line-of-sight velocity map of a cloud of NGC4429. The left panel
shows the intensity-weighted first moment map with the best-fitting
rotation axis (black line) and centre (black solid circle) overplot-
ted. For illustrative purposes only, the right panel shows the mean
velocity of each pixel within the cloud (v̄(x, y)) against the per-
pendicular distance of the pixel from the best-fitting cloud rotation
axis. A cloud with solid-body rotation should have all its data points
well fit by a straight line, as is the case here. Overall, we find that
planes are reasonable fits to the velocity maps of most of the clouds
in NGC4429, and the median value of the reduced χ2 for the 141
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Figure 6.One example of plane fitting to the intensity-weighted firstmoment
(i.e.mean line-of-sight velocity)map of a cloud ofNGC4429 (here cloudNo.
136). The left panel shows the cloud’smean velocitymapwith the best-fitting
rotation axis (black line) and centre (black solid circle) overplotted. The right
panel shows the mean line-of-sight velocity of each pixel within the cloud
against the perpendicular distance of the pixel from the best-fitting rotation
axis (orange data points). Blue squares are means of the velocity in bins of
perpendicular distance from the rotation axis. For illustrative purposes only,
the blue line shows the best-fitting straight line to the data, indicating that
solid-body rotation is a good description of the cloud’s kinematics.

spatially-resolved clouds is χ2r = 0.8. More than half (82) of the
resolved clouds are well-fit by solid-body rotation (χ2r ≤ 1).

The best-fitting results are listed in Table 1. The projected ve-
locity gradientsωobs of the 141 spatially-resolved clouds range from
0.05 to 0.91 km s−1 pc−1, with an average of ≈ 0.33 km s−1 pc−1.
Our derived velocity gradients are significantly larger than those
inferred for MW clouds (∼ 0.1 km s−1 pc−1; Blitz 1993; Phillips
1999; Imara & Blitz 2011), M33 (≈ 0.15 km s−1 pc−1; Rosolowsky
et al. 2003; Imara et al. 2011) and M31 (0 – 0.2 km s−1 pc−1;
Rosolowsky 2007), but they are comparable to those inferred for
the clouds of the ETG NGC4526 (0 – 1.0 km s−1 pc−1; Utomo
et al. 2015).

4.2 Origin of the clouds’ velocity gradients

The observed velocity gradients of the clouds can arise from turbu-
lent motions, the clouds’ intrinsic rotation and/or galaxy rotation.
Burkert & Bodenheimer (2000) suggested that turbulent velocity
fields can produce observed linear gradients, that were estimated
to be of order 0.08 km s−1 pc−1 for their median cloud radius of
20 pc. As our measured (i.e. projected) velocity gradients are gen-
erally much larger than this, we suggest turbulence is not important
to account for them.

The observed velocity gradients of the clouds in NGC4429
are more likely produced by the intrinsic rotation of the clouds
and/or galaxy rotation. Galaxy rotation can produce velocity gradi-
ents across the small areas occupied by GMCs, especially at small
galactocentric distances corresponding to the steep part of the rota-
tion curve. To identify the origin of the observed velocity gradients

of the clouds of NGC4429, we overplot the rotation axes of the
individual clouds (i.e. the projected directions of their angular mo-
mentum vectors) on the isovelocity contours of the galaxy in Fig. 7.
If the velocity gradients of the clouds are produced by the clouds’
intrinsic rotation, their rotation axes should be randomly distributed.
On the other hand, if the velocity gradients of the clouds are pro-
duced by the galaxy rotation, their rotation axes should show a
strong alignment with the galaxy isovelocity contours.

As shown in Fig. 7, we do find a strong tendency for the
projected angular momentum vectors of the clouds to be tangential
to the isovelocity contours of NGC4429, implying that the observed
velocity gradients of the clouds are primarily a consequence of
galactic rotation. This is similar to the trend in NGC4526 (Utomo
et al. 2015), but different from that in the MW (Koda et al. 2006)
and M31 (Rosolowsky 2007), where the distributions of position
angles are random.

Here the isovelocity contours due to the galaxy rotation were
derived by creating a gas dynamical model using the Kinematic
Molecular Simulation (KinMS) package of Davis et al. (2013).
Inputs to the model include the stellar mass distribution, stellar
mass-to-light ratio, SMBHmass, as well as the disc orientation (po-
sition angle and inclination) and position (spatially and spectrally).
The stellar mass distribution is parametrised by a multi-Gaussian
expansion (MGE; Emsellem et al. 1994) fit to a V -band image from
HST (Davis et al. 2018). The free parameters are derived by fitting
to the observed gas kinematics, assuming the object is axisymmetric
(in the central parts where CO is located) and the gas in circular
rotation (see Davis et al. 2018 for details of the fitting procedures
and the best-fitting parameters). The dark matter and gas masses are
not included in our model, as they are small compared to those of
the SMBH and stars. We note that a variable mass-to-light ratio has
been adopted, as required by the data, with a piecewise linear form
as a function of radius. An inclination angle of 68◦ and a kinematic
position angle of 93◦ (as measured in that work) are adopted to
calculate the line-of-sight projection of the gas circular velocities.

To further quantify the effects of the galaxy rotation on our
observed velocity gradients, we compare the measured angular ve-
locities and position angles of the rotation axes of the clouds in
NGC4429 to those expected from a pure galaxy rotation model. We
measure the projected angular velocities and rotation axes of the
model over the same areas as for the observed clouds, using the
methods described in Section 4.1. We assume that the motion of the
gas within each cloud (i.e. each fluid element of each cloud) follows
perfectly circular orbits defined by our kinetic model above. We
find a strong correlation between the modelled and observed posi-
tion angles (with a median angle difference of ≈ 19◦), supporting
the idea that the observed cloud-scale velocity gradients are aligned
with the large-scale velocity field, as suggested by Fig. 7.

A general correlation between the modelled and observed an-
gular velocities is also found. Our model overestimates the observed
angular velocities ωobs by a median factor of 2, much smaller than
theωmod/ωobs ratios found for clouds inWISDOM late-type galax-
ies (ωmod/ωobs & 10; Shu et al., in prep; Choi et al., in prep). This
discrepancy between the amplitudes of the observed and modelled
angular velocities is unlikely to be due to the clouds’ own rotations,
as the observed position angles φrot of the clouds would then be
expected to deviate from the modelled ones randomly. A possible
explanation is that the self-gravity of the clouds is also important,
so that the clouds do not follow pure galaxy rotation (see Sec-
tion 6.2 for more discussion of this). The discrepancy could also
partly be due to the limitation of CPROPS to isolate individual clouds
in highly-crowded environments. To reduce the ambiguities due to
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Figure 7. Projected directions of the angular momentum vectors of individual spatially-resolved GMCs in NGC4429 (black arrows), overplotted on the
isovelocity contours of the molecular gas (colour coded by the projected velocities). The length of the arrows represents the magnitudes of the velocity gradients
(i.e. ωobs). The projected velocities are derived from our gas dynamical model assuming pure rotation (see text).

cloud blending, we fit both the data and model again without in-
cluding the outermost boundary pixels of each cloud. In this case,
a strong correlation between the modelled and observed position
angles is again present (see the right panel of Fig. 8), with a median
angle difference of ≈ 16◦, but the model overestimates the observed
angular velocities by a reduced median factor of 1.5 only (left panel
of Fig. 8). In the inner region, where the clouds are more blended
in both space and velocity, the discrepancies between the modelled
and observed angular velocities is worse (with a median factor of
2), and the angle difference is larger (with a median value of ≈ 20◦).
In the outer region, where clouds are less blended, the model shows
a much better agreement with the observations (with a median an-
gular velocity discrepancy factor of only 1.2 and a median angle
difference of only ≈ 14◦)

In summary, a comparison of the observed and modelled pro-
jected angular velocities and rotation axes of individual clouds sug-
gests that the observed velocity gradients of the clouds in NGC4429
are primarily caused by the local circular orbital motions, them-
selves due to the galaxy potential. We note that the good match
between our observations and model suggests that the motion of
the gas within each cloud of NGC4429 mainly follows gravitational
orbital (and thus shear) motions rather than epicyclic motions (see
Section 6.1 for more discussion of this issue).

5 DYNAMICAL STATE OF CLOUDS

5.1 Cloud scaling relations using the observed velocity
dispersion

The scaling relations between the physical properties of molecular
clouds have become a standard tool for assessing the clouds’ physi-
cal states and dynamical conditions (e.g. Blitz et al. 2007; Hughes
et al. 2013). Themost fundamental relation is the size – linewidth re-

lation, a.k.a. Larson’s first relation (e.g. Larson 1981; Solomon et al.
1987), that has become the yardstick for GMC studies in the MW
and external galaxies (e.g. Bolatto et al. 2008). The size – linewidth
relationship is usually interpreted as a signature of the turbulent
motions within clouds (e.g. Falgarone et al. 1991; Elmegreen &
Falgarone 1996; Lequeux 2005), and it provides a unique probe of
the dynamical state of the turbulent molecular gas in extragalactic
star-forming systems.

Another important scaling relation providing crucial insights
is the correlation between the clouds’ dynamical (i.e. Virial) masses
Mvir and their true masses M (here taken to be the gaseous masses
Mgas). The comparison of the Virial and gaseous masses provides
an important clue to the dynamical state of the clouds according to
the Virial theorem. Indeed, the Virial parameter

αvir ≡
Mvir
M

=
σ2Rc
bsGM

=
2 1
2 Mσ2

bsGM2/Rc

(13)

(see Eq. 7) is equal to the ratio of two times the turbulent kinetic
energy to the (absolute value of the) self-gravitational energy of a
cloud, quantifying the degree of gravitational boundedness of the
cloud. If the Virial parameter of a cloud αvir ≈ 1, the cloud is
gravitationally bound and in Virial equilibrium. If its Virial mass
is much larger than its gaseous mass (αvir � 1), the cloud has to
be confined by external pressure (it would otherwise disperse) and
it is unlikely to be bound (i.e. it is a transient feature of the ISM).
If αvir . 1, the molecular cloud is likely unstable to gravitational
collapse.We note that a critical parameter αcrit ≈ 2 is often regarded
as the threshold between gravitationally-bound and unbound objects
(Kauffmann et al. 2013, 2017).
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Figure 8. Correlations between the modelled and observed projected angular velocities ωobs (left panel) and position angles of the rotation axes φrot (right
panel) for the 141 spatially-resolved clouds of NGC4429. The data points are colour-coded by region and the black solid lines show the 1 : 1 relations.

A third important scaling relation is the correlation between
the clouds’ mass surface densities Σ (again taken here to be the
gaseous mass surface densities Σgas) and the quantities σR−1/2c
(where as before σ and Rc are a measure of the observed/1D ve-
locity dispersion and size of each cloud, respectively). The σR−1/2c
– Σgas plot provides a necessary modification to Larson’s scaling
relations. It implies an additional constraint to the velocity dis-
persion, whereby the velocity dispersion of a cloud depends on
both its spatial extent and its gaseous mass surface density (Field
et al. 2011). If clouds are virialised (and do not necessarily obey
Larson’s first relation), observations should cluster around the line
σR−1/2c =

√
πGbsΣgas (bs = 1/5 for a homogeneous spherical

cloud; see the black solid diagonal line in the right panel of e.g.
Fig. 9). If clouds are not virialised but are marginally gravitation-
ally bound (i.e. αvir ≈ αvir,crit = 2), the data points should cluster
around the line σR−1/2c =

√
2πGbsΣgas (see the black dotted di-

agonal line in the right panel of e.g. Fig. 9). If clouds are not
gravitationally bound, external pressure (Pext) must play an impor-
tant role to confine the clouds, and the clouds should be distributed
along the black V-shaped dashed curves in the right panel of Fig. 9:
σR−1/2c =

√
πGbsΣgas +

4Pext
3Σgas (Field et al. 2011). We note that for

the largest Σgas of each V-shaped curve, the clouds are dominated by
self-gravity and the equilibrium curve is asymptotic to the solution
of the simple Virial equilibrium (SVE, i.e. the black solid diagonal
line; Field et al. 2011).

For consistency with GMC studies in the MW and external
galaxies in the literature, we first adopt the observed velocity dis-
persion σobs,los (see Section 3.1) to explore the above three scal-
ing relations. As seen in the left panel of Fig. 9 (data points and
black solid line), there is a strong correlation between size and
linewidth (with a Spearman rank correlation coefficient of 0.5) for
the 141 clouds of NGC4429 that are spatially resolved, the only
clouds where a reliable measurement of the size Rc is possible (see
Table 1). However, the relation departs from the traditional one de-
rived for clouds in the MW disc (black dashed line in the left panel
of Fig. 9; Solomon et al. 1987; Dame et al. 2001; Rice et al. 2016).
The observed tendency is for clouds to exhibit a higher velocity
dispersion at a given size. Our results also reveal a steep size –

linewidth relation,

log
(σobs,los

km s−1

)
= (−0.30 ± 0.17) + (0.82 ± 0.13) log

(
Rc
pc

)
, (14)

steeper than that of clouds in the MW disc (0.5 ± 0.05; Solomon
et al. 1987). The slope is also marginally steeper than that derived
for CMZ clouds (0.66± 0.18; Kauffmann et al. 2017), but the zero-
point is much smaller (5.5 ± 1.0 for CMZ clouds; Kauffmann et al.
2017), and the velocity dispersions of CMZ clouds are indeed higher
than those of the NGC4429 clouds at any given size.

TheVirial masses of the spatially-resolved clouds of NGC4429
calculated from their observed velocity dispersions,

Mobs,vir ≡
σ2
obs,losRc

bsG
(15)

(see Eq. 7), are compared to their gaseousmasses Mgas in themiddle
panel of Fig. 9, where as always we have assumed bs = 1

5 (spherical
homogeneous clouds). We find Virial masses significantly larger
than the gaseous masses. A linear fit yields (black solid line in the
middle panel of Fig. 9)

log
(

Mobs,vir
M�

)
= (−2.91±0.43)+ (1.69±0.08) log

(
Mgas
M�

)
. (16)

A log-normal fit to the distribution of the resultingVirial parameters,

αobs,vir ≡
Mobs,vir

M
=

Mobs,vir
Mgas

, (17)

shown as an inset in the middle panel of Fig. 9, yields a mean
〈αobs,vir〉 = 4.04 ± 0.22 and a standard deviation of 0.24 dex. In
particular, all resolved clouds have αobs,vir > 1.

The derived σobs,losR−1/2c − Σgas relation is presented in the
right panel of Fig. 9 for the spatially-resolved clouds of NGC4429.
The gaseous mass surface densities Σgas of the GMCs vary by
one order of magnitude, and the size – linewidth coefficient
(σobs,losR−1/2c ) increases with increasing Σgas. The data points do
not lie along the solid diagonal line of the SVE, but are instead offset
from it and distributed across the V-shaped curves. If pressure is im-
portant to the dynamical state of the clouds, the clouds in NGC4429
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Figure 9. Left: Size – linewidth relation of the 141 spatially-resolved clouds of NGC4429, using the observed velocity dispersion σobs, los. The black solid line
shows the best-fitting relation, while the black dashed line shows Larson’s relation for the Milky Way disc (Solomon et al. 1987). Middle: Correlation between
Virial mass and gaseous mass for the same spatially-resolved clouds. The black solid line shows the best-fitting relation, while the black dashed and dotted
diagonal lines show the 1 : 1 and 2 : 1 relations, respectively. The distribution of log(αobs,vir) (black histogram) with a log-normal fit overlaid (red solid line)
is shown in an inset. The red dashed line in the inset indicates the mean of the log-normal fit, while the black dashed and dotted lines indicate αvir = 1 and
αvir = 2, respectively. Right: Correlation between σobs, losR

−1/2 and gaseous mass surface density (Σgas) for the same spatially-resolved clouds. The black
solid contour encloses 68% of the data points. The black solid and dotted diagonal lines show the solution for simple (i.e. αvir = 1) and marginal (i.e. αvir = 2)
Virial equilibria, respectively. The V-shaped black dashed curves show solutions for pressure-bound clouds at different pressures (Pext/kB = 103, 104, · · · ,
108 K cm−3). Data points are colour-coded by region in all three panels. Typical uncertainties are shown as a black cross in the bottom-right corner of the left
and right panels.

seem to experience a wide range of considerable external pressures
(Pext/kB ≈ 105 – 107 K cm−3, where kB is Boltzmann’s constant).
Overall, Fig. 9 thus seems to suggest that the kinetic energy of the
clouds in NGC4429 is more important than their gravitational en-
ergy, hence the clouds are either not bound or tend toward pressure
equilibria.

However, a major concern about the use of the above relations
to assess the dynamical states of clouds in NGC4429 is the appli-
cability of the observed velocity dispersion σobs,los. The difference
of the derived size – linewidth relation with respect to the Solomon
et al. (1987) trend seems to imply that themeasured linewidths of the
clouds are not set purely by their internal virialised motions and/or
turbulence (Meidt et al. 2013; Kauffmann et al. 2017). Recent works
suggest that, in the centre of galaxies where strong shear and tidal
forces are present, a considerable part of the cloud-scale gasmotions
is due to these external galactic forces (e.g. Meidt et al. 2018; Utr-
eras et al. 2020). We have already demonstrated that the observed
strong velocity gradients of the clouds in NGC4429, that reflect the
velocity gradients in the plane of the galaxy, are mainly a conse-
quence of local orbital motions defined by the background galactic
gravitational potential (i.e. the galaxy circular velocity curve; see
Section 4.2). In this case, the steep slope of the size – linewidth
relation (see the left panel of Fig. 9) can be explained as resulting
from the decay of fast orbit-induced large-scale motions to transonic
conditions on small spatial scales (Kauffmann et al. 2017).

The question then is whether gas motions associated with the
background galactic potential should also be involved in assess-
ing the dynamical states and stability of the clouds. Intuitively, gas
motions due to external galactic forces should be considered when
calculating a cloud’s kinetic energy that is meant to balance its
self-gravitational energy (Chen et al. 2016; Meidt et al. 2018). Con-
versely, in the presence of strong galactic forces, self-gravity is no
longer the only force binding a cloud. Therefore, to verify whether
clouds are virialised in a galactic environment where tidal/shear
forces are strong, one needs to modify the conventional Virial the-
orem to include (1) external forces arising from the background

galactic potential and (2) the gas motions induced by these forces.
We do exactly that in the next sub-sections.

5.2 Basic framework

We recall here a key conceptual point emphasised in Section 1. We
will not assume here that the clouds of NGC4429 are in dynamical
equilibrium, and then deduce the clouds’ gravitational motions due
to the external (i.e. galactic) potential. Rather, we will measure and
quantify the clouds’ gravitational motions due to the external po-
tential, and then deduce whether the clouds are indeed in dynamical
equilibrium. This is the only way to reliably assess whether GMCs
are in dynamical equilibrium (and thus long-lived) or out of equi-
librium (and thus transient), arguably the most important question
in the field.

As described in detail in Appendix A, we envision each cloud
as a continuous structure with well-defined borders in position- and
velocity-space, located in a rotating gas disc with a circular velocity
determined by the shape of the background galactic gravitational
potential. Each cloud’s centre of mass (CoM) is assumed to be in the
mid-plane of the disc. We assume that each fluid element of a cloud
experiences two kinds of motions: (1) random turbulent motions
arising from self-gravity (cloud gravitational potential Φsg), that
have a velocity dispersion σsg, and (2) bulk gravitational motions
associated with the external (i.e. galactic) potential (Φgal), that have

a RMS velocity σgal (σgal ≡

∫
v2gal dm

M , where vgal is the velocity
of each fluid element due to gravitational motions relative to the
CoM, the integral is over all fluid elements dm, and

∫
dm = M).

Thermal motions are ignored, as they are often small compared to
turbulent motions in a cold gas cloud (e.g. Fleck 1980). We assume
the motions due to self-gravity (σsg) and the background galactic
potential (σgal) to be uncorrelated, and the cloud’s own gravitational
potential Φsg to be (statistically) independent of the local external
gravitational potential defined by the galaxy Φgal. The turbulent
motions due to self-gravity are expected to be quasi-isotropic in
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three dimensions (Field et al. 2008; Ballesteros-Paredes et al. 2011),
while the gasmotions induced by the external gravitational potential
are often non-isotropic (Meidt et al. 2018). Gravitational motions
in the plane are assumed to be separable from those in the vertical
direction. We consider only the effects of gravitational forces and
ignore external pressure and magnetic fields.

With those considerations, the resulting modified Virial theo-
rem (MVT) can be split into two independent parts:

Ï
2
≈

[
3Mσ2

sg,los − 3bsGM2/Rc
]︸                              ︷︷                              ︸

self gravity

+



M
(
σ2
gal,z − beν20 Z2

c
)︸                     ︷︷                     ︸

external, vertical direction

+M
(
σ2
gal,r + σ

2
gal,t + be(T0 − 2Ω20)R2

c
)︸                                            ︷︷                                            ︸

external, plane



,

(18)

where I, M , Rc and Zc are respectively the cloud’s moment of in-
ertia, mass, radius and scale height, ν20 ≡ 4πGρ∗,0 (formally the
total mass volume density evaluated at the cloud’s CoM, but we
use here ρ∗,0, the stellar mass volume density ρ∗ evaluated at the
cloud’s CoM using our MGE model, as it is accurately constrained;
see Appendix C), bs is the aforementioned geometrical factor that
quantifies the effects of inhomogeneities and/or non-sphericity as-
sociated with self-gravity, be is a geometrical factor that quantifies
the effects of inhomogeneities (only) associated with external grav-
ity (be =

(1−ψ/3)
(5−ψ) for a spherical cloud with a radial mass volume

density profile ρ(r) ∝ r−ψ , thus be = bs = 1
5 for a spherical ho-

mogeneous cloud as before; see Appendix A for more details on
be), σsg,los is the cloud’s 1D turbulent velocity dispersion due to
self-gravity, σgal,r, σgal,t and σgal,z are the RMS velocity of gas
motions due to external gravity in respectively the radial (i.e. the
direction pointing from the galaxy centre to the cloud’s CoM), az-
imuthal (i.e. the direction along the orbital rotation) and vertical
(i.e. the direction perpendicular to the cloud’s orbital plane) direc-
tion (as measured in an inertial frame, i.e. by a distant observer; see
Appendix A for a more detailed discussion of σgal,r and σgal,t), Ω0
is the circular orbital angular velocity Ω at the cloud’s CoM, and
T0 ≡ −R dΩ2 (R)

dR |R=R0 is the tidal acceleration per unit length in the
radial direction T (e.g. Stark & Blitz 1978) evaluated at the cloud’s
CoM (R is the galactocentric distance in the plane of the disc and
R0 that of the cloud’s CoM). We note that here and throughout,

Ω(R) is the theoretical quantity Ω(R) ≡
√

1
R

dΦgal (R)
dR defined by

the galaxy potential Φgal, i.e. it is the angular velocity of a fluid
element moving in perfect circular motion (Ω(R) = Vcirc(R)/R,
where Vcirc(R) is the circular velocity curve) rather than the ob-
served angular velocity of the fluid element (Vrot(R)/R, where Vrot
is the observed rotation curve). The first term in square brackets on
the right-hand side (RHS) of Eq. 18 comprises the energy terms
regulated by self-gravity, while the second term in square brackets
contains the contributions of external gravity to the cloud’s energy
budget (Eext) in respectively the vertical direction (Eext,z) and the
plane (Eext,plane). The detailed derivation of Eq. 18 and its more
general form for a homogeneous ellipsoidal cloud (Eq. A14) is pro-
vided in Appendix A.

For reference, we show in Fig. 10 the dependence of Ω, Oort’s
constants A and B, T and T − 2Ω2 on galactocentric distance R
in NGC4429. The functions Ω, A and T are always positive, B
is always negative, while T − 2Ω2 is generally negative except in
the very centre. We note that T = 4AΩ = 4Ω (B + Ω). The ro-
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0

2

4

6

 

0

Figure 10. Galactocentric distance (Rgal) dependence of the orbital angular
velocityΩ, Oort’s constants A and B, the tidal acceleration per unit length in
the radial direction T , and the function T − 2Ω2 in NGC4429, as calculated
from our gas dynamical model. The black dashed horizontal line indicates an
ordinate of 0. The coloured envelopes around each curve indicate the ±1σ
uncertainties. We note that the slight discontinuity in the radial profiles of
A, B, T and T − 2Ω2 at Rgal ≈ 1.′′4 is caused by our adopted piecewise
linear mass-to-light ratio radial profile M/L(R) (see Davis et al. 2018), so
that while M/L(R) is continuous d M/L (R)

dR is not.

tational shear (i.e. Oort’s constant A) in NGC4429 is much larger
(≥ 0.2 km s−1 pc−1 at galactocentric distances R <∼ 450 pc, where
the clouds are located) than that in the bulk of the Galactic disc
(≈ 0.02 km s−1 pc−1 at R ≥ 3 kpc; Dib et al. 2012) and the LMC
(≈ 0.018 km s−1 pc−1 at R ≥ 1 kpc; Thilliez et al. 2014).

5.3 Role of self-gravity

The first term in square brackets on the RHS of Eq. 18 de-
scribes an internal equilibrium regulated by self-gravity. For a
cloud that attains Virial balance between its internal turbulent ki-
netic energy ( 32 Mσ2

sg,los) and its self-gravitational energy (Usg ≡

−3bsGM2/Rc), such as an isolated self-gravitating cloud, these
two terms should cancel out. To investigate the role of self-gravity,
one thus needs to measure the cloud’s turbulent velocity dispersion
due to self-gravity only (σsg,los). However, the observed velocity
dispersion σobs,los is not necessarily equal to σsg,los, as there are
potentially significant contributions from bulk (galaxy-driven) grav-
itational motions. Indeed, the observed velocity dispersion σobs,los
of a cloud can be expressed as

σ2
obs,los ≈ σ

2
sg,los +

(
σ2
gal,r sin

2 θ + σ2
gal,t cos

2 θ
)
sin2 i +σ2

gal,z cos
2 i ,

(19)

where i is the inclination of the galactic disc with respect to the line
of sight, and θ is the (deprojected) azimuthal angle of the cloud’s
CoMwith respect to the kinematic major axis of the disc (see Eq. 32
of Meidt et al. 2018).

We therefore need to reduce the contamination of ourmeasured
velocity dispersions by bulk gravitational motions. This is why
we introduced a new measure of the velocity dispersion, σgs,los,
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in Section 3.1, where we first shifted each line-of-sight velocity
spectrum tomatch its centroid velocity (v̄(x, y)) to that of the cloud’s
CoM (v̄(0, 0)), and then measured the velocity dispersion (i.e. the
second moment along the velocity axis) of the shifted emission
distribution and extrapolated it toTedge = 0K. The derived gradient-
subtracted velocity dispersion σgs,los was then deconvolved by the
channel width (∆Vchan/

√
2π), yielding our final adopted measure.

Table 1 lists the derived σgs,los of all spatially-resolved clouds and
the left panel of Fig. 11 shows a comparison of σgs,los and σobs,los.
As expected, σgs,los < σobs,los, and all particularly large σobs,los
measurements have been corrected to <∼ 5 km s−1.

The observed velocity gradient of a cloud is due to bulk mo-
tions within the cloud only. Assuming that the vertical gravitational
motions can be treated as randommotions that balance the weight of
the disc (i.e. no bulk motion in the vertical direction), analogously
to turbulent motions due to self-gravity, the only bulk motions will
originate from in-plane gravitational motions. Our newly-derived
gradient-subtracted velocity dispersionσgs,los can therefore bewrit-
ten as

σ2
gs,los ≈ σ

2
sg,los + σ2

gal,z cos
2 i , (20)

minimising contamination from bulk gas motions in the plane. Our
gradient-subtracted velocity dispersion σgs,los thus removed the
second term (in-plane bulk gravitational motions) but kept the first
term (turbulent self-gravitational motions) and last term (vertical
random gravitational motions) on the RHS of Eq. 19. However,
as we will demonstrate below, the σ2

gal,z cos
2 i term is negligible

compared to σ2
sg,los in NGC4429 and can thus safely be ignored, so

that σgs,los ≈ σsg,los in NGC4429. Using our newly derived σgs,los
measure, we thus revisit the scaling relations of Fig. 9 in Fig. 12.

5.4 Cloud scaling relations using the gradient-subtracted
velocity dispersion

The left panel of Fig. 12 (data points and black solid line) presents
the size – linewidth relation based on our σgs,los measure for the
141 spatially-resolved clouds of NGC4429. We now find the size –
σgs,los correlation to be rather weak, with a Spearman rank coeffi-
cient of 0.25. However, compared with the size – linewidth relation
using σobs,los, it appears to better follow the relation of the MW
disc clouds (black dashed line in the left panel of Fig. 12). Indeed,
the data points seem to cluster around the MW disc scaling law
(Solomon et al. 1987), although there is a large scatter. A weak size
– linewidth relation has also been inferred in other galaxies (e.g.
Hughes et al. 2013; Utomo et al. 2015), but a small dynamic range
and the relatively large uncertainties of our σgs,los measurements
probably at least partially explain the poor correlation.

We find a nearly linear correlation between the σgs,los-derived
Virial masses,

Mgs,vir ≡
σ2
gs,losRc

bsG
(21)

(see Eq. 7), and the CO-derived gaseous masses Mgas of the
spatially-resolved clouds (black solid line in the middle panel of
Fig. 12), where we have again assumed bs = 1

5 (spherical homoge-
neous clouds):

log
(

Mgs,vir
M�

)
= (−1.36± 0.28) + (1.28± 0.06) log

(
Mgas
M�

)
. (22)

A log-normal fit to the distribution of the resultingVirial parameters,

αgs,vir ≡
Mgs,vir

M
=

Mgs,vir
Mgas

, (23)

shown as an inset in the middle panel of Fig. 12, yields a mean
〈αgs,vir〉 = 1.28 ± 0.04 and a standard deviation of 0.15 dex. No
systematic variation is observed in the Virial parameter αgs,vir for
clouds over a wide range of galactocentric distances.

The right panel of Fig. 12 shows the comparison between
σgs,losR−1/2c and the gaseous mass surface density Σgas for the
spatially-resolved clouds. The data points are distributed along the
black solid diagonal line, suggesting a simple Virial equilibrium.
Therefore, when the contamination of in-plane bulk motions is re-
moved, the clouds in NGC4429 do seem to reach a state of Virial
equilibrium.

A full determination of the internal equilibrium state of clouds
regulated by self-gravity (i.e. the first term in brackets on the RHS
of Eq. 18) requires a knowledge of σsg,los rather than σgs,los.
However, we can still gain important insights from Fig. 12. First,
our measured σ2

gs,los should be strongly dominated by σ2
sg,los, i.e.

σ2
sg,los � σ2

gal,z cos
2 i and thus σ2

gs,los ≈ σ
2
sg,los (see Eq. 20), oth-

erwise (ifσ2
gal,z cos

2 i were to contribute significantly toσ2
gs,los) the

scaling relations presented in Fig. 12 would depend on the galaxy’s
inclination angle and the trend seen in Fig. 12 (suggesting a state
of gravitational equilibrium) would turn out to be merely a coin-
cidence. But we note that a similar result was obtained in another
ETG. Indeed, NGC4526 revealed a good agreement between the
σgs,los-derived Virial masses and the CO-derived gaseous masses
(〈αgs,vir〉 = 0.99± 0.02), and similarly a σgs,losR−1/2c – Σgas corre-
lation as expected from Virial equilibrium (Utomo et al. 2015). We
thereby consider that the most likely explanation of our results in
Fig. 12 (and the results of Utomo et al. 2015) is that σ2

gs,los is dom-
inated by σ2

sg,los (that is assumed isotropic and thus independent
of the galaxy inclination angle) and that an internal gravitational
equilibrium has been achieved through self-gravity. This assump-
tion is particularly reasonable in NGC4429, as in any case only a
very small part of σ2

gal,z can contribute to σ2
gs,los considering its

high disc inclination (i = 68◦ so cos2 i ≈ 0.1).
If σ2

gs,los ≈ σ2
sg,los, then the left panel of Fig. 12 seems to

suggest that the clouds’ internal turbulent motions associated with
self-gravity follow the classical size – linewidth relation of MW
clouds, despite a large scatter. This supports the traditional in-
terpretation of turbulent motions as the origin of the size – line
width relation (e.g. Mac Low & Klessen 2004; Ballesteros-Paredes
et al. 2006, 2007, and references therein), that emerges entirely
as a consequence of the gas self-gravity (Camacho et al. 2016;
Ibáñez-Mejía et al. 2016). The middle panel of Fig. 12 then im-
plies that Mgas ≈ Msg,vir, i.e. that GMCs attain approximate Virial
balance between their internal turbulent kinetic energies and their
self-gravitational energies. The fact that the mean αgs,vir is slightly
larger than one (〈αgs,vir〉 = 1.28 ± 0.04) may be due to contam-
ination of σ2

gs,los by the σ2
gal,z cos

2 i term. Indeed, in Section 6.4
we will show that the motions induced by (external) gravity con-
tribute around 20% of the total σ2

gs,los. The right panel of Fig. 12
then further indicates that an internal virialisation has been roughly
achieved by self-gravity. In other words, the gravitational potential
defined by the mass of a cloud is matched by the kinetic energy
induced by self-gravity. In this case (Mgas ≈ Msg,vir), we have

σ2
sg,los ≈ πbsRcGΣgas (24)
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Figure 11. Comparisons of our observed (σobs, los), gradient-subtracted (σgs, los) and effective (σeff, los) cloud velocity dispersion measures for the 141
spatially-resolved clouds of NGC4429. Data points are colour-coded by region in all three panels.

Figure 12. Same as Fig. 9, but using our gradient-subtracted measure of velocity dispersion σgs, los.

(see Eq. 7), and αsg,vir ≡
Msg,vir
Mgas

≈ 1 (where αsg,vir is the Virial
parameter set purely by a cloud’s self-gravity), as has been suggested
by many previous studies of self-gravitating clouds (e.g. Eq. 10 in
Heyer et al. 2009).

We note that this internal Virial equilibrium is established by
self-gravity despite the presence of an external galactic potential,
which seems to support our previous assumption that the motions
due to self-gravity emerge independently of the background galactic
potential. For more discussion of how a Virial equilibrium is estab-
lished through the balance of turbulent kinetic and self-gravitational
energy, see Meidt et al. (2018).

5.5 Role of external gravity

The contribution of external gravity to a cloud’s gravitational energy
budget (Eext) is given by the second term in brackets on the RHS of
Eq. 18:

Eext ≈ M
(
σ2
gal,z − beν20 Z2

c
)︸                     ︷︷                     ︸

external, vertical direction

+ M
(
σ2
gal,r + σ

2
gal,t + be(T0 − 2Ω20)R2

c
)︸                                            ︷︷                                            ︸

external, plane

.

(25)

If Eext > 0, external gravity acts against self-gravity and makes the
cloud less bound. If Eext < 0, external gravity acts with self-gravity

and contributes to the collapse of the cloud. If Eext ≈ 0, the effect
of external gravity can be ignored. A more general form of Eext
for a homogeneous ellipsoidal cloud is provided in Appendix A
(Eq. A12). We can split Eext into two independent parts, one in
the vertical direction (Eext,z) and one in the plane (Eext,plane), and
consider them in turn.

Vertical direction. The contribution of the external potential to
the gravitational energy budget of the cloud in the vertical direction
is

Eext,z ≈ M
(
σ2
gal,z − beν20 Z2

c
)
. (26)

It is similar to the vertical hydrostatic equilibrium equation of a
gaseous disc (e.g. Eq. 3 in Koyama & Ostriker 2009). If it is pos-
itive, the cloud will be disrupted in the vertical direction, but if it
is negative, the cloud will collapse in the vertical direction. How-
ever, as neither σgal,z nor Zc can be measured directly from our
observations, we can not really assess the vertical equilibrium state
of the clouds. But if we make the common assumption that verti-
cal equilibrium is satisfied on a cloud scale, i.e. that the vertical
contribution of external gravity to the net energy budget of a cloud
is negligible (i.e. M (σ2

gal,z − beν20 Z2
c ) ≈ 0), then we can derive a

relation between σgal,z and Zc:

σ2
gal,z ≈ beν20 Z2

c . (27)
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Themeasured scale heights Zc of clouds in edge-on disc galax-
ies can thus be used to determine their unobservable vertical velocity
dispersionsσgal,z, or conversely the measured line-of-sight velocity
dispersions σgal,z of clouds in face-on galaxies can be used to de-
termine the unobservable scale heights Zc, as suggested by Koyama
& Ostriker (2009). In our work, we can estimate the value of σgal,z
from the deviation of σgs,los from σsg,los, and then infer a cloud’s
scale height (combining Eqs. 20 and 27; see Section 6.4). We note
that our derived σgal,z – Zc correlation is different from the one
derived via the epicyclic approximation by Meidt et al. (2018), by
a factor of be (σ2

gal,z ≈ ν
2
0 Z2

c in Meidt et al. 2018). This is because
we assumed a spherical cloud with a radial mass volume density
distribution (i.e. ρ(r) ∝ r−ψ ) while Meidt et al. (2018) assumed
a cloud with an exponential vertical mass volume density distribu-
tion (i.e. ρ(z) ∝ exp(−z)). Overall, to retain vertical hydrostatic
equilibrium on a cloud scale, the gravitationally-induced vertical
motions (σgal,z) need to balance the vertical weight of the back-
ground galaxy.

We note here that assuming vertical equilibrium for the clouds
goes against our stated aim of inferring whether the clouds are in-
deed in equilibrium directly frommeasurements. However, galaxies
are highly symmetric vertically and there is no bulk motion in the
vertical direction, and we will show below that we do not need to
assume the clouds are in equilibrium in the plane. We therefore
keep moving forward with our plan, even if it can only be partially
achieved.

Plane. The contribution of the external potential to the gravi-
tational energy budget of a cloud in the plane is

Eext,plane ≈ M
(
σ2
gal,r + σ

2
gal,t + be(T0 − 2Ω20)R2

c
)
. (28)

The orbital angular velocity Ω0 and the tidal acceleration parame-
ter T0 at the cloud’s CoM can be derived from our gas dynamical
model (see Section 4.2 and Fig. 10) and they are listed for each cloud
in Table 3. A more general form of Eext,plane for a homogeneous
ellipsoidal cloud is provided in Appendix A (Eq. A10). The term
be(T0 − 2Ω20)R2

c indicates the effective potential energy of galactic
gravity and the centrifugal force (see Appendix A for more details).
We find that galactic gravity and the centrifugal force act as a bind-
ing force overall, as the corresponding energy be(T0 − 2Ω20)M R2

c
is negative in all cases (the function T − 2Ω2 is generally negative
except in the very centre, Rgal <∼ 40 pc, where there is no cloud; see
Fig. 10). On the other hand, clouds are supported against collapse
by the gravitationally-induced gas motions in the plane, whose ki-
netic energy is 1

2 M (σ2
gal,r + σ

2
gal,t). The question then is which of

the binding energy of galactic gravity plus the centrifugal force or
the kinetic energy of gravitational motions is more important, i.e.
whether Eext,plane < 0 or Eext,plane > 0 (or Eext,plane = 0).

As suggested by Eq. 28, a full derivation of Eext,plane re-
quires knowledge of σgal,r and σgal,t, the RMS velocities of
gravitationally-induced motions in the plane. Although σgal,r and
σgal,t can not be obtained directly from observations, we can nev-
ertheless glean some information about them from the observed
quantities σobs,los and σgs,los. Indeed, if we assume the gas mo-
tions induced by the galactic potential to be isotropic in the plane
(i.e. σgal,r = σgal,t), the RMS velocities of the in-plane gas motions
due to external gravity can easily be derived by combining Eqs. 19
and 20:

σ2
gal,r = σ

2
gal,t ≈

σ2
obs,los − σ

2
gs,los

sin2 i
. (29)

Substituting Eq. 29 into Eq. 28, we find the net contribution of ex-
ternal gravity to the gravitational budget of the clouds in NGC4429

Table 3. Derived properties of the clouds in NGC4429.

ID Ω0 T0 σeff, los log
(

ρ∗,0
M� pc−3

)
(km s−1 pc−1) (km s−1 pc−1)2 (km s−1)

1 0.68 ± 0.02 0.75 ± 0.05 . . . 1.26
2 0.71 ± 0.02 0.57 ± 0.06 3.38 ± 1.79 1.33
3 0.72 ± 0.02 0.67 ± 0.06 4.98 ± 1.13 1.34
4 0.76 ± 0.02 0.67 ± 0.08 2.15 ± 1.93 1.41
5 0.80 ± 0.03 0.67 ± 0.10 2.35 ± 2.63 1.47
6 0.69 ± 0.02 0.60 ± 0.06 3.22 ± 1.16 1.29
7 0.67 ± 0.02 0.74 ± 0.05 4.31 ± 1.00 1.26
8 0.81 ± 0.03 0.69 ± 0.11 1.83 ± 2.79 1.50
9 0.75 ± 0.02 0.65 ± 0.07 . . . 1.39
10 0.89 ± 0.04 0.81 ± 0.16 2.97 ± 1.89 1.59
11 0.68 ± 0.02 0.71 ± 0.05 . . . 1.27
12 0.72 ± 0.02 0.59 ± 0.06 . . . 1.34
13 0.83 ± 0.03 0.76 ± 0.12 2.24 ± 2.29 1.52
14 0.95 ± 0.05 0.95 ± 0.23 2.52 ± 1.93 1.64
15 0.77 ± 0.03 0.67 ± 0.08 1.62 ± 1.97 1.43
16 0.75 ± 0.02 0.66 ± 0.08 . . . 1.40
17 0.81 ± 0.03 0.69 ± 0.11 . . . 1.50
18 0.84 ± 0.03 0.68 ± 0.12 3.63 ± 1.71 1.53
19 0.63 ± 0.02 0.72 ± 0.04 5.58 ± 2.18 1.18
20 0.90 ± 0.04 0.83 ± 0.17 2.51 ± 2.10 1.60
. . . . . . . . . . . . . . .
217 0.65 ± 0.02 0.67 ± 0.04 1.58 ± 0.94 1.21

Notes. – Clouds with no σeff, los entry are unresolved spatially.
Calculations of σeff, los assume be = 1

5 (spherical homogeneous clouds).
All uncertainties are quoted at the 1σ level, and those of σeff, los have been
propagated from the uncertainties of both observed and modelled
quantities (see Eq. 38). As noted in the text, the uncertainty of the adopted
distance D to NGC4429 was not propagated through the tabulated
uncertainties of the quantity σeff, los. This is because an error on the
distance to NGC4429 translates to a systematic (rather than random)
scaling of some of the measured quantities (no effect on the others), here
Rc ∝ D, Ω0 ∝ D−1 and T0 ∝ D−2 in Eq. 38. Oort’s constants A and B

can be derived using respectively A = T
4Ω and B = T

4Ω −Ω. Table 3 is
available in its entirety in machine-readable form in the electronic edition.

to be positive in most cases (i.e. Eext,plane > 0). Therefore, the main
effect of the external gravity on the clouds of NGC4429 is to make
them less bound (in the plane).

Effective parameters.OurMVT (Eq. 18) can bewritten simply
as

Ï
2
≈

(
3Mσ2

sg,los − 3bsGM2/Rc
)
+ Eext

≈
3bsGM2

Rc

*.
,

σ2
sg,losRc

bsGM
+

Eext
3bsGM2/Rc

− 1+/
-

(30)

(see Eq. 25). However,

αsg,vir ≡
σ2
sg,losRc

bsGM
(31)

(see Eq. 13), the traditional Virial parameter regulated by self-
gravity only, and we define

β ≡
Eext

3bsGM2/Rc
, (32)

the ratio between the contribution of external gravity and the
(absolute value of the) cloud’s self-gravitational energy (|Usg | =

3bsGM2/Rc), so that

Ï
2
≈

3bsGM2

Rc

(
αsg,vir + β − 1

)
. (33)
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This naturally leads us to define an effective Virial parameter

αeff,vir ≡ αsg,vir + β (34)

such that

Ï
2
≈

3bsGM2

Rc

(
αeff,vir − 1

)
. (35)

Thus, just like the standard Virial parameter, this effective Virial
parameter informs on the dynamical stability of a cloud. If αeff,vir ≈
1, the cloud is gravitationally bound and in Virial equilibrium even
in the presence of the external (i.e. galactic) gravitational potential.
If αeff,vir � 1, the cloud is unlikely to be bound (i.e. it is transient
unless confined by other forces). If αeff,vir . 1, the molecular cloud
is likely to collapse. For clouds that are (marginally) gravitationally
bound, we again require αeff,vir ≤ αvir,crit = 2 (Kauffmann et al.
2013, 2017), or equivalently β ≤ 1 if an internal Virial equilibrium
is established by self-gravity (i.e. if αsg,vir ≈ 1; see Eq. 34).

Equivalently, from Eq. 13, we can define an effective velocity
dispersion

σ2
eff,los = αeff,vir bsGM/Rc , (36)

and thus our modified Virial equation (Eq. 18) can be simplified to

Ï
2
≈

(
3Mσ2

eff,los − 3bsGM2/Rc
)
. (37)

The parameters αeff,vir (via Eq. 35) or equivalently σeff,los (via
Eq. 37) thus embody our MVT and offer a straightforward method
to test the gravitational boundedness of a cloud in the presence of
an external (i.e. galactic) gravitational field.

Of course, our expressions are of no use in practice if the
external contribution Eext can not be evaluated (see Eq. 25). Indeed,
without knowledge of σgal,z, σgal,r and σgal,t, none of β, αeff,vir or
σeff,los can be evaluated. However, bymaking increasingly stringent
assumptions, we show in Appendix B that it is possible to evaluate
all these quantities from observable quantities alone.We thus briefly
summarise those assumptions and their consequences here, but refer
to Appendix B for detailed calculations.

First, we assume clouds are in vertical hydrostatic equilibria,
i.e.σ2

gal,z ≈ beν20 Z2
c (Eq. 27), so that the contribution of the external

potential to the gravitational energy budget of each cloud in the
vertical direction vanishes, i.e. Eext,z ≈ 0 (see Eq. 26). Second, we
assume the motions associated with external gravity to be isotropic

in the plane, i.e. σ2
gal,r = σ2

gal,t ≈
σ2

obs, los−σ
2
gs, los

sin2 i (Eq. 29). Third,
we assume σ2

sg,los ≈ σ
2
gs,los (or equivalenty σ

2
sg,los � σ2

gal,z cos
2 i;

see Eq. 20) and thus αsg,vir ≈ αgs,vir. As shown in Appendix B, all
three assumptions taken together lead to

Eext ≈ M


2
(
σ2
obs,los − σ

2
gs,los

)
sin2 i

+ be(T0 − 2Ω20)R2
c


,

σ2
eff,los ≈ σ

2
gs,los +

1
3



2
(
σ2
obs,los − σ

2
gs,los

)
sin2 i

+ be(T0 − 2Ω20)R2
c


and

αeff,vir ≈
σ2
gs,losRc

bsGM
+

Rc
3bsGM



2
(
σ2
obs,los − σ

2
gs,los

)
sin2 i

+ be(T0 − 2Ω20)R2
c


(38)

(see Eqs. 25, 36, 34, 23 21 and 32). More general forms for a
homogeneous ellipsoidal cloud are provided in Appendix B. These
Eqs. 38 represent our final MVT, whose power lies in the fact
that all of Eext, σeff,los and αeff,vir can be evaluated directly from

observations. Indeed, as mentioned previously, the measured M
(Mgas), Rc, σobs,los and σgs,los are listed for each spatially-resolved
cloud in Table 1, while Ω0, T0 and the resulting σeff,los (and thus
αeff,vir; see Eq. 36) are listed in Table 3.

The first termon theRHSof Eqs. 38 (except for Eext) comprises
the gas turbulent motions associated with a cloud’s self-gravity,
the second term denotes the gravitational motions associated with
external gravity in the plane, and the last term encompasses the
external/galactic forces on the cloud.

An extended Virial theorem including the background tidal
field was formulated by Chen et al. (2016), but they only evaluated
two representative cases, namely a non-rotating cloud (σ2

eff,los =

σ2 + be(T0 − 2Ω20)R2
c/3; Eq. 17 in their paper) and a tidally-locked

cloud (σ2
eff,los = σ

2+beT0R2
c/3; Eq. 18 in their paper). Our derived

MVT is valid for more general cases. In fact, we obtain the same
results as Chen et al. (2016) for their two particular cases. For a
non-rotating cloud, σgal,r = σgal,t = 0, and we derive σ2

eff,los =

σ2
sg,los + be(T0 − 2Ω20)R2

c/3. For a tidally-locked cloud (i.e. Oort’s
constants A = 0 and B = Ω), (σ2

gal,r + σ
2
gal,t) ≈ 2beΩ20R2

c (as
σ2
gal,r ≈ σ2

gal,r ≈ beΩ20R2
c ; see Eq. B23 in Appendix B), and we

derive σ2
eff,los = σ2

sg,los + beT0R2
c/3. We note that the velocity

dispersion σ2 used by the extended Virial theorem of Chen et al.
(2016) should be the internal turbulent velocity dispersion rather
than the observed (i.e. total) velocity dispersion.

Overall, to take into account the influence of external gravity
on the dynamical state of a cloud, one should use the effective
virial parameter αvir,eff and effective velocity dispersion σeff,los.
The latter quantifies the net kinetic energy that balances the cloud’s
(self-)gravitational potential energy. The kinetic energy obtained
using σeff,los includes the cloud’s internal turbulent kinetic energy
due to self-gravity as well as the contributions from the external
gravity. Ifαeff,vir > αsg,vir orσ2

eff,los > σ2
sg,los, external gravity acts

against self-gravity andmakes the cloud less bound (i.e. Eext > 0). If
αeff,vir < αsg,vir orσ2

eff,los < σ2
sg,los, external gravity acts with self-

gravity and contributes to the cloud’s confinement and/or collapse
(i.e. Eext < 0). If αeff,vir = αsg,vir orσ2

eff,los = σ
2
sg,los, then external

gravity has no effects on the cloud’s dynamical state (i.e. Eext = 0).
Therefore, the results presented in Figs. 9 and 12, that respectively
adopt σobs,los and σgs,los, do not reflect the real dynamical states of
the NGC4429 clouds. Specifically, σobs,los embodies gas motions
associated with self-gravity and external gravity, but it ignores the
extra binding energy provided by galactic forces and the centrifugal
force (i.e. the term be(T0 − 2Ω20)M R2

c in Eqs. 18, 25 and 28, that is
negative in almost all cases), so it overestimates the effect of external
gravity on the clouds. Conversely, σgs,los only reflects gas motions
associated with self-gravity, so it does not include the contribution
of external gravity to a cloud’s gravitational energy budget.

5.6 Cloud scaling relations using the effective velocity
dispersion

In consequence, we revisit yet again the three scaling relations that
describe the dynamical states of the clouds in NGC4429, this time
using the effective velocity dispersion σeff,los defined in Eqs. 38. In
most cases our derived σeff,los is larger than the gradient-subtracted
velocity dispersion σgs,los, and in all cases it is smaller than the
observed velocity dispersion σobs,los (see Fig. 11). This implies
that external gravity generally makes the clouds less bound. We
nevertheless note that we find a few clouds where σeff,los is smaller
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than σgs,los, suggesting external gravity contributes to the cloud’s
confinement and/or collapse in these few cases. As expected in
Eq. 38, these clouds all have σgs,los nearly equal to σobs,los, and
thus low velocity gradients of 0.1 − 0.2 km s−1 pc−1.

The left panel of Fig. 13 (data points and black solid line)
presents the σeff,los – Rc relation for the 141 spatially-resolved
clouds of NGC4429, where we have assumed be = 1

5 (homogeneous
clouds). The relation appears to have a slightly steeper slope (0.72±
0.18) than that of MW clouds (0.5 ± 0.05; Solomon et al. 1987),
but the correlation is very weak (with a Spearman rank correlation
coefficient of 0.13).

The Virial masses of the spatially-resolved clouds derived us-
ing σeff,los, referred to as effective Virial masses

Meff,vir ≡
σ2
eff,losRc

bsG
(39)

(see Eq. 7), are compared to the CO-derived gaseous masses Mgas
in the middle panel of Fig. 13, where we have again assumed bs =
1
5 (spherical homogeneous clouds). A linear fit between effective
Virial and gaseous mass yields (black solid line in the middle panel
of Fig. 13)

log
(

Meff,vir
M�

)
= (−7.25± 1.54) + (2.47± 0.30) log

(
Mgas
M�

)
. (40)

A log-normal fit to the distribution of the resulting effective Virial
parameters,

αeff,vir ≡
Meff,vir

M
=

Meff,vir
Mgas

(41)

(see also Eq. 36), shown in the first panel of Fig. 14, yields a
mean 〈αeff,vir〉 = 2.15 ± 0.12 and a standard deviation of 0.35 dex.
This mean is higher than 〈αsg,vir〉 ≈ 〈αgs,vir〉 = 1.28 ± 0.04 (see
Section 5.4), suggesting that the main effect of external gravity
on the clouds is to make them less bound. However, since many
NGC4429 clouds have a mean effective virial parameter close to
the critical value regarded as the boundary between gravitationally-
bound and unbound clouds (Kauffmann et al. 2013, 2017), i.e.
〈αeff,vir〉 ≈ αvir,crit = 2, the clouds should still be marginally grav-
itationally bound.

The inset in the first panel of Fig. 14 shows the distribu-
tion of the measured β (Eq. 32). A Gaussian fit yields a mean
〈β〉 = 0.71 ± 0.33 and a standard deviation of 1.05. Given these
β ≈ 1, the contribution of external gravity to each clouds’ energy
budget is generally significant, on average of the order of (and fre-
quently exceeding) the self-gravitational energy (see also Eq. 34).
We will discuss this aspect further in Section 6.2. However, we note
immediately that a noticeable fraction of spatially-resolved clouds
(25/141 or ≈ 18%) have β ≤ 0. These negative β could be due to
observational uncertainties, and thus inaccuracies when estimating
αeff,vir (or Eext), but some clouds may well have their gas mo-
tions decoupled from global galaxy rotation. Indeed, we found that
clouds with β ≤ 0 have larger discrepancies between their observed
and modelled angular momenta (with a median projected angular
velocity discrepancy factor of ≈ 1.9 and a median position angle
difference of ≈ 24◦; see Section 4.2) than clouds with β > 0 (with a
median projected angular velocity discrepancy factor of ≈ 1.3 and
a median position angle difference of ≈ 13◦). It thus seems that
clouds with β ≤ 0 only weakly follow the galaxy orbital rotation.
These clouds are therefore presumably not as strongly affected by
galactic shear and tidal forces, and they can become more virialised
(with 〈αeff,vir〉 ≈ 0.9).

The right panel of Fig. 13 shows the σeff,losR−1/2c – Σgas

relation for the 141 spatially-resolved clouds of NGC4429. The data
points are mostly distributed away from the black solid diagonal line
(SVE), but they are clustered around the black dotted diagonal line.
This again suggests that, although the NGC4429 clouds are not
virialised, they could be marginally gravitationally bound.

5.7 Cloud scaling relations considering ellipsoidal clouds

By using a single measure of size for each cloud (Rc; see Sec-
tion 3.1), our analysis has so far implicitly assumed that each cloud
is axisymmetric in the orbital plane. However, the effects of exter-
nal gravity on a cloud (and its contribution Eext to a cloud’s energy
budget) also formally depend on the actual shape and position an-
gle of the cloud (see Appendices A and B). To assess the impacts
of this assumption, we now assume instead that each cloud has an
ellipsoidal geometry, with semi-axis Zc perpendicular to the orbital
plane and semi-major axis Xc (at a position angle φPA with respect
to the radial/galactocentric direction) and semi-minor axis Yc in the
orbital plane.

If an ellipsoidal cloud is homogeneous, Appendices A and B
show that Eqs. 38 (that assume vertical equilibrium, isotropy in the
equatorial plane and σsg,los ≈ σgs,los) become

Eext ≈ M


2
(
σ2
obs,los − σ

2
gs,los

)
sin2 i

+ beT0
(
X2
c cos

2 φPA + Y2
c sin2 φPA

)
− beΩ20

(
X2
c + Y2

c
) 

,

σ2
eff,los ≈ σ

2
gs,los +

1
3



2
(
σ2
obs,los − σ

2
gs,los

)
sin2 i

+ beT0
(
X2
c cos

2 φPA + Y2
c sin2 φPA

)
− beΩ20

(
X2
c + Y2

c
) 

and

αeff,vir ≈
σ2
gs,losRc

bsGM
+

Rc
3bsGM



2
(
σ2
obs,los − σ

2
gs,los

)
sin2 i

+ beT0
(
X2
c cos

2 φPA + Y2
c sin2 φPA

)
− beΩ20

(
X2
c + Y2

c
) 

.

(42)

These equations thus represent our final MVT (Eqs. 38) for the case
of a homogenous ellipsoidal cloud.

We note that Xc, Yc and φPA in Eqs. 42 should be measured in
the cloud’s orbital plane (i.e. the galaxy’s equatorial plane) rather
than the sky plane. To correct for the effects of inclination, we thus
create an image of each cloud deprojected to a face-on view, from
whichwemeasure the semi-major and semi-minor axes analogously
to Rc in Section 3.1 and the position angle with respect to the
radial/galactocentric direction.

The left panel of Fig. 15 presents the σeff,los – Rc relation for
the 141 spatially-resolved clouds of NGC4429 assuming they are
ellipsoidal and be = 1

5 (homogeneous clouds). The relation has a
slope of 0.62 ± 0.21, consistent with that of axisymmetric clouds
(0.72±0.18; see Section 5.6), and is thus again slightly steeper than
that of MW clouds (0.5 ± 0.05; Solomon et al. 1987), although the
correlation is again very weak (with a Spearman rank correlation
coefficient of 0.09.

The effective Virial masses of the 141 spatially-resolved clouds
(Meff,vir ≡ σ2

eff,losRc/bsG) derived assuming ellipsoidal shapes
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Figure 13. Same as Figs. 9 and 12, but using our effective measure of velocity dispersion σeff, los for axisymmetric clouds.
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Figure 14. Distributions of the effective virial parameter αvir,eff and the external energy parameter β (insets) of the 141 spatially-resolved clouds of NGC4429,
calculated from both observations (first and second panels; see Section 5.5) and our shear model (third and fourth panels; see Section 6.1), assuming both
axisymmetric (first and third panels) and ellipsoidal (second and fourth panels) clouds. Log-normal (αvir,eff ) and normal (β) fits are overlaid (red solid lines).
The vertical red dashed lines indicate the means of the fits, while the vertical black dashed and dotted lines indicate αvir = 1 and 2 (β = 0 and 1), respectively.
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Figure 15. Same as Figs. 9, 12 and 13, but using our effective measure of velocity dispersion σeff, los for ellipsoidal clouds.

(see Eq. 7;where Rc is defined as
√

XcYc) are compared to the CO-
derived gaseous masses Mgas in the middle panel of Fig. 15. We
have again assumed bs1 =

1
5 (homogeneous clouds), but calculated

bs2 , that quantifies the effects of the ellipticity, separately for each
cloud using the method provided by Bertoldi & McKee (1992) (see
Appendix A for more details). We find the exact cloud morphology
has negligible effects on the quantities regarding to the cloud’s self-
gravity (e.g. Usg and αsg), as bs2 is approximately unity (〈bs2 〉 ≈
0.95). A linear fit between the effective Virial and gaseous masses
(black solid line in the middle panel of Fig. 15) yields a slope of

4.27 ± 0.70. A log-normal fit to the distribution of the effective
Virial parameters (αeff,vir) derived assuming ellpsoidal clouds (see
Eqs. 41 and 42), shown in the second panel of Fig. 14, yields a mean
〈αeff,vir〉 = 2.59 ± 0.19 and a standard deviation of 0.38 dex, only
slightly larger than that estimated assuming axisymmetric clouds
(〈αeff,vir〉 = 2.15 ± 0.12; see Section 5.6), and again higher than
〈αsg,vir〉 ≈ 〈αgs,vir〉 = 1.28±0.04 (see Section 5.4), suggesting that
the main effect of external gravity on the clouds is to make them
less bound irrespective of their exact shapes.

The inset in the second panel of Fig. 14 shows the distri-
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bution of the resulting β for the 141 spatially-resolved clouds of
NGC4429, calculated assuming ellipsoidal clouds. A Gaussian fit
to the distribution yields a mean 〈β〉 = 0.91 ± 0.35 and a standard
deviation of 1.73, again slightly larger than that derived assum-
ing axisymmetric clouds (〈β〉 = 0.71 ± 0.33; see the first panel of
Fig. 14 and Section 5.6)). As we shall discuss in Section 6.3, this
is primarily due to the radially-elongated shapes of the NGC4429
clouds. The differences are however minor, and it is still true that
〈αeff,vir〉 ≈ αvir,crit = 2 and 〈β〉 ≈ 1 for ellipsoidal clouds. There-
fore, the evidence remains that the NGC4429 clouds appear to be
marginally gravitationally bound.

The right panel of Fig. 15 shows the σeff,losR−1/2c – Σgas
relation for the 141 spatially-resolved clouds, derived assuming
ellipsoidal clouds and be = 1

5 . Just as for axisymmetric clouds,
the data points are generally above the black solid diagonal line
(SVE) but are centered on the black dotted diagonal line. This thus
suggests again that, irrespective of their exact shapes, the NGC4429
clouds are probably not virialised but are likely to be marginally
gravitationally bound.

In summary, the dynamical states of the NGC4429 clouds
are regulated by both self-gravity and external (i.e. galactic) grav-
ity. Internal Virial equilibria between the clouds’ turbulent ki-
netic energies and their own gravitational energies have been at-
tained, regardless of the presence of external gravity. The ad-
ditional contribution of external gravity to the clouds’ gravita-
tional energy budgets includes two parts: the supporting kinetic
energy from gravitational motions ( 12 Mσ2

gal,z in the vertical direc-
tion and 1

2 M (σ2
gal,r + σ

2
gal,t) in the plane) and the effective po-

tential energy of the galactic and centrifugal forces (−beMν20 Z2
c

in the vertical direction and be(T0 − 2Ω20)M R2
c in the plane). If

we assume the NGC4429 clouds are in vertical hydrostatic equi-
libria (i.e. Eext,z ≈ Mσ2

gal,z − beMν20 Z2
c = 0), gravitational mo-

tions are isotropic in the orbital plane (i.e. σgal,r = σgal,t) and
σsg,los ≈ σgs,los, we can calculate the contributions of external
gravity to the clouds’ energy budgets (Eext) directly from the ob-
servations. These are positive in most cases and on average of the
order of the clouds’ self-gravitational energies (i.e. β ≡ Eext

|Usg |
≈ 1).

The derived effective virial parameters have a mean of ≈ 2, i.e.
〈αeff,vir〉 ≈ αvir,crit = 2. Both results are essentially independent of
the exact cloud shapes (i.e.whetherwe assume axisymmetric or ellp-
soidal clouds), suggesting that the NGC4429 clouds are marginally
gravitationally bound due to the combined effects of self-gravity
and external gravity.

6 DISCUSSION

6.1 Shear motions and non-zero Eext

As gravitational motions appear to play an important role regulat-
ing the dynamics and boundedness of the clouds in NGC4429, we
discuss in more depth in this section the clouds’ motions driven by
the external (i.e. galactic) gravitational forces. As in Appendix A2,
we adopt a local Cartesian coordinate system centred on the centre
of mass (COM) of each cloud, that both orbits around the galaxy
centre with the COM (with azimuthal velocity Ω0R0) and rotates
on itself (with angular velocity Ω0), such that the x′ axis always
points in the direction of increasing galactocentric radius and the y′
axis always points in the direction of orbital rotation (see Fig. A1).
As shown in Appendix A2, in this rotating frame the equations of

motions driven by external gravity can be written as




a′ext,x′ ≈ T0x′ + 2Ω0v′gal,y′ ,

a′ext,y′ ≈ −2Ω0v
′
gal,x′ ,

(43)

where x′, v′gal,x′ and a′ext,x′ are the components of the position

vector ~d′plane, velocity vector ~v
′
gal and acceleration vector ~a

′
ext along

the x̂′ direction, respectively, similarly for y′, v′gal,y′ and a′ext,y′ . The
T0x′ term represents the tidal force while the terms 2Ω0v′gal,y′ and
−2Ω0v′gal,x′ represent the Coriolis force.

As discussed in Appendix A2, this set of coupled differential
equations has solution




x′ = S1 sin(κ0t + ϕ) + S2 ,

y′ =
2Ω0
κ0

S1 cos(κ0t + ϕ) − 2A0 S2 t + S3 ,
(44)

where κ0 is the epicyclic frequency evaluated at the cloud’s COM
(κ20 ≡

(
R dΩ2 (R)

dR + 4Ω2(R)
)
|R=R0 ), A0 is Oort’s constant A quan-

tifying shear evaluated at the cloud’s CoM (A0 ≡ −
R
2

dΩ(R)
dR |R=R0 ),

and S1, S2 and S3 (as well as the arbitrary phase ϕ) are constants that
depend on the given boundary (e.g. initial) conditions. Equations 44
show that the gravitational motions associated with external gravity
have two contributions: epicyclic motions around the cloud’s COM
(i.e. the “guiding centre”; see e.g. Meidt et al. 2018), indicated by
the trigonometric terms S1 sin(κ0t+ϕ) and 2Ω0

κ0
S1 cos(κ0t+ϕ), and

linear shear motion, indicated by the −2A0 S2 t term (e.g. Gammie
et al. 1991; Tan 2000; Binney 2020).

It is worth noting that, in a model where all fluid elements of a
cloud move on perfectly circular orbits (around the galaxy centre)
determined by the galactic potential, the epicyclic amplitudes vanish
and the gravitational motions are completely dominated by the shear
motions, i.e.




x′ = S2 ,
y′ = −2A0 S2 t + S3 .

(45)

Hereafter we name this model, where all fluid elements of a cloud
are assumed to populate perfectly circular orbits determined by the
galactic potential, the “shearmodel”.We thus define a shear velocity

vshear ≡ −2A0 S2 , (46)

where S2 is the distance of the fluid element from the cloud’s centre
along x̂′ (see, again, Fig. A1). Interestingly, as we shall demonstrate
below, the bulk motions observed in the NGC4429 clouds appear to
be strongly dominated by gravitational shear motions, with little or
no evidence of gravitational epicyclicmotions, i.e. the fluid elements
of the clouds seem to populate nearly circular orbits (around the
galaxy centre) determined by the galactic potential.

First, the measured velocity gradients across the spatially-
resolved clouds of NGC4429, and the position angles of the rotation
axes of these clouds, are both consistent with those predicted by as-
suming purely circular orbital motions (see Fig. 8 and Section 4.2,
where both the measured and modelled quantities are calculated
in the sky plane). This provides strong evidence that the bulk mo-
tions of the NGC4429 clouds are dominated by gravitational shear
motions.

Second, if all fluid elements of a cloud indeed follow circular
orbits determined by the galactic potential, then we can predict
the RMS velocities of the clouds’ gravitational motions in both the
radial and azimuthal directions: (σmod

gal,r)
2 = beΩ20R2

c and (σmod
gal,t)

2 =
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Figure 16. Comparison of the observed and modelled line-of-sight velocity
dispersion of the 141 spatially-resolved clouds of NGC4429. Data points
are colour-coded by region. The black solid diagonal line shows the 1 : 1
relation.

be(Ω0 − 2A0)2R2
c (see Eqs. B23 in Appendix B). We can thus also

predict their line-of-sight velocity dispersions using Eq. 19:

σ2
mod,los ≈σ

2
sg,los +

(
(σmod

gal,r)
2 sin2 θ + (σmod

gal,t)
2 cos2 θ

)
sin2 i

+ σ2
gal,z cos

2 i

≈ πbsRcGΣgas + beR2
c
(
Ω
2
0 sin

2 θ + (Ω0 − 2A0)2 cos2 θ
)
sin2 i ,

(47)

where we have used αsg,vir ≈ 1 (and thus σ2
sg,los ≈ πbsRcGΣgas;

see Eqs. 24 and 31) and σ2
gal,z cos

2 i ≈ 0. We compare in Fig. 16
the observed line-of-sight velocity dispersions σobs,los of the 141
spatially-resolved clouds of NGC4429 with those predicted from
our shear model σmod,los. We generally find a good agreement
between the two, albeit with a few exceptions. This thus reinforces
our inference that the bulk motions of the NGC4429 clouds are
dominated by gravitational shear motions.

Lastly, if all fluid elements of a cloud follow pure epicyclic
motions described by the trigonometric terms in Eqs. 44, the cloud
is necessarily in Virial equilibrium (Meidt et al. 2018) and thus the
contribution of external gravity should vanish, i.e. Eext = 0 and
αeff,vir ≈ αsg,vir ≈ 1. However, Eext (or equivalently β) measured
from our observations of spatially-resolved clouds are clearly not
zero (see Section 5.5), suggesting that the bulk motions within the
NGC4429 clouds can not be dominated by gravitational epicyclic
motions. In turn, we expect the measured Eext (and β) to more
closelymatch those predicted from gravitational shearmotions only.
As our shear model assumes that all fluid elements of a cloud move
on perfectly circular orbits determined by the galactic potential, this

model yields (cf. Eqs. 38)

Emod
ext = 4beA2

0M R2
c ,

(σmod
eff,los)

2 = σ2
sg,los +

4beA2
0R2

c
3

≈ σ2
gs,los +

4beA2
0R2

c
3

and

αmod
eff,vir =

σ2
sg,losRc

bsGM
+
4beA2

0R3
c

3bsGM

≈
σ2
gs,losRc

bsGM
+
4beA2

0R3
c

3bsGM
,

(48)

where we have again assumed vertical equilibrium, isotropy in the
equatorial plane and σsg,los ≈ σgs,los. The detailed derivations of
these equations and their more general forms for a homogeneous
ellipsoidal cloud are provided in Appendix B.

Unsurprisingly, in the shear model the overall effect of external
gravity primarily depends on the shear arising from the differential
rotation of the galaxy disc (i.e. Oort’s constant A).We note that Emod

ext
can be understood as the rotational kinetic energy of a cloud with
angular velocity ωshear = −2A0, as generally the rotational kinetic
energy Erot =

1
2 Iω2 and I = 2beM R2

c for a spherical cloud. Our
derived ωshear is the same as that derived by Goldreich & Lynden-
Bell (1965) and Fleck & Clark (1981), and it arises naturally when
considering fluid element motions near the tidal radius (see Sec-
tion 6.3). For a galaxy with a solid-body circular velocity curve,
the external gravity has no effect on the cloud, i.e. A = 0 and thus
Emod
ext = 0. The distributions of αmod

vir,eff and βmod ≡
Emod
ext
|Usg |

for ax-
isymmetric and ellipsoidal clouds are shown in the third and fourth
panels of Fig 14, respectively, for the 141 spatially-resolved clouds
of NGC4429. For clouds assumed to be axisymmetric, a log-normal
fit to the distribution of αmod

vir,eff yields a mean 〈αmod
eff,vir〉 = 2.02±0.03

and a standard deviation of 0.10 dex, while a Gaussian fit to the dis-
tribution of βmod yields amean 〈βmod〉 = 0.79±0.37 and a standard
deviation of 0.36. For clouds assumed to be ellipsoidal, analogous
fits yield 〈αmod

eff,vir〉ellipsoid = 2.35± 0.07 and a standard deviation of
0.17 dex, and 〈βmod〉ellipsoid = 0.90±0.28 and a standard deviation
of 0.46. Both sets of predictions therefore compare very well with
our measurements (〈αeff,vir〉 = 2.15 ± 0.12 and 〈β〉 = 0.71 ± 0.33
for axisymmetric clouds and 〈αeff,vir〉ellipsoid = 2.59 ± 0.19 and
〈β〉ellipsoid = 0.91 ± 0.35 for ellipsoidal clouds; see Sections 5.6
and 5.7, respectively), although with less scatter as expected (our
model predictions do not take into account measurement errors).
This thus supports yet again our conclusion that the bulk motions
of the clouds in NGC4429 are primally driven by shear motions.
Indeed, our shear model provides good estimates of Eext, αeff,vir
and β for the spatially-resolved clouds of NGC4429.

It is nevertheless worth noting that, while our shear model
accounts for the observed bulk motions of the clouds well, there are
also some discrepancies. Our shear model overestimate the angular
velocities of the spatially-resolved clouds of NGC4429 by a median
factor of ≈ 1.5−2.0, and the modelled and observed position angles
have a median angle difference of ≈ 16◦ − 19◦ (see Section 4.2).
Moreover, there is considerable scatter about the 1 : 1 correlation
between the observed velocity dispersionsσobs,los and themodelled
velocity dispersions σmod,los (Fig. 16). It therefore appears that,
although the effects of external gravity are dominant, other factors
also noticeably affect the dynamics of clouds, so that the clouds’s
fluid elements do not follow pure shear motions. We discuss one
such factor, self gravity, below.
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6.2 Equilibrium between self-gravity and external-gravity

In previous sections, we established that the contributions of ex-
ternal gravity to the gravitational energy budgets of the NGC4429
clouds (i.e. Eext) are clearly non-zero, this whether these contribu-
tions are calculated from observations (Section 5.5) or our shear
model (Section 6.1). However, Eext on its own does not determine
whether a cloud is gravitationally bound or not. As a robust thresh-
old between gravitationally bound and unbound objects, we have
adopted a critical virial parameter αvir,crit = 2 (Kauffmann et al.
2013, 2017). When the effective virial parameter αeff,vir is equal to
this critical value, 2|Usg | = 2Eturb + Eext (Usg ≡ −

3bsGM2

Rc
), where

Eturb ≡
3
2

Mσ2
sg,los (49)

is the kinetic energy of the turbulent motions associated with self-
gravity (see Eqs. 34, 32 and 31). If a cloud is thus marginally
gravitationally bound (i.e. αeff,vir = αvir,crit = 2) and an internal
Virial equilibrium is established by self-gravity (i.e. αsg,vir ≈ 1), as
is the case for the NGC4429 clouds, we further obtain




2Eturb +Usg = 0 ,
Eext +Usg = 0 .

(50)

The top equation indicates an equilibrium between a cloud’s self-
gravitational energy and its turbulent kinetic energy, while the
bottom equation indicates an equilibrium between a cloud’s self-
gravitational energy and its energy contributed by external gravity.

In general, one needs to compare Eext with the self-
gravitational energy of a cloud to assess its boundedness. If
Eext � |Usg | (i.e. β � 1), then external gravity is much more
important and the cloud is not gravitationally bound (unless other
forces are present). If Eext � |Usg | (i.e. β � 1), then self-gravity is
much more important and the effects of external gravity are negligi-
ble. If Eext ≈ |Usg | (i.e. β ≈ 1), then external gravity and self-gravity
are equally important and the cloud reaches a state of equilibrium
between self-gravity and external gravity. Here, we have found that
the NGC4429 clouds have Eext comparable to (the absolute val-
ues of) their self-gravitational energies, with both 〈β〉 ≈ 1 (see
Section 5.5) and βmod ≈ 1 (see Section 6.1). The energy of each
cloud contributed by external gravity Eext thus roughly equals its
self-gravitational energy and the cloud remains marginally gravita-
tionally bound.

Tidal radius. In the case where the gravitational motions of the
clouds are completely dominated by shear motions, as is the case
for the NGC4429 clouds (see Section 6.1), the bottom equation
of Eqs. 50 then indicates an equilibrium between a cloud’s self-
gravitational energy and its kinetic energy associated with those
shear motions. Another way to assess wether self-gravity or external
gravity is more important is thus to consider the tidal radius of each
cloud, that defines the volume over which self-gravity dominates
over external gravity. Here, we adopt the tidal radius Rt defined
by Gammie et al. (1991) and Tan (2000), that is the radial distance
from the cloud’s center at which the shear velocity due to differential
galactic rotation (i.e. our previously-defined vshear; see Eq. 46) is
equal to the escape velocity from the cloud:

Rt ≡ (1 − βcirc,0)−2/3
(

2M
Mgal,0

)1/3
R0 , (51)

where as before M is the cloud’s mass and R0 the galactocentric
distance of the cloud’s CoM in the plane of the disc, Mgal,0 is
the total galactic mass interior to R0, βcirc,0 ≡

d ln Vcirc (R)
d ln R |R=R0 ,

and as before Vcirc(R) is the galaxy circular velocity curve. Equa-
tion 51 assumes a spherical galaxy mass distribution, i.e. Mgal(R) =
Vcirc(R)2R/G, and can therefore be simplified to

Rt = *
,

G

2A2
0

+
-

1/3

M1/3 . (52)

The tidal radius defined in this manner is the maximum size of a
cloud (of a given mass M) allowed by galactic rotational shear.

Interestingly, for a cloud with Rc = Rt, we have

βmod(Rc = Rt) ≡
Emod
ext (Rc = Rt)
|Usg(Rc = Rt) |

=
4beA2

0M R2
t

3bsGM2/Rt

=
2
3

be
bs

≈ 1

(53)

(see Eqs. 48 and 32), that is essentially identical to the measured
β of the spatially-resolved clouds of NGC4429 (assuming axisym-
metric clouds; see Sections 5.6 and 5.7). In our shear model, the
tidal radius given by Eq. 52 thus approximately corresponds to the
radial distance at which βmod ≈ 1. It is thus clear the reason a
cloud with βmod � 1 becomes gravitationally unbound is because
the shear motions are so strong that the (outer) fluid elements man-
age to escape from the self-gravitational influence of the cloud.
Figure 17 compares the observed sizes (radii Rc) of the spatially-
resolved clouds of NGC4429 with their tidal radii expected from
Eq. 52. There is generally a very good agreement, albeit with a
few exceptions. The NGC4429 clouds therefore seem to reach their
maximum sizes allowed by galactic shear, further supporting our
conclusion that the NGC4429 clouds have reached a rough equilib-
rium between self-gravity and external gravity and thereby manage
to remain marginally gravitationally bound. A few clouds in the
inner region have sizes much larger than their tidal radii, suggesting
that these inner clouds can not be gravitationally bound due to shear,
and indeed all these clouds have high β (β ≈ 4 – 6) and αeff,vir
(αeff,vir ≈ 5 – 7).

Size and surface density. For a cloud to be marginally gravi-
tationally bound, the contribution of external gravity to the cloud’s
energy budget must not exceed the cloud’s self-gravitational en-
ergy, i.e. βmod = Emod

ext /|Usg | = 4beA2
0M R2

c/| − 3bsGM2/Rc | =

4beA2
0Rc/3πbsGΣgas ≤ 1 (see Eqs. 48 and 32). This implies that,

at a given surface density, there is a maximum size (Rshear) for a
cloud to stay marginally bound against tidal/shear disruptions:

Rc ≤ Rshear ≈
3πbsGΣgas
4beA2

0
. (54)

Equivalently, at a given size, there is a minimum surface density
(Σshear) for a cloud to remain marginally bound:

Σgas ≥ Σshear ≈
4beA2

0Rc

3πbsG
. (55)

The spatially-resolved clouds ofNGC4429 have amean surface
density 〈Σgas〉 ≈ 160 M� pc−2 and a mean Oort’s constant A0 (i.e.
shear) 〈A0〉 ≈ 0.3 km s−1 pc−1. A simple calculation using Eq. 54
(and assuming bs = be = 1

5 for spherical homogeneous clouds as
usual) then suggests that, if limited by shear, the mean size 〈Rshear〉
of the clouds inNGC4429 should be≈ 18 pc, thatmatches extremely
well the observed mean size 〈Rc〉 ≈ 17 pc. We thus find again that
typical clouds in NGC4429 reach their maximal sizes (or minimum
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Figure 17. Comparison of the observed cloud size and expected tidal radius
of the 141 spatially-resolved clouds of NGC4429. Data points are colour-
coded by region. The black solid diagonal line shows the 1 : 1 relation.

surface densities) allowed by shear, and are thus not limited by other
processes (shear rules!).

Finally, as we have pointed out above, the effects of self-gravity
are generally of the same order as those of external (i.e. galactic)
gravity: β ≈ 1 (see Section 5.6) and Rc ≈ Rt. The motions of the
fluid elements within these marginally gravitationally-bound clouds
will therefore not completely follow those prescribed by external
gravity alone (i.e. the shear motions governed by Eqs. 45). This
is again expected, as if the bulk motions of cloud fluid elements
were to exactly follow pure shear motions, the clouds could not be
(marginally) gravitationally bound.

Therefore, the equations of (bulk) motions must include addi-
tional terms due to self-gravity (cf. Eqs. 43):




a′ext,x′ ≈ T0x′ + 2Ω0v′gal,y′ −
∂Φsg
∂x′

,

a′ext,y′ ≈ −2Ω0v
′
gal,x′ −

∂Φsg
∂y′

,

(56)

where Φsg is the cloud’s own (self) gravitational potential. Solving
these coupled differential equations is very difficult and beyond the
scope of this paper, although we do derive approximate analytic
solutions in Section 6.3 for a particular case. We refer readers to
Julian & Toomre (1966), Gammie et al. (1991) and Binney (2020)
for some numerical solutions.

Gammie et al. (1991) suggested that Eqs. 45 can provide good-
zeroth order solutions to Eqs. 56 at large radii (where Rc ≥ Rt).
Therefore, the bulk motions of gravitationally-unbound (Rc � Rt)
clouds should roughly approximate the gravitational shear motions
described by Eqs. 45. However, unlike gravitationally-unbound
clouds, where the discrepancies between bulk motions and shear
motions are expected to be negligible, marginally gravitationally-
bound clouds should have bulk motions that deviate considerably
from shear motions. This is because the discrepancies between bulk
motions and shear motions should increase with the importance of
self-gravity. Indeed, while the bulk motions of the NGC4429 clouds
do approximately follow gravitational shear motions, noticeable de-

viations are also found (see Section 6.1). We provide approximate
solutions for this case below.

6.3 Cloud morphology

Cloud morphology may reflect the origin of the gas motions (e.g.
Meidt et al. 2018) and the physical mechanisms injecting energy
into the gas on cloud scales (e.g. Koda et al. 2006). To quantify the
morphology of the 141 spatially-resolved clouds of NGC4429, we
considered their major andminor axes (and thus their axis ratios and
position angles with respect to the radial/galactocentric direction)
as measured in the plane of the sky (i.e. deprojected) in Section 5.7.

The distribution of the deprojected clouds’ axis ratios is shown
in the left panel of Fig. 18. A Gaussian fit to the distribution yields
a mean of 2.3 ± 0.2, suggesting that the clouds of NGC4429 are
significantly elongated. Moreover, the clouds in the inner and inter-
mediate regions are more elongated (mean axis ratio of 2.9 and 2.6,
respectively) than the clouds in the outer region (mean axis ratio of
2.2).

The distribution of deprojected position angles φPA is shown
in the right panel of Fig. 18. The distribution peaks at 5◦, with a
mean 〈φPA〉 ≈ 32◦, confirming the impression from Fig. 3 that the
clouds of NGC4429 are preferentially elongated in the radial (i.e.
galactocentric) direction. In fact, the clouds at small radii tend to
have smaller φPA, i.e. they are even more preferentially elongated
in the direction of the galaxy centre. The mean angle φPA of the
clouds in the inner, intermediate and outer region is 28◦, 32◦ and
34◦, respectively.

It is worth noting that the tendency for the clouds to align with
the radial direction could at least partially be due to an artefact
of CPROPS. As CPROPS tends to assign the pixels with the shortest
“distances” (through the 3D data cube) to the same cloud, the clouds
identified by CPROPS could be preferentially elongated along the
isovelocity contours, that are often nearly radial in NGC4429 (see
Fig. 7). Having said that, we note that the clouds identified by
CPROPS in other galaxies do not seem to exhibit such a tendency (e.g.
NGC4526, Utomo et al. 2015; M33, Gratier et al. 2012; NGC6946,
Wu et al. 2017). This thus suggests that the observed trend of the
clouds of NGC4429 to be radially elongated could be real.

If the observed tendency is real, what are the physical mecha-
nisms that could cause such a strong radial elongation of the clouds
of NGC4429? It is interesting to note that, according to Eq. 53,

βmod(Rc) = βmod(Rt)
(

Rc
Rt

)3
≈

(
Rc
Rt

)3
, (57)

which suggests that if Rc < Rt then βmod < 1 (and vice-versa)
and if Rc > Rt then βmod > 1 (and vice-versa). If a cloud is
primarily dominated by self-gravity (i.e. Rc � Rt or βmod � 1),
the effects of external gravity are negligible and the cloud should be
roughly round. On the other hand, if a cloud is largely dominated
by external gravity (i.e. Rc � Rt or βmod � 1), the cloud should
be elongated in the azimuthal direction due to strong shear motions
(Meidt et al. 2018). However, theNGC4429 clouds are neither round
nor azimuthally elongated, suggesting their morphologies can not
be regulated by either self-gravity and/or external gravity alone.

It is thus interesting to investigate the geometry of a marginally
gravitationally-bound cloud, as is the case for the bulk of the
NGC4429 clouds, where both self-gravity and external gravity are
important (i.e. Rc ≈ Rt and β ≈ βmod ≈ 1; see Sections 5.6 and
6.2). For this, we must solve the equations of motions given by
Eqs. 56, that include both self-gravity and external gravity terms.
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Figure 18. Distribution of deprojected axis ratios (left) and position angles φPA between the (morphological) major axes and the direction to the galaxy
centre (right) for the 141 spatially-resolved clouds of NGC4429 (black histograms), and for only the clouds in the inner (blue histograms), intermediate (green
histograms) and outer (red histograms) region of the galaxy, respectively. φPA = 0◦ is the radial (i.e. galactocentric) direction, while φPA = 90◦ is the azimuthal
direction. The black vertical dashed line in the left panel indicates the mean axis ratio derived from a Gaussian fit (black solid line).

If we can calculate the motions of the fluid elements near the exter-
nal edge of each cloud, these motions will define the approximate
overall shapes of marginally gravitationally-bound clouds.

Exact analytic solutions to Eqs. 56 may not be possible, so we
instead turn to a mathematical technique analogous to perturbation
theory to find approximate solutions.We define a newdimensionless
variable ε ≡ 1 and rewrite Eqs. 56 as




a′ext,x′ ≈ T0x′ + 2Ω0v′gal,y′ −
∂Φsg
∂x′

,

a′ext,y′ ≈ −2Ω0εv
′
gal,x′ −

∂Φsg
∂y′

.

(58)

Approximate solutions to the above equations can be written as




x′(t) ≈ x′ (0) (t) + ε x′ (1) (t) ,

y′(t) ≈ y′ (0) (t) + ε y′ (1) (t) ,
(59)

where analogously to perturbation theory we will refer to x′ (0) and
y′ (0) as the zeroth-order solutions and to x′ (1) and y′ (1) as the
first-order solutions, although the latter are not necessarily smaller
than the former. Substituting Eqs. 59 into Eqs. 58, we can separate
the zeroth- and first-order equations in ε :




ẍ′ (0) = T0x′ (0) + 2Ω0 ẏ′ (0) −
∂Φsg
∂x′

,

ÿ′ (0) = −
∂Φsg
∂y′

,

(60)

and



ẍ′ (1) = T0x′ (1) + 2Ω0 ẏ′ (1) ,

ÿ′ (1) = −2Ω0 ẋ′ (0) .
(61)

We note that the solutions to Eqs. 60 – 61 provide solutions to
Eqs. 58 for only a particular case, and they are only approximate
solutions as the second-order term in ε is assumed to be negligible,
i.e. −2Ω0ε2 ẋ′ (1) ≈ 0 (assumptions we will justify below).

We first solve the zeroth-order equations. While finding a gen-
eral analytic solution to the Eqs. 60 is beyond the scope of this
paper, there must exist a particular cloudcentric radius Rcirc where

to zeroth order the fluid element has uniform circular motion of a
particular angular frequency ωcirc (and arbitrary phase ψ). We thus
postulate




x′ (0) (t) = Rcirc cos(ωcirct + ψ) ,

y′ (0) (t) = Rcirc sin(ωcirct + ψ) .
(62)

Substituting Eqs. 62 into the first equation of Eqs. 60, we find that
the first and second terms on the RHS (i.e. the tidal and Coriolis
force terms) cancel out only for an angular frequency ωcirc = −2A0
(as T = 4AΩ). While shear does not lead to circular motions, that
is of course simply equal to vshear/x′ (0) (see Eq. 46), i.e.

ωcirc = −2A0 = vshear/x′ (0) = ωshear (63)

(the same ωshear defined in Section 6.1). The term on the left-hand
side and the third term on the RHS then lead to a condition on
Rcirc. Assuming the entire cloud mass is contained within Rcirc, one
obtains

Rcirc = *
,

GM

4A2
0

+
-

1/3

= 2−
1
3 Rt

(64)

(see Eq. 52). The same condition is obtained by substituting Eqs. 62
into the second equation of Eqs. 60. It is trivial to show that at this
radius, vshear = −vcirc, where vcirc is the circular velocity due to the
cloud alone (i.e. vshear(Rcirc) = −2A0Rcirc = −(GM/Rcirc)1/2 =
−vcirc(Rcirc) for Rcirc given by Eq. 64).

In other words, the (zeroth-order in ε) solution to Eqs. 60 is




x′ (0) (t) = Rcirc cos(−2A0t + ψ) ,

y′ (0) (t) = Rcirc sin(−2A0t + ψ) ,
(65)

where Rcirc is given by Eq. 64. This orbit is thus intuitive to under-
stand. In the cloud rotating frame, to zeroth order, the fluid element
will have uniform circular motion at the radius Rcirc where the shear
velocity due to the external (i.e. galactic) potential vshear is equal to
the cloud’s own circular velocity vcirc, and thus the shear angular
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velocity ωshear is equal to the cloud’s angular velocity ωcirc (i.e.
vshear(Rcirc)/Rcirc = vcirc(Rcirc)/Rcirc).

Equally important, the radius of this circular orbit is very close
to the tidal radius and thus the external edge of the cloud (Rcirc ≈
0.8 Rt according to Eq. 64). Our solutions can thus indeed help us
understand the outer shapes of marginally-bound clouds.

We note that our zeroth-order solutions in ε above are different
from those found in Goldreich & Tremaine (1982) and Gammie
et al. (1991) (Eqs. 45 in this paper). This is because we introduced
ε in the azimuthal Coriolis force term while they applied ε to the
self-gravity terms, and because we are considering a particular case
where the fluid element’s shear velocity is equal to its circular
velocity. Equations 65 thus suggest that the fluid element should
have a circular orbit about the cloud’s CoM (i.e. the cloud should
be round near its tidal radius) if the Coriolis force in the azimuthal
direction is neglected (the −2Ω0v′gal,x′ term in the second equation
of Eqs. 56). This is not surprising, since as we have shown the
Coriolis force (2Ω0v′gal,y′) cancels out the tidal force (T0x′) in the
radial direction, hence only the cloud’s self-gravity needs to be
considered.

Having solved the zeroth-order equations of motion (Eqs. 60),
we can now solve the first-order equations in ε (Eqs. 61). Substitut-
ing the first equation of Eqs. 65 into the second equation of Eqs. 61
and imposing that the fluid element follows the zeroth-order solution
at t = 0 (i.e. ẏ′ (1) (t = 0) = y′ (1) (t = 0) = 0) yields a solution for
y′ (1) (t). Substituting this in turn into the first equation of Eqs. 61
and imposing again that the fluid element follows the zeroth-order
solution at t = 0 (i.e. ẋ′ (1) (t = 0) = x′ (1) (t = 0) = 0) yields a
solution for x′ (1) (t). These first-order solution are

x′ (1) (t) ≈
Ω0
A0

Rcirc

[ A0
A0 +Ω0

(
cos(ψ) cosh(

√
T0 t)

−

√
Ω0
A0

sin(ψ) sinh(
√

T0 t)
)

+
Ω0

A0 +Ω0
cos(−2A0t + ψ) − cos(ψ)

]
,

y′ (1) (t) ≈
Ω0
A0

Rcirc
[
sin(−2A0t + ψ) + 2A0 cos(ψ) t − sin(ψ)

]
.

(66)

We therefore have complete zeroth- and first-order solutions in
ε of the equations of motion Eqs. 58, for fluid elements originally in
uniform circular rotation around the cloud’s CoM at a cloudcentric
radius of Rcirc.

In practice, with our treatment in term of ε , we have neglected
the firt-order Coriolis force term in the azimuthal direction (i.e. the
−2Ω0v

′ (1)
gal,x′ term in the second equation of Eqs. 56). Our solutions

will thus only be valid as long as this term remains small compared
to ÿ′. A comparison of these two terms shows that this remains the
case for times up to several tshear ≡ 1/2A0 for nearly all phases
ψ, when the fluid element remains relatively close to the circle of
radius Rcirc.

By sampling the phasesψ uniformly, Figure 19 therefore shows
how a circular ring of matter initially at a cloudcentric radius Rcirc
evolves over time (colour-coded), up to a time t = 2 tshear. As ex-
pected from our solutions, particularly the diverging term in x′ (1) (t)
(see Eqs. 66), the fluid element orbits and thus the ring become in-
creasingly elongated over time, this almost always in the radial
direction (i.e. along x̂′), more so but not exclusively at late times.

Therefore, contrary to naive expectations, clouds with sizes
≈ Rt and thus≈ Rcirc, that are necessarily marginally-bound, should

Figure 19. Orbits resulting from the zeroth- and first-order solutions to
the equations of motion Eqs. 58, for fluid elements originally in uniform
circular rotation around the cloud’s CoM at a cloudcentric radius of Rcirc,
in the rotating frame adopted in Appendix A2 (see Fig. A1). Several orbits
are shown, sampling all phases uniformly and colour-coded as a function of
time. The initially circular ring becomes increasingly elongated over time
and is nearly always elongated radially. The small black solid circle marks
the galaxy centre while the large black dashed circle shows the original
configuration of the fluid elements (zeroth-order solution).

have shapes that are radially elongated. This state thus presumably
represents an intermediate state between i) small strongly-bound
clouds that are expected to be spherical (due to self-gravity) and ii)
large unbound gas accumulations that are expected to be azimuthally
elongated (due to shear). In other words, the general radial elonga-
tion of the NGC4429 clouds is fully consistent with the fact that
the clouds extend to typically their tidal radii and are typically
marginally gravitationally bound, with roughly equal impact from
self- and external gravity (i.e. β ≈ 1).

Interestingly, the numerical solutions of Julian & Toomre
(1966) and Binney (2020) suggest a similar result. By solving
Eqs. 56 numerically, they derived density patterns for a shear flow
under both self- and external gravity forces.While the outer contours
at lower surface densities (where self-gravity is much less important
than external gravity) are elongated azimuthally as expected, their
results demonstrate that the innermost contours at higher densities
(where self-gravity may be as important as external gravity) are
radially elongated (see Figs. 7 – 9 in Julian & Toomre 1966 and
Fig. 9 in Binney 2020). These works thus reinforce our approximate
analytical solutions above.

6.4 Cloud scale height

Our current analysis is based on the common assumption that
the clouds of NGC4429 are in vertical hydrostatic equilibria, i.e.
M (σ2

gal,z − beν20 Z2
c ) ≈ 0 (see Eq. 27). If this assumption is valid,

we can derive the scale height of each cloud (Zc) from estimates
of ν0 and σgal,z. As before, ν0 is obtained directly from our stel-
lar mass model (i.e. ν20 = 4πGρ∗,0, where ρ∗,0 is provided by
our our MGE model; see Appendix C). According to Eq. 20,
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σ2
gal,z cos

2 i ≈ σ2
gs,los − σ

2
sg,los, so if σsg,los can indeed be derived

from Eq. 24 (i.e. σ2
sg,los = πbsGRcΣgas), we can obtain σ2

gal,z.
We note that the uncertainties of our measured physical quan-

tities (i.e. σ2
gs,los, Rc and Σgas) can be significant and prevent

us from accurately estimating σgal,z for individual clouds, as we
find negative σ2

gal,z in a few cases. Instead, we therefore consider
only the average quantities for σ2

gal,z and Zc. We derive a mean
〈σ2

gal,z〉 = 18 ± 2 km2 s−2 for the 141 spatially-resolved clouds of
NGC4429 (assuming bs = 1

5 for spherical homogeneous clouds),
whose mean line-of-sight projection (〈σ2

gal,z cos
2 i〉 ≈ 2 km2 s−2)

is indeed relatively small compared to 〈σ2
gs,los〉 ≈ 11 km2 s−2 and

〈σ2
sg,los〉 ≈ 8 km2 s−2.
Utilising our derived 〈σ2

gal,z〉 = 18 ± 2 km2 s−2 and 〈ρ∗,0〉 ≈
33 M� pc−3 (and further assuming be = 1

5 for spherical homoge-
neous clouds), we derive a mean cloud scale height 〈Zc〉 ≈ 7 pc,
that is clearly smaller than the average cloud radius 〈Rc〉 ≈ 16 pc
(see Section 3.3). Consequently, the clouds of NGC4429 are not
strictly spherical, but more likely to be elongated (i.e. flattened) in
the plane, if the clouds are indeed in vertical hydrostatic equilibria.

The above analysis aimed to derive the scale heights of the
clouds Zc by assuming that the clouds are in vertical hydrostatic
equilibria. However, we can also investigate the vertical equilibrium
state of the clouds by assuming Zc = Rc instead. For such a roundish
cloud, the contribution of the vertical component of the external
potential to the cloud’s gravitational energy budget is ≈ M (σ2

gal,z −

beν20R2
c ). We thus define ζ as the ratio between M (σ2

gal,z−beν20R2
c )

and the (absolute value of the) self-gravitational energy of a roundish
cloud (Usg = −3bsGM2/Rc):

ζ ≡
M (σ2

gal,z − beν20R2
c )

3bsGM2/Rc
. (67)

The distribution of ζ for the 141 spatially-resolved clouds of
NGC4429 is presented in Fig. 20, where we have assumed bs =
be = 1

5 (spherical homogeneous clouds) as usual. We find that ζ is
not negligible, but significantly below zero. A Gaussian fit to the ζ
distribution yields a mean 〈ζ〉 = −1.97± 0.55. This implies that the
effect of external gravity on roundish clouds is to compress them
in the vertical direction. In other words, if the clouds of NGC4429
were roundish, the shear in the plane of the galaxy would be over-
whelmed by compression in the vertical direction, and the net effect
of external gravity would be to contribute to the (vertical) collapse
of the clouds (as |〈β〉| < |〈ζ〉|). This probably explains why the
clouds of NGC4429 appear to be flattened in the plane.

Indeed, a cloud in a thin disc is more likely to exhibit an
elongated structure in the plane rather than be spherical, as the force
applied by the background galactic potential in the vertical direction
far exceeds the forcing experienced in the plane (e.g. Meidt et al.
2018). In fact, such elongations ofmolecular clouds in the equatorial
plane have been observed in a sample of more than 500 MW clouds
(Koda et al. 2006).

7 CONCLUSIONS

Using our modified version of the CPROPSTOO code, more robust and
efficient to identify GMCs in complex and crowded environments,
and 12CO(J = 3−2) ALMA observations at 14×11 pc2 resolution,
we identified 217 GMCs (141 spatially resolved) in the central
molecular gas disc of the lenticular galaxy NGC4429. To investigate

Figure 20. Distribution of ζ, defined as the the ratio between the vertical
contribution of the external potential to a cloud’s energy budget and the
(absolute value of the) cloud’s self-gravitational energy, assuming the cloud
is roundish (i.e. Zc = Rc), for the 141 spatially-resolved clouds ofNGC4429.
The black dashed vertical line shows the mean of a Gaussian fit (red solid
line) to the distribution.

the dynamical states of the GMCs, we developed and utilised a
modified Virial theorem that fully accounts for the impacts of the
background galactic potential. The main results are as follows:

(i) The GMCs of NGC4429 appear to have smaller sizes (7 –
50 pc), lower gaseous masses (0.3 – 8 × 105 M�), higher gaseous
mass surface densities (40 – 650 M� pc−2) and higher observed
linewidths (2 – 16 km s−1) than the GMCs of the Milky Way disc
and other Local Group galaxies.

(ii) Cloud properties exhibit several trends with galactocentric
distance. Specifically, except for the three innermost resolved clouds
at Rgal < 100 pc, the GMCs at small radii tend to have smaller sizes,
lower gaseous masses, higher gaseous mass surface densities and
higher observed linewidths than clouds farther out. However, we
also find that all these quantities drop abruptly in the outermost
region of the molecular gas disc (Rgal >∼ 375 pc).

(iii) The GMCs of NGC4429 appear to be elongated (mean axis
ratio of ≈ 2.3 ± 0.2) and are preferentially aligned in the radial
direction (i.e. toward the galactic centre). The clouds also appear to
be flattened in the plane of the galaxy.

(iv) The cloud mass distribution follows a truncated power law
with slope −2.18± 0.21 and truncation mass (8.8± 1.3) × 105 M� ,
suggesting most of the molecular mass of NGC4429 is in low-mass
clouds. We find a slight variation of the mass spectrum with galac-
tocentric distance, suggesting massive clouds are more favoured at
intermediate radii (220 < Rgal < 330 pc).

(v) Strong velocity gradients are observed within individual
GMCs (ω ≈ 0.05 – 0.91 km s−1 pc−1), significantly larger than
those of GMCs in the MW and other Local Group galaxies. A steep
size – line width relation (with a power-law index 0.82 ± 0.13) and
large observed Virial parameters (〈αobs,vir〉 ≈ 4.04 ± 0.22) are also
found for the clouds of NGC4429. However, we argue the large ve-
locity gradients, steep size – line width relation and large observed
Virial parameters are all a consequence of gas motions driven by
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the background galactic potential (i.e. local circular orbital rotation),
not the clouds’ self-gravity. To remove the contribution of galaxy
rotation from the clouds’ linewidths and derive linewidths quantify-
ing turbulence only, we measure the gradient-subtracted linewidths
of the clouds σgs,los. Using this measure, an internal Virial equilib-
rium appears to have been reached betweem the clouds’ turbulent
kinetic energies (Eturb) and their self-gravitational energies (Usg),
i.e. 〈αsg,vir〉 ≈ 〈αgs,vir〉 ≈ 1.28 ± 0.04.

(vi) However, we argue that neither αobs,vir nor αsg,vir reflects
the true dynamical state of a cloud. We thus discuss and revisit
the conventional Virial theorem, deriving a modified theorem that
explicitly takes into account both the self-gravity of the clouds
and the effects of the external (galactic) gravitational potential in
the vertical direction and the plane separately. This allows us to
define an effective velocity dispersionσeff,los and an effective Virial
parameter αeff,vir ≡ αsg,vir +

Eext
|Usg |

, that provide straightforward
measurable diagnostics of cloud boundedness in the presence of a
non-negligeable external potential.
(vii) Using our new diagnostics, we find the contributions of ex-

ternal gravity to the clouds’ energy budgets Eext are generally much
larger than zero. This is because the bulk motions of the clouds
are dominated by gravitational shear motions rather than epicyclic
motions. The clouds of NGC4429 are in a critical state in which the
energy contributed by external gravity Eext is approximately equal
to the self-gravitational energy, i.e. Eext

|Usg |
≈ 1. As such, the clouds

are not virialised but remain marginally gravitationally bound,
with a mean effective Virial parameter (〈αeff,vir〉 ≈ 2.15 ± 0.12
and 〈αmod

eff,vir〉 ≈ 2.02 ± 0.03) close to the threshold between
gravitationally-bound and unbound objects (αvir,crit = 2). This is
also true when the elongated shapes of the clouds are taken into
account (〈αeff,vir〉 ≈ 2.65 ± 0.15 and 〈αmod

eff,vir〉 ≈ 2.46 ± 0.06 for
ellipsoidal clouds). As the clouds appear to reach an equilibrium
between self-gravity and external gravity, they also have sizes con-
sistent with their tidal radii (i.e. Rc ≈ Rt) and are radially elongated
(with an average axis ratio of ≈ 2). Overall, external gravity appears
to be as important as self-gravity to regulate the morphologies,
dynamics and thus ultimately the fates of the clouds.
(viii) Galactic rotational shear appears to play a dominant role

to regulate the properties of the clouds of NGC4429. Our shear
model predicts that, as rotational shear increases, the contribution
of external gravity to a cloud’s energy budget Emod

ext also increases
and the cloud becomes less bound, leading to a maximum size
(or equivalently a minimum gaseous mass surface density) for the
cloud to remain marginally bound: Rshear ≈ 3πbsGΣgas/4beA2

0
(Σshear ≈ 4beA2

0Rc/3πbsG), that matches very well the observed
sizes of the clouds of NGC4429.
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APPENDIX A: MODIFIED VIRIAL THEOREM

Our goal in this appendix is to derive a modified Virial theorem
(MVT), that encompasses not only a cloud’s self-gravity, but also
the effects of the external (i.e. galactic) potential. We thus envision
each cloud as a continuous structure with well-defined borders in
position- and velocity-space, located in a rotating gas disc with a
circular velocity determined by an axisymmetric background galac-
tic gravitational potential (Φgal). We assume each cloud has a ho-
mogeneous density distribution and an ellipsoidal geometry. The
cloud’s centre of mass (CoM) and its two semi-axes (semi-major
axis Xc and semi-minor axis Yc) are assumed to be located in the
orbital plane (i.e. the mid-plane of the galaxy disc; see Fig. A1).
We assume each fluid element of a cloud experiences two kinds
of motions: (1) random turbulent motions (velocity dispersion σsg)
arising from self-gravity (i.e. the cloud’s own gravitational poten-
tial Φsg) and (2) bulk gravitational motions (velocity ~vgal and root
mean square (RMS) velocity σgal) arising from the external gravity
(i.e. the galactic gravitational potential Φgal). We neglect thermal
motions, as they are often small compared to turbulent motions in
a cold gas cloud (e.g. Fleck 1980). The turbulent motions due to
self-gravity are expected to be quasi-isotropic in three dimensions
(Field et al. 2008; Ballesteros-Paredes et al. 2011), while the gas
motions induced by the external gravitational potential are often
non-isotropic (Meidt et al. 2018). We assume the cloud’s own grav-
itational potential Φsg to be (statistically) independent of the local
external gravitational potential Φgal, and the motions due to self-
gravity (σsg) to be uncorrelated with the motions due to external
gravitational potential (σgal), as suggested by Meidt et al. (2018).
We ignore external pressure and magnetic fields, and consider only
the effects of self-gravity and external gravity.

Assuming the surface terms are negligible (Larson 1981), the
general form of the Virial theorem for a cloud is

Ï
2
= 2Ek +

∫
V

(
~a( ~d) · ~d

)
dm (A1)

(see e.g. Eqs. 14.6 and 14.7 of Lequeux 2005), where I is the
cloud’s moment of inertia, Ek its total kinetic energy, ~d the position
vector of a fluid element inside the cloud with respect to the cloud’s
CoM, ~a ≡ ~̈d the acceleration of the fluid element inside the cloud,
dm ≡ ρdV the mass of the fluid element, and the integral is taken
over all fluid elements within the volume V of the cloud of total
mass M (

∫
V

dm = M ). We use ~d rather than the usual variable ~r to
avoid confusion with the position vector (with respect to the galactic
centre) in the plane of the disc ~R and its associated magnitude R,
where ~R0 and R0 are evaluated at the cloud’s CoM (see Fig. A1).
The equilibrium condition associated with Eq. A1 should be that the
time-averaged Ï (t) is equal to zero, i.e. 〈Ï (t)〉 = 0 (McKee 1999;
Binney & Tremaine 2008). However, it is unclear how one can
evaluate the resulting long-termaverage if the system is not in a time-
independent state. We therefore adopt instead the instantaneous
equilibrium condition Ï = 0, commonly adopted across several
works (e.g. Lequeux 2005; Ballesteros-Paredes 2006). As such,
Ï > 0 indicates that the cloud is expanding, while Ï < 0 indicates
that the cloud is contracting (Ballesteros-Paredes 2006).

The above Virial equation can be split into two independent
parts based on our assumptions that Φsg and Φgal are independent
(i.e. ~a = −∇Φsg + ~aext, where ~aext is the external acceleration
due to galactic forces only) and σsg and σgal are uncorrelated (i.e.

Orbital Plane

R0

φ

galaxy centre

Ω0 

y′

x′ Ω0 

CoM

R

xy′ ′
Xc

Ω0 CoMY

φPA

c

d′

Figure A1. Schematic diagram of our rotating frame of reference in the
orbital plane (i.e. the mid-plane of the galaxy disc). This rotating frame is
a local Cartesian coordinate system centred at the cloud’s CoM, that both
orbits around the galaxy centre with the cloud’s CoM (with angular velocity
Ω0, the circular orbital angular velocity of the cloud’s CoM) and rotates on
itself (with the same angular velocityΩ0), such that the x′ axis always points
in the direction of increasing galactocentric radius and the y′ axis always
points in the direction of the orbital rotation at the cloud’s CoM. We assume
a homogenous ellipsoidal cloud, whose semi-major axis Xc and semi-minor
axis Yc are located in the orbital plane. The semi-major axis Xc makes an
angle φPA with respect to the radial (i.e. x̂′ or ~R0) direction.

Ek =
1
2 M (σ2

sg + σ
2
gal)):

Ï
2
=

[
3Mσ2

sg,los +

∫
V

(
−∇Φsg( ~d) · ~d

)
dm

]

+

[
Mσ2

gal +

∫
V

(
~aext( ~d) · ~d

)
dm

]
,

(A2)

where σsg,los is the line-of-sight (i.e. one-dimensional) turbulent
velocity dispersion due to self-gravity (σ2

sg,los ≡
1
3σ

2
sg) and σgal

the RMS velocity of gravitational motions associated with external
gravity (σgal ≡

1
M

∫
V

(~vgal − ~vgal)2 dm, where ~vgal is the mean
velocity of the cloud’s gravitationalmotions due to external gravity).
The first term in square brackets on the right-hand side (RHS) of
Eq. A2 comprises the energy terms regulated by self-gravity, while
the second term in square brackets contains the contribution of
external gravity to the cloud’s energy budget Eext.

Self-gravity. The integration of the self-gravity term on the
RHS of Eq. A2 is straightforward:∫
V

(
−∇Φsg( ~d) · ~d

)
dm = −

3bsGM2

Rc
, (A3)

where G is the gravitational constant, Rc the measured cloud’s ra-
dius (Rc ≡

√
XcYc ) and bs a geometrical factor that quantifies the

effects of inhomogeneities and/or non-sphericity of the cloud mass
distribution on its self-gravitational energy. For a cloud in which the
isodensity contours are homoeoidal ellipsoids, bs = bs1bs2 , where
bs1 quantifies the effects of the inhomogeneities and bs2 those of the
ellipticity. Bertoldi & McKee (1992) derived bs1 =

(1−ψ/3)
(5−2ψ) for a

cloud with a radial mass volume density profile ρ(r) ∝ r−ψ , while
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bs2 =
Rm
Rd

arcsin(e)
e for an ellipsoidal cloud, where Rm is the observed

(i.e. projected) cloud radius averaged over all possible cloud orienta-
tions (i.e. averaged over 4π steradians), Rd is the deprojected cloud
radius and e is the cloud’s eccentricity (e ≡

√
1 − (Yc/Xc)2 ). The

Rm/Rd ratio depends on the cloud’s aspect ratio Zc/
√

XcYc , where
Zc is the cloud’s scale height, and Rm/Rd = 1 when Zc/

√
XcYc = 1

(see Fig. 2 in Bertoldi & McKee 1992). For a homogeneous spher-
ical cloud, bs = 1

5 .
An equation suitable for a cloud regulated by self-gravity only

is thereby obtained:

Ï
2
= 3Mσ2

sg,los −
3bsGM2

Rc
. (A4)

For a self-gravitating cloud in equilibrium (i.e. Ï = 0), this yields

σ2
sg,los = bsGM/Rc , (A5)

or equivalently

M =
σ2
sg,losRc

bsG
≡ Msg,vir (A6)

(cf. Eq. 7).
External gravity. The contribution of external gravity to a

cloud’s energy budget is given by the second term in square brackets
on the RHS of Eq. A2:

Eext = Mσ2
gal +

∫
V

(
~aext( ~d) · ~d

)
dm . (A7)

If we assume the gravitational motions in the plane to be separable
from those in the vertical direction (perpendicular to the orbital
plane), the above equation can easily be separated into two parts,
one in the vertical direction (Eext,z) and the other in the orbital plane
(Eext,plane):

Eext =

(
Mσ2

gal,z +

∫
V

(
aext,zdz

)
dm

)
︸                                   ︷︷                                   ︸

external, vertical direction

+

(
Mσ2

gal,plane +

∫
V

(
~aext,plane · ~dplane

)
dm

)
︸                                                    ︷︷                                                    ︸

external, plane

,

(A8)

where σ2
gal,z, aext,z and dz are the components of σ2

gal, ~aext and ~d

along the vertical direction, respectively, and σ2
gal,plane, ~aext,plane

and ~dplane are the components of σ2
gal, ~aext and ~d in the orbital

plane, respectively.
We derive Eext,z (the first term on the RHS of Eq. A8) in

Appendix A1 (see Eq. A21) for a homogenous ellipsoidal cloud
whose semi-major axis Xc and semi-minor axisYc are located in the
orbital plane, yielding

Eext,z ≈ M
(
σ2
gal,z − beν20 Z2

c
)
, (A9)

where as before Zc is the scale height of the cloud (Zc =
√

XcYc ≡ Rc
for a spherical cloud), ν20 ≡ 4πGρ∗,0 (formally the total mass vol-
ume density evaluated at the cloud’s CoM, but we use here ρ∗,0, the
stellar mass volume density ρ∗ evaluated at the cloud’s CoM using
our MGE model, as it is accurately constrained; see Appendix C),
and be is a geometrical factor that quantifies the effects of inhomo-
geneities of the cloud mass distribution (analogously to bs1 but for
the external gravity term; be = 1

5 again for a homogeneous cloud).
Similarly, we derive Eext,plane (the second term on the RHS of

Eq. A8) for a homogenous ellipsoidal cloud in Appendix A2 (see
Eq. A36), yielding

Eext,plane ≈ M
(
σ2
gal,r + σ

2
gal,t + beT0 (X2

c cos
2 φPA + Y2

c sin2 φPA)

− beΩ20 (X2
c + Y2

c )
)
,

(A10)

where σ2
gal,r and σ

2
gal,t are the RMS velocities of gas motions due

to external gravity in respectively the radial (i.e. r̂ , the direction
pointing from the galaxy centre to the cloud’s CoM, thus parallel to
~R0) and the azimuthal (i.e. t̂, the direction along the orbital rotation,
thus perpendicular to r̂ and ~R0) direction as measured in an inertial
frame (i.e. by a distant observer), (σ2

gal,r + σ
2
gal,t) is thus the RMS

velocity of in-plane gravitational motions (i.e. σ2
gal,plane) measured

in the inertial frame, φPA is the angle the semi-major axis Xc makes
with respect to the radial (i.e. r̂ or ~R0) direction (see Fig. A1), Ω0
is the circular orbital angular velocity of the cloud’s CoM, T0 ≡

−R dΩ2 (R)
dR |R=R0 (e.g. Stark & Blitz 1978) is the tidal acceleration

per unit length in the radial directionT evaluated at the cloud’s CoM,
and R is the galactocentric distance in the plane of the disc while R0
is that at the cloud’s CoM. We note that here and throughout, Ω(R)

is the theoretical quantity Ω(R) ≡
√

1
R

dΦgal
dR defined by the galaxy

potentialΦgal, i.e. it is the angular velocity of a fluid elementmoving
in perfect circular motion (Ω(R) = Vcirc(R)/R, where Vcirc(R) is
the circular velocity curve) rather than the observed angular velocity
of the fluid element (Vrot(R)/R, where Vrot is the observed rotation
curve). For an axisymmetric cloud (i.e. Xc = Yc = Rc), we then
have

Eext,plane ≈ M
(
σ2
gal,r + σ

2
gal,t + be(T0 − 2Ω20) R2

c
)
. (A11)

Combining Eqs. A9 and A10, we obtain the total contribution
of external gravity to a cloud’s energy budget:

Eext = Eext,z + Eext,plane

≈M
(
σ2
gal,z − beν20 Z2

c
)
+ M

(
σ2
gal,r + σ

2
gal,t

)
+M

(
beT0 (X2

c cos
2 φPA + Y2

c sin2 φPA) − beΩ20 (X2
c + Y2

c )
)
.

(A12)

For an axisymmetric cloud (i.e. Xc = Yc = Rc), we then have

Eext ≈ M
(
σ2
gal,z − beν20 Z2

c
)
+M

(
σ2
gal,r+σ

2
gal,t+be(T0−2Ω20) R2

c
)
.

(A13)

Total. Substituting Eqs. A4 and A12 into Eq. A2, we obtain
our final MVT for a homogenous ellipsoidal cloud:

Ï
2
=

[
3Mσ2

sg,los − 3bsGM2/Rc
]
+ Eext

≈
[
3Mσ2

sg,los − 3bsGM2/Rc
]
+

[
M

(
σ2
gal,z − beν20 Z2

c
)

+ M
(
σ2
gal,r + σ

2
gal,t + beT0 (X2

c cos
2 φPA + Y2

c sin2 φPA)

− beΩ20 (X2
c + Y2

c )
)]
.

(A14)
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For an axisymmetric cloud (i.e. Xc = Yc = Rc), we then have

Ï
2
≈

[
3Mσ2

sg,los − 3bsGM2/Rc
]︸                              ︷︷                              ︸

self gravity

+



M (σ2
gal,z − beν20 Z2

c )︸                    ︷︷                    ︸
external, vertical direction

+M
(
σ2
gal,r + σ

2
gal,t + be(T0 − 2Ω20) R2

c
)︸                                             ︷︷                                             ︸

external, plane



.

(A15)

A1 Calculating Eext,z

According to Eq.A8, the contribution of external gravity to a cloud’s
energy budget in the vertical direction is

Eext,z = Mσ2
gal,z +

∫
V

(
aext,zdz

)
dm . (A16)

As we have assumed the cloud’s CoM to be in the galaxy mid-plane,
the component of the acceleration ~aext in the vertical direction can
be approximated to

aext,z = −
∂Φgal( ~d)

∂z

≈ −
∂Φgal( ~d)

∂z
����z=0
−
∂2Φgal( ~d)

∂2z

����z=0
dz

≈ −
∂2Φgal( ~d)

∂2z

����z=0
dz .

(A17)

For a thin gas disc,

∂2Φgal( ~d)

∂2z

����z=0
≈ 4πGρ∗(R, z = 0) , (A18)

and we further assume

∂2Φgal( ~d)

∂2z

����z=0
≈ 4πGρ∗,0 , (A19)

formally the total mass volume density, but we use here ρ∗(R, z =
0), the stellar mass volume density in the mid-plane of the disc,
that can be reliably estimated from observations (here our MGE
model; see Appendix C), and again ρ∗,0 ≡ ρ∗(R = R0, z = 0) is
evaluated at the cloud’s CoM. As expected from Poisson’s equation,
Eq. A18 only applies to a (thin) disc where the variations in the
gravitational potential are larger in the vertical direction than in

the plane (i.e. ∂
2Φgal (~d)
∂2z

�
∂2Φgal (~d)
∂2r

and ∂2Φgal (~d)
∂2z

�
∂2Φgal (~d)
∂2t

;
see also Koyama & Ostriker 2009 and Meidt et al. 2018). Again
as expected, given that ρ∗ is positive, the gravitational potential of
the galaxy along the z axis always has a confining effect on the
cloud, i.e. a fluid element moving away from the cloud’s CoM will
always experience a restoring force in the z direction back toward
the galactic (i.e. mid-) plane.

With these expressions (Eqs. A17 and A19), the volume inte-
gral in the second term on the right-hand side of Eq. A16 simplifies
to

∫
V

d2z dm. For an ellipsoidal cloud with semi-major axis Zc in
the vertical direction (i.e. along the z axis),∫
V

d2z dm = beM Z2
c , (A20)

where be is the aforementioned geometrical factor that quantifies
the effects of the density inhomogeneities for the external gravity
term (be = 1

5 for a homogenous cloud).

Therefore, the total contribution of external gravity to the
cloud’s energy budget in the vertical direction is

Eext,z ≈ M
(
σ2
gal,z − beν20 Z2

c
)
, (A21)

where as before ν20 ≡ 4πGρ∗,0.

A2 Calculating Eext,plane in the rotating frame

In this section, we derive the contribution of external gravity to a
cloud’s energy budget in the orbital plane Eext,plane, using a frame
of reference (x′,y′) that we will refer to as the “rotating frame”.
This rotating frame is a local Cartesian coordinate system centred
at the cloud’s CoM, that both orbits around the galaxy centre with
the cloud’s CoM (with angular velocity Ω0) and rotates on itself
(with the same angular velocity Ω0), such that the x′ axis always
points in the direction of increasing galactocentric radius and the y′
axis always points in the direction of orbital rotation at the cloud’s
CoM (see Fig. A1).

In the rotating frame, the contribution of external gravity to a
cloud’s energy budget in the plane is (cf. Eq. A8)

Eext,plane = M
(
σ′2gal,x′ + σ

′2
gal,y′

)
+

∫
V

(
a′ext,x′ x

′ + a′ext,y′ y
′
)

dm

=

(
Mσ′2gal,x′ +

∫
V

(a′ext,x′ x
′) dm

)
︸                                    ︷︷                                    ︸

Eext,x′

+

(
Mσ′2gal,y′ +

∫
V

(a′ext,y′ y
′) dm

)
︸                                    ︷︷                                    ︸

Eext,y′

,

(A22)

where σ′2gal,x′ , a′ext,x′ and x′ are the components of σ′2gal, ~a
′
ext and

~d′plane along the x̂′ direction, respectively, similarly for σ′2gal,y′ ,
a′ext,y′ and y′. Here, Eext,x′ and Eext,y′ are the contributions of
external gravity to the cloud’s energy budget in the radial and the
azimuthal direction, respectively.

In the rotating frame, the acceleration of a fluid element due
to galactic forces (i.e. the galactic gravitational potential) is

~a′ext,plane( ~d′plane) = −∇Φgal( ~d′plane) + Ω20 ~R − 2~Ω0 × ~v′gal
= −Ω2(R) ~R + Ω20 ~R − 2~Ω0 × ~v′gal ,

(A23)

where ~v′gal ≡ ~̇d′plane = v′gal,x′ x̂
′ + v′gal,y′ ŷ

′ is the in-plane velocity of
gravitational motions induced by the external potential as measured
in the rotating frame. The last two terms on the RHS of Eq. A23
represent the centrifugal and the Coriolis acceleration, respectively,
as perceived in the rotating frame.

We then expand ~a′ext,plane from Eq. A23 in the radial (x̂′) and
azimuthal (ŷ′) directions, and obtain




a′ext,x′ =
(
−Ω2(R) +Ω20

)
R cos φ + 2Ω0v′gal,y′ ,

a′ext,y′ =
(
−Ω2(R) +Ω20

)
R sin φ − 2Ω0v′gal,x′ ,

(A24)

where φ is the angle between ~R and ~R0 (see Fig. A1). If we assume
the size of the cloud to be much smaller than its galactocentric
distance (i.e. Rc � R0), then cos φ ≈ 1 and sin φ ≈ y′/R. The
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accelerations a′ext,x′ and a′ext,y′ can thus be approximated to




a′ext,x′ ≈
(
−Ω2(R)R +Ω20R

)
+ 2Ω0v′gal,y′

≈

(
−

(
Ω
2
0R0 +

d(Ω2R)
dR

���R=R0
(R − R0)

)
+

(
Ω
2
0R0 +

d(Ω20R)

dR
���R=R0

(R − R0)
))
+ 2Ω0v′gal,y′

≈

(
−
(
Ω
2
0R0 + (Ω20 + R

dΩ2

dR
���R=R0

)x′
)
+

(
Ω
2
0R0 +Ω

2
0x′

))
+ 2Ω0v′gal,y′

≈ −

(
R

dΩ2

dR
���R=R0

)
x′ + 2Ω0v′gal,y′

≈ T0x′ + 2Ω0v′gal,y′ ,

a′ext,y′ ≈
(
−Ω2(R) +Ω20

)
y′ − 2Ω0v′gal,x′

≈

(
−
(
Ω
2
0 +

dΩ2

dR
���R=R0

(R − R0)
)
+Ω20

)
y′ − 2Ω0v′gal,x′

≈ −
dΩ2

dR
���R=R0

x′y′ − 2Ω0v′gal,x′

≈ −2Ω0v′gal,x′ ,

(A25)

where we have assumed (R− R0) ≈ x′ (as Rc � R0) and expanded
a′ext,x′ and a′ext,y′ to first order in x′ and y′ (i.e. x′2 ≈ 0, y′2 ≈ 0
and x′y′ ≈ 0). The term T0x′ represents the tidal force (i.e. a
combination of the external gravity and centrifugal force), that is
exclusively in the radial direction, while the terms 2Ω0v′gal,y′ and
−2Ω0v′gal,x′ represent the Coriolis force, that is in both the radial
and azimuthal directions.

It is worth noting that Eqs. A25 have solutions




x′ = S1 sin(κ0t + ϕ) + S2 ,
y′ = 2Ω0

κ0
S1 cos(κ0t + ϕ) − 2A0 S2 t + S3 ,

(A26)

where κ0 is the epicyclic frequency evaluated at the cloud’s CoM
(κ20 ≡

(
R dΩ2 (R)

dR + 4Ω2(R)
)
|R=R0 ), A0 is Oort’s constant A quan-

tifying shear evaluated at the cloud’s CoM (A0 ≡ −
R
2

dΩ(R)
dR |R=R0 ),

and S1, S2 and S3 (as well as the arbitrary phase ϕ) are constants
that depend on the given boundary (e.g. initial) conditions. Equa-
tions A26 show that the gravitational motions associated with ex-
ternal gravity have two contributions: epicyclic motions around
the cloud’s COM (i.e. the “guiding centre”; see e.g. Meidt et al.
2018), indicated by the trigonometric terms S1 sin(κ0t + ϕ) and
2Ω0
κ0

S1 cos(κ0t + ϕ), and linear shear motion, indicated by the
−2A0 S2 t term (e.g. Gammie et al. 1991; Tan 2000; Binney 2020).
It is worth noting that, in a model where all fluid elements of a
cloud move on perfectly circular orbits (around the galaxy centre)
determined by the galactic potential, the epicyclic amplitudes van-
ish and the gravitational motions are completely dominated by the
shear motions (see Eq. B21).

To calculate Eext,x′ and Eext,y′ (and thus Eext,plane), we also
need σ′2gal,x′ and σ′2gal,y′ measured in the rotating frame (see
Eq. A22). However, as σ′2gal,x′ and σ

′2
gal,y′ can not be obtained di-

rectly from observations, we instead calculate them from the RMS
velocities of gravitational motions σ2

gal,r and σ
2
gal,t measured in an

inertial frame centred at the galaxy center, that are related to the
observed velocity dispersions σobs,los and σgs,los through Eq. 19.

To achieve this, we must first derive the velocity transforma-
tion between the chosen inertial frame and our rotating frame. The
velocity of each fluid element due to gravitational motions in the
inertial frame is ~vgal,plane ≡ ~̇R = ~̇R0 + ~̇dplane = ~Ω0 × ~R0 + ~̇dplane,
where ~dplane is the in-plane position vector of the fluid element with
respect to the cloud’s CoM in the inertial frame (see Fig. A1). The
time derivative of ~dplane is related to the time derivative of ~d′plane
(i.e. ~v′gal,plane, the velocity of the fluid element due to gravitational
motions measured in the rotating frame; see Eq. A23) through the
usual velocity transformation between an inertial and a rotating
frame, i.e. ~̇dplane = ~̇d′plane +

~Ω0 × ~dplane = ~v′gal,plane +
~Ω0 × ~dplane.

We thus obtain ~vgal,plane = ~Ω0 × ~R0 + ~v
′
gal,plane +

~Ω0 × ~dplane, or
equivalently

~v′gal,plane = ~vgal,plane −
~Ω0 × ~R0 − ~Ω0 × ~dplane . (A27)

Expanding ~v′gal,plane in the radial (x̂′) and azimuthal (ŷ′) di-
rections, we derive




v′gal,x′ = vgal,r +Ω0dt ,
v′gal,y′ = vgal,t −Ω0R0 −Ω0dr ,

(A28)

where v′gal,x′ and v
′
gal,y′ are the velocities of the fluid element due to

gravitationalmotionsmeasured in the rotating frame along the radial
(x̂′) and the azimuthal (ŷ′) direction, respectively, vgal,r and vgalt are
the corresponding velocities measured in the inertial frame along
the radial (r̂ or ~R0) and the azimuthal (t̂) direction, respectively,
and dr and dt are the radial and the azimuthal component of ~dplane
measured in the inertial frame, respectively.UsingEqs.A28,we thus
derive the mean velocities v′gal,x′ and v′gal,y′ of the fluid elements
as measured in the rotating frame:




v′gal,x′ ≡

∫
V
v′gal,x′ dm

M

=

∫
V
vgal,r dm

M
+

∫
V

(Ω0dt) dm

M
= vgal,r ,

v′gal,y′ ≡

∫
V
v′gal,y′ dm

M

=

∫
V
vgal,t dm

M
−

∫
V

(Ω0R0) dm

M
−

∫
V

(Ω0dr) dm

M
= vgal,t −Ω0R0 ,

(A29)

where vgal,r and vgal,t are the mean velocities of the fluid elements
as measured in the inertial frame, and we have used

∫
V

dr dm =∫
V

dt dm = 0 as a homogenous ellipsoidal cloud has been assumed.
With Eqs. A28 andA29, the desired RMS velocities of the fluid

elements measured in the rotating frame (i.e.σ′2gal,x′ andσ
′2
gal,y′) can

thus be related to those measured in the inertial frame (i.e. σ2
gal,r
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and σ2
gal,t):




σ′2gal,x′ ≡

∫
V

(v′gal,x′ − v′gal,x′ )2 dm

M

=

∫
V

(
(vgal,r − vgal,r) +Ω0dt

)2
dm

M

= σ2
gal,r +

Ω20
∫
V

d2t dm

M
+
2Ω0

∫
V

(vgal,r − vgal,r)dt dm

M
,

σ′2gal,y′ ≡

∫
V

(v′gal,y′ − v′gal,y′ )2 dm

M

=

∫
V

(
(vgal,t − vgal,t) −Ω0dr

)2
dm

M

= σ2
gal,t +

Ω20
∫
V

d2r dm

M
−
2Ω0

∫
V

(vgal,t − vgal,t)dr dm

M
,

(A30)

where we have usedσ2
gal,r ≡

1
M

∫
V

(vgal,r − vgal,r)2dm andσ2
gal,t ≡

1
M

∫
V

(vgal,t − vgal,t)2dm.
Substituting Eqs. A25, A28 and A30 into Eq. A22 yields




Eext,x′ =Mσ2
gal,r + (T0 − 2Ω20)

∫
V

d2r dm +Ω20

∫
V

d2t dm

+ 2Ω0
∫
V

(
vgal,rdt + vgal,tdr

)
dm ,

Eext,y′ =Mσ2
gal,t +Ω

2
0

∫
V

d2r dm − 2Ω20

∫
V

d2t dm

− 2Ω0
∫
V

(
vgal,rdt + vgal,tdr

)
dm ,

(A31)

where we have adopted
∫
V

x′2 dm =
∫
V

x′dr dm =
∫
V

d2r dm,∫
V
y′dt dm =

∫
V

d2t dm,
∫
V
vgal,tx′ dm =

∫
V
vgal,tdr dm and∫

V
vgal,ry′ dm =

∫
V
vgal,rdt dm to simplify the notation, and again∫

V
x′ dm =

∫
V

dr dm =
∫
V

dt dm = 0 as a homogenous ellipsoidal
cloud has been assumed. The last term of E ′ext,x′ (resp. E ′ext,y′)
represents the integration of the Coriolis force in the x̂′ (resp. ŷ′)
direction.

We now calculate the terms
∫
V

d2r dm and
∫
V

d2t dm of
Eqs. A31 for a homogenous ellipsoidal cloud with two semi-axes
(semi-major axis Xc and semi-minor axis Yc) located in the orbital
plane. For such a cloud, we have




dr = xmaj cos φPA − ymin sin φPA ,
dt = xmaj sin φPA + ymin cos φPA ,

(A32)

where xmaj and ymin are the components of ~dplane along the major
and the minor axis of the cloud, respectively, and as before φPA is
the angle the semi-major axis Xc makes with respect to the radial
(i.e. r̂ or ~R0) direction (see Fig. A1).

With Eqs. A32, we then have∫
V

d2r dm =
∫
V

(
xmaj cos φPA − ymin sin φPA

)2
dm

=

∫
V

(
x2maj cos

2 φPA + y2min sin
2 φPA

)
dm

= cos2 φPA
∫
V

x2maj dm + sin2 φPA
∫
V
y2min dm

= cos2 φPA
∫ Xc

−Xc

x2maj ρπZcYc *
,
1 −

x2maj

X2
c

+
-

dxmaj

+ sin2 φPA
∫ Yc

−Yc

y2min ρπZcXc *
,
1 −

y2min
Y2
c

+
-

dymin

= beM (X2
c cos

2 φPA + Y2
c sin2 φPA) ,

(A33)

and∫
V

d2t dm =
∫
V

(
xmaj sin φPA + ymin cos φPA

)2
dm

=

∫
V

(
x2maj sin

2 φPA + y2min cos
2 φPA

)
dm

= sin2 φPA
∫
V

x2maj dm + cos2 φPA
∫
V
y2min dm

= sin2 φPA
∫ Xc

−Xc

x2maj ρπZcYc *
,
1 −

x2maj

X2
c

+
-

dxmaj

+ cos2 φPA
∫ Yc

−Yc

y2min ρπZcXc *
,
1 −

y2min
Y2
c

+
-

dymin

= beM (X2
c sin

2 φPA + Y2
c cos2 φPA) ,

(A34)

where be is the usual geometrical factor quantifying the effects
of density inhomogeneities for the external gravity term (be = 1

5
for a homogenous cloud), we have used

∫
V

xmajymin dm = 0 as a
homogenous ellipsoidal cloud has been assumed, and dm = ρdV =
ρπZcYc(1 − x2maj/X2

c )dxmaj = ρπZcXc(1 − y2min/Y
2
c )dymin.

Finally, substituting Eqs. A33 and A34 into Eqs. A31, we
obtain




Eext,x′ = Mσ2
gal,r + beM (T0 − 2Ω20) (X2

c cos
2 φPA + Y2

c sin2 φPA)

+ beMΩ20 (X2
c sin

2 φPA + Y2
c cos2 φPA)

+ 2Ω0
∫
V

(vgal,rdt + vgal,tdr) dm ,

Eext,y′ = Mσ2
gal,t + beMΩ20 (X2

c cos
2 φPA + Y2

c sin2φPA)

− 2beMΩ20 (X2
c sin

2 φPA + Y2
c cos2 φPA)

− 2Ω0
∫
V

(vgal,rdt + vgal,tdr) dm ,

(A35)

and thus

Eext,plane = Eext,x′ + Eext,y′

= M
(
σ2
gal,r + σ

2
gal,t + beT0 (X2

c cos
2 φPA + Y2

c sin2 φPA)

− beΩ20 (X2
c + Y2

c )
)
,

(A36)

where (σ2
gal,r + σ

2
gal,t) = σ

2
gal,plane is the RMS velocity of in-plane
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gravitational motions caused by the external potential as measured
in the inertial frame.

For an axisymmetric cloud (Xc = Yc = Rc), we thus have




Eext,x′ = Mσ2
gal,r + beM (T0 −Ω

2
0)R2

c

+ 2Ω0
∫
V

(vgal,rdt + vgal,tdr) dm ,

Eext,y′ = Mσ2
gal,t − beMΩ20R2

c

− 2Ω0
∫
V

(vgal,rdt + vgal,tdr) dm ,

(A37)

and

Eext,plane = Eext,x′ + Eext,y′

= M
(
σ2
gal,r + σ

2
gal,t + be(T0 − 2Ω20)R2

c
)
.

(A38)

APPENDIX B: EFFECTIVE VIRIAL PARAMETER

Overall, our modified Virial theorem can be written simply as (see
Eq. A14)

Ï
2
=

(
3Mσ2

sg,los − 3bsGM2/Rc
)
+ Eext

=
3bsGM2

Rc

*.
,

σ2
sg,losRc

bsGM
+

Eext
3bsGM2/Rc

− 1+/
-
,

(B1)

where Eext is the contribution of external gravity to a cloud’s energy
budget (see Eqs. A12 and A13). We define

β ≡
Eext

3bsGM2/Rc
, (B2)

the ratio between the contribution of external gravity and the
(absolute value of the) cloud’s self-gravitational energy (|Usg | =

3bsGM2/Rc), so that Eq. B1 can be written as

Ï
2
=

3bsGM2

Rc

(
αsg,vir + β − 1

)
, (B3)

where

αsg,vir ≡
σ2
sg,losRc

bsGM
(B4)

is the traditional Virial parameter regulated by self-gravity only (see
Eq. 13).

This naturally leads us to define an effective Virial parameter

αeff,vir ≡ αsg,vir + β (B5)

such that

Ï
2
=

3bsGM2

Rc

(
αeff,vir − 1

)
. (B6)

Thus, just like the standard Virial parameter, this effective Virial
parameter informs on the dynamical stability of a cloud. If αeff,vir ≈
1, the cloud is gravitationally bound and in Virial equilibrium even
in the presence of the external (i.e. galactic) gravitational potential.
If αeff,vir � 1, the cloud is unlikely to be bound (i.e. it is transient
unless confined by other forces). If αeff,vir . 1, the molecular cloud
is likely to collapse. For clouds that are (marginally) gravitationally
bound, we again require αeff,vir ≤ αvir,crit = 2 (Kauffmann et al.
2013, 2017), or equivalently β ≤ 1 if an internal Virial equilibrium
is established by self-gravity (i.e. if αsg,vir ≈ 1; see Eq. 34).

Equivalently, from Eq. 13, we can define an effective velocity
dispersion

σ2
eff,los = αeff,vir bsGM/Rc , (B7)

and thus our modified Virial equation (Eq. B1) can be simplified to

Ï
2
≈

(
3Mσ2

eff,los − 3bsGM2/Rc
)
. (B8)

The parameters αeff,vir (via Eq. B6) or equivalently σeff,los (via
Eq. B8) thus embody our MVT and offer a straightforward method
to test the gravitational boundedness of a cloud in the presence of
an external (i.e. galactic) gravitational field.

Having said that, a major challenge to calculate the effective
virial parameter αeff,vir (and β) or the effective velocity dispersion
σeff,los is to determine the in-plane (σgal,r and σgal,t) and vertical
(σgal,z) RMS velocities of gravitational motions induced by the
external potential in an inertial frame (see Eqs. A12 and A13). By
making increasingly stringent assumptions, we however show below
that it is possible to evaluate those quantities fromobservables alone.

Ifwe assume the cloud to be in vertical equilibrium, i.e. Eext,z =
M (σ2

gal,z − beν20 Z2
c ) ≈ 0, we have

β ≡
Eext

3bsGM2/Rc
≈

Eext,plane

3bsGM2/Rc
. (B9)

In this case, we only need to derive the in-plane RMS velocities of
gravitational motions (i.e. σ2

gal,plane = σ
2
gal,r + σ

2
gal,t).

In the following, we will estimateσgal,r andσgal,t (and thereby
β, αeff,vir and σeff,los) using two different methods: one using ob-
servations, the other using a shear model.

Observations. Although σgal,r and σgal,t can not be measured
directly from observations, it is nevertheless possible to glean some
information about them from the observables σobs,los and σgs,los.
Indeed, the observed velocity dispersion of a cloud σobs,los can be
expressed as

σ2
obs,los ≈ σ

2
sg,los +

(
σ2
gal,r sin

2 θ + σ2
gal,t cos

2 θ
)
sin2 i +σ2

gal,z cos
2 i ,

(B10)

where i is the inclination of the galactic disc with respect to the line
of sight, and θ is the (deprojected) azimuthal angle of the cloud’s
CoMwith respect to the kinematic major axis of the disc (see Eq. 32
of Meidt et al. 2018).

Assuming that the vertical gravitational motions can be treated
as random motions that balance the weight of the disc (i.e. no bulk
motion in the vertical direction), analogously to turbulent motions
due to self-gravity, the only bulk motions will originate from in-
plane gravitational motions. The gradient-subtracted velocity dis-
persion σgs,los can therefore be written as

σ2
gs,los ≈ σ

2
sg,los + σ2

gal,z cos
2 i . (B11)

Our gradient-subtracted velocity dispersionσgs,los thus removed the
second term (in-plane bulk gravitational motions) but kept the first
term (turbulent self-gravitational motions) and last term (vertical
random gravitational motions) on the RHS of Eq. B10.

If we assume the gas motions induced by the galactic potential
to be isotropic in the plane (i.e. σgal,r = σgal,t), the RMS velocities
of the in-plane gravitational motions due to external gravity can
easily be derived by combining Eqs. B10 and B11:

σ2
gal,r = σ

2
gal,t ≈

σ2
obs,los − σ

2
gs,los

sin2 i
. (B12)
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Substituting Eq. B12 into Eq. A36, we then obtain

Eext ≈ Eext,plane

≈ M
[ 2(σ2

obs,los − σ
2
gs,los)

sin2 i

+ beT0 (X2
c cos

2 φPA + Y2
c sin2 φPA) − beΩ20 (X2

c + Y2
c )

]
,

(B13)

and thus (see Eqs. B2, B4, B5 and B7)

αeff,vir ≈
σ2
gs,losRc

bsGM
+

Rc
3bsGM

[ 2(σ2
obs,los − σ

2
gs,los)

sin2 i

+ beT0 (X2
c cos

2 φPA + Y2
c sin2 φPA) − beΩ20 (X2

c + Y2
c )

]

(B14)

and

σ2
eff,los ≈ σ

2
gs,los +

1
3

[ 2(σ2
obs,los − σ

2
gs,los)

sin2 i

+ beT0 (X2
c cos

2 φPA + Y2
c sin2 φPA) − beΩ20 (X2

c + Y2
c )

]
,

(B15)

where we have used σ2
gs,los ≈ σ

2
sg,los.

For an axisymmetric cloud (i.e. Xc = Yc = Rc), we have

Eext ≈ Eext,plane

≈ M
[ 2(σ2

obs,los − σ
2
gs,los)

sin2 i
+ be(T0 − 2Ω20)R2

c

]
,

(B16)

and thus

αeff,vir ≈
σ2
gs,losRc

bsGM
+

Rc
3bsGM

[ 2(σ2
obs,los − σ

2
gs,los)

sin2 i
+ be(T0 − 2Ω20)R2

c

]

(B17)

and

σ2
eff,los ≈ σ

2
gs,los +

1
3

[ 2(σ2
obs,los − σ

2
gs,los)

sin2 i
+ be(T0 − 2Ω20)R2

c

]
.

(B18)

Shear model. For the model we will refer to as our “shear
model”, we assume that all fluid elements of a cloud populate per-
fectly circular orbits (around the galaxy centre) determined by the
galactic potential. In this case, the radial and azimuthal velocities
of each fluid element measured in the inertial frame (centred at the

galaxy centre) can be written as




vmod
gal,r = −Ω(R)R sin φ

≈ −Ω(R)dt

≈ −

(
Ω0 +

dΩ(R)
dR

����R=R0
(R − R0)

)
dt

≈ −

(
Ω0 +

dΩ(R)
dR

����R=R0
dr

)
dt

≈ −Ω0dt ,

vmod
gal,t = Ω(R)R cos φ

≈ Ω(R)R

≈ Ω0R0 +
d(Ω(R)R)

dR
����R=R0

(R − R0)

≈ Ω0R0 +

(
Ω0 + R

dΩ(R)
dR

����R=R0

)
dr

≈ Ω0R0 + (Ω0 − 2A0)dr ,

(B19)

where as before φ is the angle between ~R and ~R0 (see Fig. A1),
we have assumed cos φ ≈ 1, sin φ ≈ dt/R and R − R0 ≈ dr (as
Rc � R0), and we have expanded vgal,r and vgal,t to first order
about R0 (i.e. drdt ≈ 0).

Using the velocity transformation between the rotating frame
and the inertial frame (Eq. A28), we can derive the gravitational mo-
tion of each fluid element due to the external potential as measured
in the rotating frame:




v′mod
gal,x′ = 0 ,

v′mod
gal,y′ = −2A0dr ,

(B20)

that have solutions




x′mod = S2 ,
y′mod = −2A0 S2 t + S3 ,

(B21)

where S2 and S3 are constants that depend on the given boundary
(e.g. initial) conditions. As expected, if all fluid elements of a cloud
move on perfectly circular orbits (around the galaxy centre) deter-
mined by the galactic potential, the gravitational motions of the
cloud are completely dominated by shear motions and the epicyclic
amplitudes vanish (cf. Eq. 45). We thus refer to this model as the
“shear model”.

Considering Eqs. B19, themean velocities of the fluid elements
of a cloud along the radial (r̂ or ~R0) and azimuthal (t̂) directions as
measured in the inertial frame are




vmod
gal,r ≡

1
M

∫
V
vmod
gal,r dm

≈
1
M

∫
V

(−Ω0dt) dm ,

≈ 0 ,

vmod
gal,t ≡

1
M

∫
V
vmod
gal,t dm

≈
1
M

∫
V

(Ω0R0 + (Ω0 − 2A0)dr) dm

≈ Ω0R0 ,

(B22)

where as before we have used
∫
V

dr dm =
∫
V

dt dm = 0 as a ho-
mogenous ellipsoidal cloud has been assumed. The RMS velocities
of gravitational motions cause by an external potential as measured
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in the inertial frame are thus




(σmod
gal,r)

2 ≡
1
M

∫
V

(vmod
gal,r − vmod

gal,r)
2dm

≈
1
M

∫
V

(−Ω0dt)2dm ,

≈ Ω20be (X2
c sin

2 φPA + Y2
c cos2 φPA) ,

(σmod
gal,t)

2 ≡
1
M

∫
V

(vmod
gal,t − vmod

gal,t)
2dm

≈
1
M

∫
V

(
(Ω0 − 2A0)dr

)2dm,

≈ (Ω0 − 2A0)2be (X2
c cos

2 φPA + Y2
c sin2 φPA) ,

(B23)

where Eqs. A33 and A34 have been used for the integrals
∫
V d2r dm

and
∫
V d2t dm for a homogenous ellipsoidal cloud.
Substituting Eq. B23 into Eq. A36, we obtain

Emod
ext ≈ Emod

ext,plane

≈ 4A2
0beM (X2

c cos
2 φPA + Y2

c sin2 φPA) ,
(B24)

and thus (see Eqs. B2, B5 and B7)

αmod
eff,vir = αsg,vir +

4A2
0be (X2

c cos2 φPA + Y2
c sin2 φPA)

3bsGM/Rc
(B25)

and

(σmod
eff,los)

2 = σ2
sg,los+

4A2
0be (X2

c cos2 φPA + Y2
c sin2 φPA)

3
. (B26)

For an axisymmetric cloud (i.e. Xc = Yc = Rc), we then have

Emod
ext ≈ Emod

ext,plane

≈ 4A2
0beM R2

c ,
(B27)

and thus

αmod
eff,vir = αsg,vir +

4A2
0beR2

c
3bsGM/Rc

(B28)

and

(σmod
eff,los)

2 = σ2
sg,los +

4A2
0beR2

c
3

. (B29)

Finally, if we assume an internal Virial equilibrium has been
established by self-gravity (i.e. 3Mσ2

sg,los − 3bsGM2/Rc ≈ 0) and
the cloud is in vertical equibrium (i.e. Eext,z ≈ 0), our shear model
predicts that

Ï mod

2
≈ Emod

ext,plane

≈ 4A2
0beM (Rmod

c )2

= 2A2
0Imod ,

(B30)

where Imod = 2beM (Rmod
c )2 for a spherical cloud. As A0 > 0 for

all clouds, we easily obtain Imod ∝ e2A0t and thus Rmod
c ∝ eA0t

and Σmod
gas ∝ e−2A0t for a spherical cloud with a constant mass.

This suggests that, if all fluid elements of a cloud move on perfectly
circular orbits (around the galaxy centre) determined by the galactic
potential, a cloud experiencing strong shear will grow larger and
larger and become less and less bound over a timescale ∼ 1/2A0,
which we name the “shear timescale”.

APPENDIX C: STELLAR DENSITY CALCULATION

For a number of calculations, we must know the local stellar mass
density at the position of each cloud (ρ∗,0). For this, we adopt
the multi-Gaussian expansion (MGE) formalism of Emsellem et al.
(1994) and Cappellari (2002), and specifically the existing model
of NGC4429 from Davis et al. (2018), constrained from dynamical
modelling of the same molecular gas data as used here.

In short, the luminous matter distribution was first
parametrised using a MGE model of the stellar light, constructed
by applying the MGE_FIT_SECTORS package of Cappellari (2002)
to a HST Wide-Field Planetary Camera 2 (WFPC2) F606W image
combined with an r ′-band image from the Sloan Digital Sky Survey
(SDSS; Adelman-McCarthy et al. 2008). Each Gaussian component
j of the model has an observed surface brightness I j , standard devi-
ation (width) σ j and axial ratio qj . The best-fitting MGE model is
tabulated in Table 1 of Davis et al. (2018) and is shown visually in
their Fig. 7. Using this MGE parametrisation, the surface brightness
distribution of the galaxy can be accurately reproduced (see Eq. 12
of Cappellari 2008). The next step is to obtain the intrinsic luminos-
ity density by deprojecting the surface brightness model, which the
MGE parametrisation allows to do trivially under the assumption
of (oblate) axisymmetry and a known inclination (see Eq. 13 of
Cappellari 2008). The stellar density of the cloud is then derived
by multiplying the deprojected MGE luminosity density with the
(spatially-variable) stellar mass-to-light ratio Ψ(Rgal) derived from
the Davis et al. (2018) dynamical modelling:

ρ∗(Rgal) = Ψ(Rgal)
N∑
j

I jqj
√
2π σ jq′j

exp *.
,
−

R2
gal

2σ2
j

+/
-
, (C1)

where we have assumed that all the clouds are in the equatorial
plane (z = 0), Rgal is the galactocentric distance (radius in the plane
of the disc) of the cloud as usual, q′j is the intrinsic axial ratio of the
j th Gaussian component,

q′j =

√
q2
j
− cos2 i

sin i
, (C2)

(note that Cappellari 2008 instead uses q and q′ for the intrinsic and
the observed axial ratio, respectively), and the sum is taken over the
N Gaussian components. The derived central stellar mass density
of each cloud is listed in Table 3 and ranges from 6 to 60 M� pc−3.
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