A recent volume-limited survey of early-type galaxies (the Atlas3D sample) has detected ^{12}CO emission from molecular gas in approximately 25%. To study the properties of the molecular gas in early-type galaxies we have recently followed up the brightest of these ^{12}CO detections in ^{13}CO, HCN and HCO$^+$ using the IRAM 30m telescope. All of these molecules trace denser gas than ^{12}CO, although opacity and abundance effects can also have major roles (especially if AGN are present). The observations detect $15/15$ observed in $^{13}\text{CO}(1-0)$, $10/12$ in HCN(1-0) and $5/12$ in HCO$^+(1-0)$. Comparing the line ratios (based on integrated intensities in a central pointing) of these lines with those found for spiral galaxies reveals that most early-type galaxies with molecular gas have similar dense gas fractions, opacities and abundances to spirals. However, three galaxies are outliers in both the $^{13}\text{CO}/^{12}\text{CO}$ and HCN/^{12}CO ratios indicating a higher fraction of dense gas than normally found in spiral disks. Additionally, the ratio of HCN/HCO$^+$ is higher than that found for spiral disks in several early-type galaxies, possibly reflecting the effect of an AGN depleting the HCO$^+$.

A. F. Crocker (UMass Amherst), M. Krips (IRAM Grenoble, France), L. M. Young (New Mexico Tech), M. Bureau (Oxford University, United Kingdom), F. Combes (Observatoire de Paris, LERMA, France), Atlas3D Team