1. Introduction

- Early-type galaxies (ETGs): elliptical (E) / lenticular (S0) galaxies
 - filled with hot X-ray plasma (destructive of dust)
 - dominated by old stars (less productive of dust)
 - However recent observations detect observable amounts of dust & PAHs from many ETGs, yet their supply channels are not well understood.

We perform a systematic study of dust and star formation for a large sample of ETGs.

2. Sample & data

- Sample: ATLAS3D 260 ETGs ($M_*>21.5$, Dc=2 Mpc; Cappellari+11)
 - Kinematic classification (Emsellem+11)
 - stellar velocity maps
 - Fast rotator (224/260)
 - regular velocity field, \approxS0
 - Slow rotator (36/260)
 - complex velocity field, \approxE

- Data
 - AKARI all-sky surveys: 9, 18, 65, 90 & 140 μm bands
 - New dust measurements for the ATLAS3D ETGs (Kokusho+17)
 - 2MASS & WISE catalog: K, 3.6, 4.2, 12 & 22 μm bands
 - Literature measurements of the cold (CO & HI) & X-ray gas phases

3. Results & Discussion

- Dust emission
 - Aperture photometry
 - SED fitting
 - star: power law
 - PAH: Draine+07 model
 - warm & cold dust:
 - Draine&Li $\propto B^4(T)$
 - $M_{\text{dust}}=\frac{F_{\nu}D^2}{\kappa_{\nu}B(\nu)}$
 - $\kappa_{\nu}B(\nu) = 0$ (140 μm; Draine 00)
 - $M_{\text{dust}}(=M_{\text{warm}}+M_{\text{cold}})$, L_{90H}

- Dust & stellar masses
 - No correlation b/w M_{dust} & M_*
 - Some ETGs are well above the expected M_{dust}

- Dust & cold gas
 - (CO & HI measurements for 260 & 166 ETGs, respectively: Young+11, Serra+12, Young+14)
 - M_{dust} vs. M_{gas} (central HI \approx34'x45')
 - M_{dust} vs. M_{gas} (global HI)

- Correlation b/w M_{dust} & M_{gas}
 - like late-type galaxies
 - dense ISM of ETGs has $M_{\text{dust}}/M_{\text{gas}}$ similar to late-type galaxies
 - Inclusion of outer HI weakens the correlation
 - poor diffuse HI envelope?

4. Conclusion

- Dust and PAH emission are detected from many ETGs, that may have acquired the cold ISM through external paths.
- Fast rotators show correlation between dust and X-rays, which appears to be caused by their higher current star formation activities than slow rotators.
- Fast rotators follow the KS law of late-type galaxies, suggesting that their star formation may not be suppressed.