A systematic study of dust and star formation in early-type galaxies with AKARI

Takuma Kokusho¹, Hidehiro Kaneda¹, Martin Bureau², Toyoaki Suzuki¹, Mitsuyoshi Yamagishi³, Takashi Onaka⁴

¹Nagoya University, ²University of Oxford, ³ISAS/JAXA, ⁴University of Tokyo

1. Introduction

Early-type galaxies (ETGs): elliptical (E) / lenticular (S0) galaxies

- filled with hot X-ray plasma (destructive of dust)
 dominated by old stars (less productive of dust)
 no dust? no star formation?
- > However recent observations detect observable amounts of dust & PAHs from many ETGs, yet their supply channels are not well understood.

We perform a systematic study of dust and star formation for a large sample of ETGs.

(http://chandra.harvard.edu/photo/2006/galaxies)

2. Sample & data

Sample: ATLAS^{3D} 260 ETGS (*M*_K<-21.5, *D*<42 Mpc; Cappellari+11)

Kinematic classification (Emsellem+11)

Fast rotator (224/260) regular velocity field, = S0

Slow rotator (36/260) complex velocity field, \doteq E

\rm 4 Data

- \succ AKARI all-sky surveys: 9, 18, 65, 90 & 140 μ m bands New dust measurements for the ATLAS^{3D} ETGs (Kokusho+17)
- \geq 2MASS & WISE catalog: K, 3.6, 4.2, 12 & 22 µm bands
- > Literature measurements of the cold (CO & HI) & X-ray gas phases

3. Results & Discussion

star: power law

I La Dust & diffuse X-ray plasma

 $M_{\rm dust}/M_{\rm star}$ vs. $L_{\rm X}/M_{\rm star}$

² fast rotator

^{np}M)bol

slow rotator

(X-ray point sources are removed, 42 ETGs observed with Chandra; Su+15)

L Dust & cold gas

(CO & HI measurements for 260 & 166 ETGs, respectively: Young+11, Serra+12, Young+14) $\succ M_{dust}$ vs. M_{gas} (central HI ~34"x45") $\succ M_{dust}$ vs. M_{gas} (global HI)

> SFR vs. L_X (L_{PAH} -based SFRs for ETGs; Kokusho+17)

fast rotator

late type

slow rotator

[·] (Mineo+12)

 $\succ M_{dust}/M_{star}$ is correlated with L_{x}/M_{star} in fast rotators, whose SFRs are also correlated with $L_{\rm x}$ ⇒residual star formation may cause the dust-to-X-ray correlation M_{dust}/M_{star} is anti-correlated with L_X/M_{star} in slow rotators ⇒dust destruction in diffuse X-ray plasma

og(SFR [M_{sun}

Star formation properties of fast rotators

Kennicutt-Schmidt (KS) law: $\Sigma_{\rm SFR} \propto (\Sigma_{\rm gas})^n$ (*n*=1.4 for late-type galaxies; Kennicutt 98)

- Fast rotators follow the KS law of late-type galaxies \Rightarrow Fast rotators form stars with
 - efficiencies similar to latetype galaxies, suggesting

Σ_{HI+H2} [M_{sun} pc⁻

 \succ Correlation b/w M_{dust} & central M_{gas} like late-type galaxies \Rightarrow dense ISM of ETGs has M_{dust}/M_{gas} similar to late-type galaxies Inclusion of outer HI weakens the correlation ⇒dust-poor diffuse HI envelope?

that their star formation may not be suppressed

4. Conclusion

- Dust and PAH emission are detected from many ETGs, that may have acquired the cold ISM through external paths.
- Fast rotators show correlation between dust and X-rays, which appears to be caused by their higher current star formation activities than slow rotators.
- Fast rotators follow the KS law of late-type galaxies, suggesting that their star formation may not be strongly suppressed.

References:	Draine 2003, ARA&A, 41, 241	Knapp et al. 1992, ApJ, 399, 76	Shipley et al. 2016, ApJ, 818, 60
	Draine & Li. 2007, ApJ, 657, 810	Kokusho et al. 2017, A&A, 605, A74	Su et al. 2015, ApJ, 806, 156
Cappellari et al. 2011, MNRAS, 413, 813	Emsellem et al. 2007, MNRAS, 379, 401	Mineo et al. 2012, MNRAS, 426, 1870	Young et al. 2011, MNRAS, 414,940
Cappellari et al. 2013b, MNRAS, 432, 1862	Kennicutt 1998, ApJ, 498, 541	Serra et al. 2012, MNRAS, 422, 1835	