Early Universe and Galaxy Problems

Set by Dr. Pedro G. Ferreira for the 4" year Astrophysics course.

Problem 9: A baryon dominated Universe

In the very early Universe, before recombination, baryons and photons interact very strongly to
form a tightly coupled fluid. Let us assume that the transition between radiation and matter dom-
ination occurs at the same time as recombination. Before recombination, the evolution equation
for the perturbations in the baryon/photon fluid is
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with a/a = 1/2t. After recombination the evolution equation is
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with a/a = 2/3t.
e Rewrite these equations in Fourier space by replacing V by —ik.
e Solve both of these equations in the long wavelength limit.

e Before recombination, there is a scale (let us call it k; = 27 /A\; where A; is the Jeans length)
that separates the large k behaviour from the small £ behaviour. What is it? How does it
evolve with time?

A very rough approximation to the solution of the evolution equations before recombination on
small wavelengths is

§ = C cos (%kﬁ) + Cysin (%kﬁ)

where C] and Cy are constants.

e In the pre-recombination period, how does a perturbation that starts off with a k& < k; evolve
(answer this question qualitatively)? What type of behaviour will it have at sufficiently late
times?

e Start off with a perturbation with an amplitude A on scales much larger than Jeans scale
at some very early time. Follow its evolution until today. You should find two types of
behaviour: modes whose wavenumber k are smaller than k; at recombination and modes
whose wavenumbers are greater than k;. Find an approximate solution at recombination
by matching the large wavelength solutions to short wavelength solutions at the time when
kJ - k‘

e Define the powerspectrum of perturbations to be
P(k) = |8(to, k)|

Sketch what you expect the power spectrum of perturbations to be today if we assume that
initially all modes had the same amplitude at some early time.
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Figure 1: Recession velocities of galaxies (Problem 12)

Problem 10: Equation for a Spherical System

A spherical E galaxy has a density distribution:

= pU
1+ 5

p(r)

Show that the enclosed mass M(r) oc r® for r < a and M (r) oc r for r > a. How does v, depend
on radius? What is the problem with this model for the density profile?

Now consider a simple model of the Galaxy in which matter is distributed in such a way that
the rotation curve is flat with constant circular velocity v, out to a cut-off radius r, beyond which
the density of matter is zero. Show that the escape speed v, for stars with radii r < r, is given by

v2(r) = 202 [1 +In (7"_*>]

T

The star G166-37 has the highest known radial velocity for a star in the solar neighbourhood at
430km/s. Using the model above, estimate a lower mass limit to the cut-off radius of the mass
distribution and a lower limit to the total Galaxy mass.

Problem 11: The Galactic rotation curve

Let us assume we can split the density of the galaxy into three components. These are the bulge

. AbT%
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the disk
T
pa = Agexp <—%>
and the halo

Ph= 212 1+ 12)

The mass in each of these components, out to radius of 50 kpc is My = 10'*°M,, M, = 2 x 10° M,
and Mj, = 10'* M. Sketch out the velocity rotation curve of the galaxy as function of radius. Do
this approximately. At what distances does the halo begin to dominate?



Problem 12: The Virial Theorem

There is a dense grouping of galaxies in Centaurus filling a roughly circular area on the sky of
radius 1°. The figure shows a histogram of the radial velocities of the brighter galaxies, with the
smooth line being the fit of two Gaussian functions to the histogram. The observations have been
interpreted as showing two clusters at different distances superimposed along the line of sight.
Assuming this is correct, obtain rough estimates for the distance between the clusters and the
masses of the clusters. Assume that Hy = 50 Km/s/Mpc.



High-energy astrophysics problems

Set by Dr. Garret Cotter for the 4" year Astrophysics course.

Problem 6: Superluminal motion

In the lectures we derived the formula for the apparent projected velocity B,ppc of material in a
jet with velocity Sc at an angle # to the line of sight,

Bsinf

Papp = 1 — Pcosh

Use this formula to show that for any particular jet, the maximum apparent speed is

max

aop = V0,
which is seen when the jet is viewed from a direction such that

B = cos 6.

Problem 7: Relativistic Doppler beaming
This is a demonstration of the relativistic abberation of solid angle.

Suppose a source is moving along the § = 0 axis (spherical polar coordinates). If the source
emits photons isotropically in its rest frame (the S’ frame) then the angular distribution of
photons in an annulus of solid angle between " and 6’ + d#’ will be given by

1
P(#") 40’ = 5 sin 0’ d6'.
(Recall this from you old kinetic theory notes if you have forgotten it!). Use the relativistic

abberation formulae to transform 6’ to the observer’s (S) frame 6 and hence show that the
distribution of photons in the S frame is given by

P(6) do = DZ% sin 6 dé,

where D is the relativistic Doppler factor, [y(1 — Bcosf)] .

Problem 8: Calculation for beamed jets

Detailed study of the (single-sided) jet in the quasar 3C273 suggests that the jet is pointing
towards us, at about 10° from the line-of-sight, has a bulk Lorentz factor vy =11, and a
synchrotron spectral index of 0.5. The deepest radio maps of 3C273 have a dynamic range of
about 5000 and show no sign whatsoever of a counterjet. Is this surprising?



Problem 9: Inverse-Compton scattering (1999 finals)

Explain what is meant by Thomson scattering and inverse Compton scattering. Give two
examples where inverse Compton scattering is important in astrophysics.

The power P in scattered radiation due to Thomson scattering is given by
P = CO’TU

where ot is the Thomson scattering cross-section and U is the energy density of incident
radiation. Use this relation to derive an expression for the average power of radiation inverse
Compton scattered by a population of relativistic electrons with Lorentz factors v ~ 1000.
Assume that the distribution of electrons is isotropic and that the radiation being scattered is at
radio frequencies. Justify each step in your derivation.

Ultra-relativistic electrons of energy 10 eV are observed at the Earth. By considering the effect
on the electrons of inverse Compton scattering of the microwave background radiation, calculate
the maximum length of time for which the electrons could have had energies larger than the
observed value. Given that the age of the Galaxy is ~ 10'? years, what does this imply? Suggest
some possible sources of such high-energy electrons.

[The energy density of the microwave background is 2.6 x 10°eVm3; o = 6.6 x 1072’ m? ]



