Oxford May Music

- The annual May Music Festival begins on Wednesday 27th April
- Free participation for all events to all undergraduate and postgraduate students in physics.
- Email Brian Foster
- Note 1st May 17:30 The Dark Universe : Jo Dunkley

Life on the Edge: the coming of age of quantum biology

- Wednesday, April 27, 2016
- 17:30 18:30
 Holywell Music Room (map)
- Prof Jim Al-Khalili University of Surrey

For almost a century, physicists and chemists have developed and learned to harness and apply the strange rules of quantum mechanics to explain the microscopic world of atoms and molecules and the elementary building blocks of our universe. But biologists have thus far not needed to learn about this powerful yet counterintuitive field. Now, experimental evidence and theoretical advances have pushed quantum biology to the forefront of research. This talk will shed light on some familiar phenomena in biology, from photosynthesis to smell, that seem to require quantum mechanics in order to be full understood.

Atomic Processes and the Interstellar Medium

ttp://www.oxfordmaymusic.co.uk/201

Extracting quantitative measurements from astronomical observations Patrick Roche

Synopsis

- Astronomical spectroscopy, lines in different spectral regions, recap of atomic physics and selection rules, forbidden and allowed transitions, cosmic abundances
- The two level atom, A, B and C coefficients and their useful regimes, thermal populations, IR fine structure lines, critical density, mass estimates
- Recombination and ionization processes, the Stromgren sphere, ionization balance, effective temperature estimates.
- The 3 level atom: diagnostics of electron temperature and electron density.
- Absorption lines, equivalent width and the curve of growth. Column densities and abundances
- The interstellar medium. Atomic and ionic absorption lines, abundance of gas, molecules and dust. Hyperfine transitions: 21cm line of H, Galactic structure
- Interstellar extinction, dust components, thermal emission, equilibrium and stochastic processes
- The sun. Ionization and sources of opacity, radiative transfer, the Gray atmosphere limb darkening, absorption line formation

Some typical conditions

- 90% H atoms, ~9% He, ~1% everything else (by number)
- Stellar surface temperatures 2000 <T< 40000 K Densities ~ few gram/m³ for main sequence stars
- Ionized nebulae e.g. HII regions, planetary nebulae
 - T(electron) ~ 10000K,
 - n(electron)~ N(proton) 10⁶ 10¹² m⁻³
 - T(dust) ~ 50K
- Cold and denser molecular clouds (T<< 100 K)
- Hot and lower-density plasmas e.g. shock heated gas, T~10⁶K, n<100
- Velocities: cold ISM 1km/s SN outflows 10⁴ km/s
- Overall density of the Universe is ~ 10 orders of magnitude lower than the best lab vacuum

Astronomical Spectroscopy

Imaging provides information about structure and morphology, Whilst photometry permits estimates of luminosity and variability.

- We have to analyse spectra to understand the composition and physical conditions (temperature, density, excitation) of galaxies, stars and nebulae and the intervening material between the Earth and the object
- Spectra provide information on the structure and dynamics of stars, planets and galaxies – and have provided evidence for the Big Bang, expansion of the Universe, dark matter, exosolar planets
- In fact almost everything interesting in astrophysics!
- To first order, astronomical objects have very similar compositions, but their appearances vary dramatically
 - e.g. the surface of the sun and a nebula
- Quantitative analysis allows us to probe and understand this

Observations across the electromagnetic spectrum probe: e.g. High energy processes e.g. accretion onto compact objects; K-shell Xray transitions

- Photo-ionised gas, recombination and forbidden lines, stellar atmospheres in UV, optical, Infrared
- Rotational-vibrational molecular transitions, fine-structure line transitions , dust emission in the IR
- Molecular rotational lines, synchrotron and free-free emission in the microwave and radio, 21cm line tracing atomic H

Different techniques using a range of ground-based and space facilities Here I will concentrate on optical/infrared transitions, but the same principles apply to other wavelength regimes

A brief history of astronomical spectroscopy

- 1672 Newton's prism sunlight split into constituent colours
- 1800 Herschel noted that infrared light is present beyond the visible red bands
- 1804 Wollaston noted dark lines in the solar spectrum
- 1814 Fraunhofer rediscovered them and identified 475 dark lines including one coincident with that produced by salt in flame
- 1870 Kirchoff and Bunsen identified 70 lines with iron vapour
- 1864 Nebulium was proposed by Huggins to explain a green line seen in nebula
- 1869 Coronium invoked to explain a green line seen in solar prominences
- 1870 Lockyer and Janssen proposed a new element Helium from solar spectra Helium was confirmed in 1895 by Ramsay.
- The explanation for Nebulium did not emerge until 1928 when Bowen demonstrated that the lines at 4959 and 5007A arise from the ${}^{1}D_{2}$ - ${}^{3}P_{2}$ forbidden transition in OIII
- Coronium was identified by Edlen and Grotrian in 1939 as a transition from Fe XIV, arising from an ion with an ionization potential of 361eV.
- Since then, many other unexpected phenomena have been discovered masers, transitions from short-lived species, highly relativistic motions etc, there are still many as-yet unidentified lines from ions and molecules.

- Strong quasi-blackbody continuum emission but with marked spectral structure and absorption lines: the break at ~350nm (the 'Balmer Jump' due to an excitation edge in H), narrow atomic lines and broader molecular bands
- Note the increasingly prominent absorption as temperature decreases

Detailed spectral characteristics depend on pressure (surface gravity), element abundances etc.

- E.g. White dwarf : the end product of intermediate mass star evolution after going through planetary nebula phase.
- Dense. High surface gravity leads to pressure-broadening of lines

Effects of Metallicity

Stars with reduced heavy element abundances show fewer and narrower absorption bands. Spectroscopic surveys have identified stars in the halo of our galaxy with very low abundances of heavy elements.

Element abundance patterns in the most metal-poor stars reflect pollution from first generation of stars formed: SMSS 0313-6708 has [Fe/H] < -7.1 and [C/H] = -2.6 and may show the imprint of a single early-time Supernova (Keller et al 2014) Figure from Frebel & Norris 2015.

Sirius A and B

Interpretation of Spectra

- Continuum with emission and/or absorption lines (and molecular bands and solid state dust features in the infrared)
- Continuum due to a range of processes,
 - thermal emission (characteristic of the temperature of a star, nebula or dust) : $\lambda maxT = 2898$ [T in K, λ in μm]
 - Bremsstrahlung from electron-electron interactions in plasma
 - Non-thermal (synchrotron) emission at long wavelengths
 - Non-thermal (compton) emission at short wavelengths
- In the simplest case, a cold layer in front of a hot star will produce absorption lines, while
- A hot gas will produce emission lines from atoms and ions (see arc lamps); a cool gas may produce emission from molecules and neutral atoms.

 In astronomical objects, conditions are often very different from those in terrestrial laboratories.

Information from observations of lines

- Radial velocities and velocity components and distributions and hence dynamics, rotation, expansion and/or contraction, bulk or turbulent motions, outflow and/or accretion, pulsations, flares, astroseismology
- The physical conditions of astronomical bodies:
 density, temperature, ionization state etc
- Ionic and element abundances, isotopic ratios in some cases
- Magnetic field strengths (Zeeman effect)
- Molecule (gas and condensed phases) and dust species, astrochemistry

The search for the most distant objects

For some purposes, identification of lines and wavelengths may be sufficient, e.g. redshift determination. But even here, need to know which lines have been detected (e.g. Lyman Alpha in these high-z QSOs)

Interstellar Absorption lines towards nearby stars

Observations of absorption lines produced by ions and atoms in the interstellar medium between the Earth and nearby stars are used to estimate the amounts of different species in the gas phase of the ISM.

High spectral resolution observations isolate different velocity components (along the line of sight), and the identification of different clumps of material

With narrow lines, and high quality spectra, may pick up hyperfine structure due to different isotopes

Planetary nebulae and Photoionized gas

- laboratories for understanding atomic processes and photoionization by hot stars
 - Isolated systems
 - Single (or at least a small number of stars)
 - Central star excites gas ejected by the precursor
- Clues to stellar evolution
 - End point of red giants
 - Enrichment of the ISM
 - Production of white dwarfs
- Central stars have 30,000 K < T < 250,000 K
 - Ionization state of gas reflects stellar temperature
 - Chemical abundances reflect stellar evolution:
 nuclear processing and dredge-up
 - Density structure reflects ejection mechanism and protoplanetary structure
 - Formation and processing of molecules and dust

Planetary Nebula NGC 7009

- Photo-ionised gas emission spectrum
 - Bright emission lines from hydrogen, helium, oxygen, nitrogen etc.
- Recombination lines of Hydrogen (and Helium): protons capture electrons in excited states which then cascade down
- Collisionally excited forbidden states in heavy elements, which have low transition probabilities, but can decay radiatively at low densities, cooling and acting as a thermostat for the gas

Recap on Atomic Physics

- Nomenclature: Ionization state denoted by roman numerals : – e.g O III denotes O²⁺ , O I denotes neutral oxygen
- Selection Rules electric dipole transitions
 - Seen under lab conditions, with high densities
- In astronomy, densities are often very low; intervals between collisions are long and we see
 - Forbidden Lines denoted by []
 - e.g. [OIII] Forbidden transition in O²⁺
 - magnetic dipole or electric quadrupole transition, usually in the lowest electron configuration, with low transition probabilities
 - Generally arise in low lying levels as higher levels have more possible allowed transitions

Also have electric dipole lines with $\Delta s \neq 0$,

semi-forbidden lines, one square bracket e.g. C III]

Selection Rules

(from J Tennyson 2005)

Table 5.1. Selection rules for atomic spectra. Rules 1, 2 and 3 must always be obeyed. For electric dipole transitions, intercombination lines violate rule 4 and forbidden lines violate rule 5 and/or 6. Electric quadrupole and magnetic dipole transitions are also described as forbidden.

	Electric dipole	Electric quadrupole	Magnetic dipole
1.	$\Delta J = 0, \pm 1$	$\Delta J = 0, \pm 1, \pm 2$	$\Delta J = 0, \pm 1$
	Not $J = 0 - 0$	Not $J = 0 - 0, \frac{1}{2} - \frac{1}{2}, 0 - 1$	Not $J = 0 - 0$
2.	$\Delta M_I = 0, \pm 1$	$\Delta M_{I} = 0, \pm 1, \pm 2$	$\Delta M_J = 0, \pm 1$
3.	Parity changes	Parity unchanged	Parity unchanged
4.	$\Delta S = 0$	$\Delta S = 0$	$\Delta S = 0$
5.	One electron jumps	One or no electron jumps	No electron jumps
	Δn any	Δn any	$\Delta n = 0$
	$\Delta l = \pm 1$	$\Delta l = 0, \pm 2$	$\Delta l = 0$
6.	$\Delta L = 0, \pm 1$	$\Delta L = 0, \pm 1, \pm 2$	$\Delta L = 0$
	Not $L = 0 - 0$	Not $L = 0 - 0, 0 - 1$	

21cm Hyperfine transition in H

- Spin-flip transition in the ground state of Hydrogen. 1420MHz, 21cm
- Very low probability: A ~3 x 10⁻¹⁵ sec ⁻¹
 Predicted in 1944, first detected in 1951
- But vast clouds of Hydrogen make it easily detectable – a tracer of neutral Hydrogen in our (and other) Galaxy
- Potentially very important for tracing the ionization conditions in the early Universe

Ionization Potentials (eV)

	Stage of ionization														
At	om	I	п	ш	IV	v	VI	VII	VIII	IX	х	XI	XII	XIII	XIV
1	Н	13.598 44	2010	1	2	-	2 2		2.2.	3.8.8.					
2	He	24.58741	54.41778												1841
3	Li	5.39172	75.640 18	122.454											12.1
4	Be	9.322 63	18.211 16	153.897	217.713										P
5	В	8.298 03	25.154 84	37.931	259.366	340.22									13 -1
6	С	11.260 30	24.383 32	47.888	64.492	392.08	489.98								
7	N	14.534 14	29.6013	47.449	77.472	97.89	552.06	667.03							
8	0	13.61806	35.117 30	54.936	77.413	113.90	138.12	739.29	871.41						1840
9	F	17.422 82	34.970 82	62.708	87.140	114.24	157.17	185.19	953.91	1 103.1					1.4
10	Ne	21.564 54	40.963 28	63.45	97.12	126.21	157.93	207.28	239.10	1 195.8	1362.2				21.0
11	Na	5.139 08	47.2864	71.620	98.91	138.40	172.18	208.50	264.25	299.9	1465.1	1 648.7			18 200
12	Mg	7.646 24	15.035 28	80.144	109.265	141.27	186.76	225.02	265.96	328.1	367.5	1761.8	1963		1239
13	Al	5.98577	18.828 56	28.448	119.99	153.83	190.49	241.76	284.66	330.1	398.8	442.0	2086	2304	1.12.1
14	Si	8.151 69	16.345 85	33.493	45.142	166.77	205.27	246.49	303.54	351.1	401.4	476.4	523	2438	2 6 7 3
15	Р	10.486 69	19.7694	30.203	51.444	65.03	220.42	263.57	309.60	372.1	424.4	479.5	561	612	2817
16	S	10.360 01	23.3379	34.79	47.222	72.59	88.05	280.95	328.75	379.6	447.5	504.8	564	652	707
17	Cl	12.967 64	23.814	39.61	53.465	67.8	97.03	114.20	348.28	400.1	455.6	529.3	592	657	750
18	Ar	15.759 62	27.629 67	40.74	59.81	75.02	91.01	124.32	143.46	422.5	478.7	539.0	618	686	756
19	K	4.340 66	31.63	45.806	60.91	82.66	99.4	117.56	154.88	175.8	503.8	564.7	629	715	787
20	Ca	6.113 16	11.87172	50.913	67.27	84.50	108.78	127.2	147.24	188.5	211.3	591.9	657	727	818
21	Sc	6.561 44	12.799 67	24.757	73.489	91.65	111.68	138.0	158.1	180.0	225.2	249.8	688	757	831
22	Ti	6.8282	13.575 5	27.492	43.267	99.30	119.53	140.8	170.4	192.1	215.9	265.1	292	788	863
23	v	6.7463	14.66	29.311	46.71	65.28	128.1	150.6	173.4	205.8	230.5	255.1	308	336	896
24	Cr	6.766 64	16.4857	30.96	49.16	69.46	90.64	161.18	184.7	209.3	244.4	270.7	298	355	384
25	Mn	7.434 02	15.639 99	33.668	51.2	72.4	95.6	119.20	194.5	221.8	248.3	286.0	314	344	404
26	Fe	7.9024	16.1878	30.652	54.8	75.0	99.1	124.98	151.06	233.6	262.1	290.2	331	361	392
27	Co	7.8810	17.083	33.50	51.3	79.5	103	131	160	186.2	276.2	305	336	379	411
28	Ni	7.6398	18.168 84	35.19	54.9	75.5	108	134	164	193	224.6	321	352	384	430
29	Cu	7.72638	20.292 40	36.841	55.2	79.9	103	139	167	199	232	266	369	401	435
30	Zn	9.394 05	17.964 40	39.723	59.4	82.6	108	136	175	203	238	274	311	412	454

- O III (O⁺⁺) energy level (Grotrian) diagram
- Transitions within the ground state are forbidden by electric dipole transition rules, but allowed at low probability as electric quadrupole, magnetic dipole transitions
- Populated by electron collisions

Transitions between the ${}^{3}P_{0,1,2}$ ground state levels give rise to bright lines in the far Infrared.

FeXIV Coronium at 530.3nm By extrapolating along the isoelectronic sequence from AI, Si II, P III, S IV, CI V, Ar VI z = 13, 14, 15, 16, 17, 18 Edlen & Grotrian identified the 'Coronium' line with the ${}^{2}_{3/2} - {}^{2}P_{1/2}$ transition in Fe XIV (z=26) $\int \int \frac{1}{2} \frac$

Solar Abundances

(Asplund et al 2009)

Abundances are often expressed as logarithmic abundances with respect to H = 12.00

How is it that trace elements have prominent spectral features in stars and nebulae?

We need to understand the energy level structure and level populations at different temperatures in different elements in their atomic and ionic states

Aton		106 11			11033
(X)			(by number)	(by number)	fraction
н	1	12.00	1.000E+00	1.175E+01	7.347E-01
He	2	10.93	8.511E-02	1.000E+00	2.483E-01
Li	3	1.05	1.122E-11	1.318E-10	5.675E-11
Ве	4	1.38	2.399E-11	2.818E-10	1.576E-10
В	5	2.70	5.012E-10	5.888E-09	3.949E-09
С	6	8.39	2.455E-04	2.884E-03	2.149E-03
N	7	7.78	6.026E-05	7.079E-04	6.153E-04
0	8	8.66	4.571E-04	5.370E-03	5.331E-03
F	9	4.56	3.631E-08	4.266E-07	5.028E-07
Ne	10	7.84	6.918E-05	8.128E-04	1.018E-03
Na	11	6.17	1.479E-06	1.738E-05	2.480E-05
Mg	12	7.53	3.388E-05	3.981E-04	6.004E-04
Al	13	6.37	2.344E-06	2.754E-05	4.610E-05
Si	14	7.51	3.236E-05	3.802E-04	6.625E-04
Р	15	5.36	2.291E-07	2.692E-06	5.171E-06
S	16	7.14	1.380E-05	1.622E-04	3.226E-04
Cl	17	5.50	3.162E-07	3.715E-06	8.171E-06
Ar	18	6.18	1.514E-06	1.778E-05	4.407E-05
К	19	5.08	1.202E-07	1.413E-06	3.426E-06
Ca	20	6.31	2.042E-06	2.399E-05	5.965E-05
Sc	21	3.05	1.122E-09	1.318E-08	3.677E-08
Ti	22	4.90	7.943E-08	9.333E-07	2.773E-06
V	23	4.00	1.000E-08	1.175E-07	3.713E-07
Cr	24	5.64	4.365E-07	5.129E-06	1.655E-05
Mn	25	5.39	2.455E-07	2.884E-06	9.830E-06
Fe	26	7.45	2.818E-05	3.311E-04	1.147E-03
Со	27	4.92	8.318E-08	9.772E-07	3.573E-06
Ni	28	6.23	1.698E-06	1.995E-05	7.267E-05

Copies of Lecture Slides and problem sets www-astro.physics.ox.ac.uk/~pfr/C1.htm

Text books: various but "Physics and Chemistry of the Interstellar Medium" by Sun Kwok "Physics of the Interstellar and Intergalactic Medium" by Bruce Draine are recent and comprehensive