
C1: Atomic Processes, Appendix A

Collisional excitation and de-excitation coefficients

Electrons are ejected from atoms through photionization and carry energy which is rapidly ther-
malised through interactions with other particles, leading to a maxwellian velocity distribution.
The electrons can excite bound electrons within atoms and ions through collisions; but note
that at typical nebular temperatures, they do not have sufficient energy to ionise most species
or to populate significantly the first excited state in H. The excited electrons can be collisionally
de-excited, or they may decay radiatively back to the lower level. In the limiting case of thermal
excitation and de-excitation, energy is conserved and the upwards collisional excitations and
balanced by downward collisional de-excitation, producing statistical equilibrium.
We have:
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The collisional de-excitation rate coefficient C2−1 is given by the integral of the cross section,
v and the electron speed distribution. i.e.
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Now it is usual to replace the collision cross section, Q, by the dimensionless Collision strength
Ω defined such that Ω21 = Ω12 according to:
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where a0 is the radius of the first Bohr orbit, so that Q21(E) = ( h2
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which gives :
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With a broad range of electron energies, we can define an effective collision strength or
Maxwell-averaged collision strength Ω̄21
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∫∞
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and substituting h̄ = h/2π and gathering terms gives:
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For collisional excitation, the approach is similar, except that there is a minimum energy or
threshold energy needed to raise the electron to the excited state. The integral therefore is from
E12 to ∞.
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and therefore:
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These relationships between the collisional excitation and de-excitation coefficients are key to
interpretation of line emission in nebulae.

2


