
2004/05 4th Year Astrophysics : Problem Set 7 Atomic Processes & Revision

Q1. Sketch the mean variation of the electron temperature Te with height above the solar
photosphere indicating the principal regions and the ranges of Te that they include. What
fundamental problem does this temperature variation present? [8]

Derive an expression relating the flux in a collisionally excited allowed emission line to the
emission measure. [8]

In the solar spectrum, allowed transitions to the ground term occur in O IV at 55.4 nm and
in Ne IV at 54.4 nm. The optimum temperature of formation for these lines is 1.8×105 K and the
lines have the same dependence of emissivity on Te. Use the data below to find the abundance
of neon relative to that of oxygen. State and briefly justify any assumptions you make.

Observed line flux/W m−2 Statistical weight
of ground term

N1Ω12

NE

OIV 1.2 6 8.5
Ne IV 0.042 4 1.2

Here N1 is the population density of the ground term and NE is the number density of the
element. [9]

[The rate coefficient for collisional excitation is

C12 =
8.63 × 10−12Ω12 exp(−W12/kBTe)

T
1/2
e g1

m3 s−1,

where Ω12 is the collision strength, g1 is the statistical weight of the ground term and W12 is
the energy of the excited term.]

Q2. Explain what is meant by an emission measure and the emission-measure

distribution in the context of cool-star transition regions. [4]

Show that, for a plane-parallel atmosphere in hydrostatic equilibrium, the electron pressure
Pe at any electron temperature Te can be expressed as

P 2
e (Te) = P 2

e (T0) − 2
√

2 µmHkBg∗

∫ Te

T0

Em(0.3) dTe,

where T0 is a temperature at which the electron density can be measured, µ is the mean relative
molecular mass, g∗ is the stellar surface gravity and Em(0.3) is the emission measure averaged
over a logarithmic temperature range of ∆ log Te = 0.3. State clearly any approximations which
you make. [12]

For T0 ≤ Te ≤ Tcorona, the emission-measure distribution is described by aT
3/2
e , where a =

4 × 1027 K−3/2 m−5. Given that µ = 0.6, g∗ = 274m s−2, T0 = 2 × 105 K and Pe(T0) = 10−2 Pa,
find the temperature T1 at which P 2

e (Te) = 0.81P 2
e (T0). What aspect of the structure of the

transition region leads to this small variation of Pe(Te)? [5]

The energy flux carried by thermal conduction is almost constant for the
temperature range over which an emission line is typically formed and is related to the temper-

ature gradient dTe/dh by Fc(Te) = −κ0T
5/2
e (dTe/dh), where

κ0 = 10−11 W m−1 K−7/2. Find Fc(Te) at T1. [4]

1



Q3. Matter–Radiation Equality

The present density of matter is ρM0 ≡ ΩMρc and the present density of radiation is
ρR0 = ργ0 + ρν0, where ργ0 = AT0

4 is the microwave background (T0 = 2.725 K) and
ρν0 = (21/8)ATν0

4 is the neutrino background (we assume that neutrinos are massless).

Here A = π2/15, and Tν0 = (4/11)1/3T0.

Starting from the Friedmann equation, find an expression for the age of the Universe, teq,
when ρM = ρR in terms of the scale factor a, the Hubble constant H0 and the matter density
parameter ΩM . (Note that in these early times - but not today - you can ignore the curvature
and vacuum terms in the Friedmann equation.) [15]

Calculate the age (in years) for the cases ΩM = 0.1, 0.3 and 1.0 and H0 = 70 km s−1. What
was the temperature Teq ? [10]

Q4. Tully Fisher Relation

Suppose that some class of galaxies has a surface brightness that varies with distance from the
galaxy centre as I(R) = I0f(R/R0) with all galaxies having the same I0 and the functional form
f , but with different galaxies having different R0.

If the mass to light ratio is everywhere constant within each galaxy and within the class,
show that the total luminosity is related to the characteristic velocity as L ∝ v0

4. [10]

We can use this relation to measure the distances to galaxies. How would you measure v0
2

for spiral galaxies (i.e. what velocity would one measure)? And for elliptical galaxies?
What kind of problems do you envisage with this distance indicator? [5]

Q5. Synchrotron radiation

Explain the reasons for concluding that the diffuse component of radio emission observed at a
frequency of 408 MHz is due primarily to synchrotron emission from our Galaxy. [5]

Show that the synchrotron radiation from a single ultra-relativistic electron with Lorentz
factor γ >> 1, is strongly peaked around a critical frequency νcrit of about

νcrit ∼
γ2eB

me

sinθ

when the electron is passing through a region of magnetic flux density B at an angle θ to the
direction of the magnetic field. [10]

By considering the intensity of radiation emitted by a black body, show how an estimate of
the magnetic flux density in a compact radio source can be obtained from a measurement of its
surface brightness at a frequency at which the source is optically thick. [10]

[In the Rayleigh Jeans part of the spectrum of a black body at temperature T , the intensity per
unit frequency interval Sν is given by Sν = 2kBTν2/c2]
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Q6. Star Formation

a) Explain the concept of the Jeans mass and its importance for star formation. Consider two
dense cores in a cloud of molecular hydrogen (with µ = 2): (i) a cool core with temperature
T = 10K and (ii) a warm core with T = 100K. Taking the number density of molecular
hydrogen to be n = 1010 m−3 in both cases, estimate the Jeans mass for both cores.

b) Assume that the pre-collapse core is in hydrostatic equilibrium and can be treated as an
isothermal sphere, i.e. a sphere of gas at constant temperature T where the supporting
thermal pressure is given by P = ρ c2

s and where cs =
√

kT/µmH is the isothermal sound
speed of the gas. Show that the density as a function of radius r from the centre of the
sphere is approximately given by

ρ =
c2
s

4πG

1

r2
,

and the mass enclosed within a radius r by

M(r) =
c2
s

G
r.

c) The collapse of an unstable isothermal molecular cloud core occurs from the inside out.
Assume that the innermost mass m(r) within a radius r has already collapsed and that
the infall velocity at r is given by cs. Show that the mass-infall rate Ṁ is given by

Ṁ =
c3
s

G

and is independent of r. What is Ṁ for the cases (i) and (ii) in part a)?

d?) Now consider an unstable molecular cloud core of 1M� and initial radius R = 106 R�

which is in solid body rotation with angular velocity ω = 10−13 Hz. Assuming that the
size of the protostar forming at the centre of the collapsing core has a radius of 5R� and
using angular momentum considerations, estimate what fraction of the mass of the core
can collapse directly onto the protostar. Estimate the characteristic size of the proto-
stellar disc that forms from the collapse of the bulk of the molecular core. [To obtain
these estimates, you may take the density to be constant in the core and ignore factors
of order unity.] Comment on the implications of these estimates for the outcome of the
star-formation process.
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