

Overview

- Thermal bremsstrahlung
- Introduction to galaxy clusters.
- X-ray emission from clusters and hot plasma properties. Cooling. Interaction of radio sources with cluster plasma.
- Masses of clusters from gravitational lensing.
- The Sunyaev-Zeldovich effect.

Bremsstrahlung (alias free-free emission)

- Caused by acceleration of electrons in the electrostatic fields of ions and nuclei.
- Principal emission mechanism from very high temperature (T > 10⁶ K) ion plasma (e.g. galaxy halos; clusters of galaxies).
- These plasmas are described as thermal because they have a Maxwellian velocity distribution corresponding to a well-defined temperature (cf. A power-law distribution). The emitted spectrum does not look like that of a black body.
- Name from German (braking radiation).

Approximate (classical and nonrelativistic) approach

- Calculate acceleration of electron in electrostatic field of the nucleus
- Fourier transform of acceleration -> spectrum
- Integrate over impact parameters

Spectrum of emission from an accelerated charge

- Total radiated energy from a charged particle with acceleration a(t) from Larmor's formula.
- Then take Fourier transform and use Parseval's theorem:

$$E = \int_{-\infty}^{\infty} P dt = \frac{q^2}{6\pi\varepsilon_0 c^3} \int_{-\infty}^{\infty} |a(t)|^2 dt.$$
$$\int_{-\infty}^{\infty} |a|^2 dt = \int_{-\infty}^{\infty} |\tilde{a}(\nu)|^2 d\nu$$

• E(v) is energy radiated per unit frequency interval:

$$E = \frac{q^2}{6\pi c_0 \sigma^3} \int_{-\infty}^{\infty} |\tilde{u}(\nu)|^2 d\nu$$

$$= \frac{q^2}{3\pi c_0 \sigma^3} \int_{0}^{\infty} |\tilde{u}(\nu)|^2 d\nu$$

$$= \int_{0}^{\infty} E(\nu) d\nu$$

$$E(\nu) = \frac{q^2}{3\pi c_0 \sigma^3} |\tilde{u}(\nu)|^2$$

Spectrum

• H and He dominate bremsstrahlung from hightemperature plasma, as they are fully ionised.

 $H ~ \propto e^2 n_H^{} n_e^{}$

He $\,\,{\propto}4e^2n_{He}^{}n_e^{}\,(fractional \,\,abundance\,\,0.08$ by number)

Alternative terminology

• **Emissivity** $\propto n_i n_e g(v,T) T^{-1/2} exp(-hv/kT)$, where n_i and n_e are the ion and electron number densities and $g(v,T) \propto \ln(kT/hv)$ is the Gaunt factor.

Thermal bremsstrahlung spectrum

Clusters of galaxies

- Richest clusters have size scales ~1 Mpc.
- Dominated by elliptical and S0 galaxies.
- Central, massive cD galaxies with extended stellar envelopes are always elliptical.
- Deep gravitational potential wells.
- Typical galaxy velocity dispersion σ ~ 1000 km s^{-1}
- Crossing time
 - $t_{cross} \sim r/\sigma \sim 10^9$ years < Hubble time

so clusters have time to relax dynamically.

Clusters of galaxies - 2

- · Assuming virial equilibrium, typical mass is
- $M \approx R \sigma^2/G \approx (R/1 \ Mpc) (\sigma/1000 \ kms^{-1})^2 \ x \ 10^{15} \ solar \ masses.$
- This is much greater than that associated with stars or plasma, indicating that the potential wells of clusters are dominated by dark matter.

X-ray properties of clusters of galaxies

- Mass ~15% of the mass of galaxy clusters is in the form of hot, diffuse plasma filling its potential well.
- **Temperature** If plasma has the same dynamics as the member galaxies, then expect
 - $kT \approx \mu m_p \sigma^2 \approx 7 \text{ x } 10^7 (\sigma/1000 \text{ kms}^{-1})^2 \text{ K}$
- (σ is the cluster velocity dispersion, m_p is the proton mass and μ is the mean molecular weight).
- This relation is observed, so clusters are reasonably relaxed structures in which gas and stars feel the same dynamics.

Hydrostatic equilibrium in clusters

- Equation of hydrostatic equilibrium: dp/dr = -GM(<r)p(r)/r²
- Perfect gas $p = \rho kT/\mu m_p$
- Hence total gravitating mass within radius r:
 M(>r) = -(kTr/G μm_p)(d lnp/d lnr + d lnT/d lnr)
- Isothermal case: plasma and stars in equilibrium in gravitational potential φ. Then Boltzmann distributions for gas and galaxies are

$$\begin{split} \rho_{gas} & \propto exp(-\mu m_p \phi \, / kT) \\ \rho_{galaxies} & \propto exp(-\phi \, / \sigma^2) \end{split}$$

Hydrostatic equilibrium in clusters - 2

- Therefore
 - $\rho_{gas} \propto \rho_{galaxies}^{\beta}$
 - with $\beta = \mu m_p \sigma^2 / kT$. $\beta = 1$ if gas and galaxies have the same spatial distribution and mean velocity dispersion.
- · Density distribution often described by
 - $\rho(r) = \rho(0)[1 + (r/r_c)^2]^{-3\beta/2}$
- (hydrostatic equilibrium for isothermal gas in a potential well associated with a King dark-matter density profile). Observed $\beta = 0.7 0.9$.
- $r_c \approx 300$ kpc for a typical rich cluster.

Cooling

- For bremsstrahlung emission, the cooling time is $t_{cool}\approx 8.5 \; x \; 10^{10} \, (n/1000 \; m^{-3})^{-1} \, (T/10^8 \; K)^{1/2} \; years$
- Therefore, the cooling time in central cluster regions can be shorter than the age of the Universe.
- Although temperature gradients are seen in clusters, the catastrophic cooling predicted by this argument is not observed.
- There must be a **feedback mechanism** to heat the gas. This is a subject of debate, but energy input from active galaxies in general and radio sources in particular is favoured.

Interaction of radio sources with gas in galaxy clusters

- Ram-pressure of radio source expansion gives kinetic energy to gas near the cluster centre and moves it to large radii.
- Radio-source bow shocks heat the gas.
- Onset of radio-source activity may be triggered by cooling and infall of material into the cluster centre giving a feedback mechanism.

Central galaxy of the Perseus cluster

Note the outer dark regions

Centaurus cluster in X-rays

Temperature is colour-coded (orange hot; blue cooler)

Mass distribution in clusters from gravitational lensing

- Luminous arcs seen in clusters of galaxies.
- These are images of background objects gravitationally lensed by the cluster mass (and are indeed observed to have spectra of background objects).
- Consider an isothermal sphere model for the cluster with $M({<}r)$ =2 $\sigma^2 r/G$
- The gravitational deflection angle is $\alpha = 4\pi(\sigma/c)^2$. A source on the line of sight through the centre of an axially symmetric mass is seen as an **Einstein ring** of angle θ with $\alpha d_{\text{lens-source}} = \theta d_{\text{observer-source}}$; hence derive the equivalent velocity dispersion and mass.

HST image of a cluster of galaxies, showing effects of gravitational lensing

Masses from gravitational lensing and Xray emission

- In reasonable agreement, although some tendency for lensing masses to be higher (probably because the hot plasma has substructure).
- Both these indicators (and the cluster velocity dispersions) show that the mass distributions of clusters of galaxies are dominated by **dark matter**.
- The mass of X-ray emitting gas is ~15% of the total.

- ΔT/T is independent of redshift hence very important in studying high-redshift Universe.
- $\Delta T \approx 1 m K$ for galaxy clusters.
- Unique spectral signature.
- $\Delta T/T \propto$ cluster pressure integrated along line of sight.
- $\Delta T/T \propto n_e T_e$ whereas bremsstrahlung emission $\propto n_e T_e{}^2$. Hence an estimate of the distance.

