

Gamma Ray Burst GRB990123 Hubble Space Telescope • STIS

PRC99-09 • STScI OPO • A. Fruchter (STScI) and NASA

Transients

Stellar Mergers

PS1-10afx

Superluminous Supernovae (Pan-STARRS)

SNe in the middle of nowhere (SN PTF10ops, Maguire)

V838 Mon

Fast Radio Bursts (FRBs, Lorimer 2007)

TYPE IA SUPERNOVAE

- late 90s: Type Ia supernovae have been used to measure the acceleration of the Universe
- Type Ia supernovae are like standard distance candles!
 - b more distant supernovae are fainter than expected from 'standard' expansion of the Universe
 - \rightarrow expansion must have accelerated
 - \rightarrow need unknown source of energy \rightarrow Dark Energy
- \rightarrow Nobel Prize in 2011 for Schmidt, Riess, Perlmutter
- caveat: the progenitors of Type Ia supernovae are not known

Metallicity as a second parameter of SN Ia lightcurves

- the lightcurve is powered by the radioactive decay of ${}^{56}\text{Ni}$ to ${}^{56}\text{Co}$ $(t_{1/2} = 6.1 \text{ d})$
- $\rightarrow \ L_{peak} \propto M_{56Ni}$
 - the lightcurve width is determined by the diffusion time
 - b depends on the opacity, in particular the total number of iron-group elements (i.e. ⁵⁶Ni, ⁵⁸Ni, ⁵⁴Fe)
 - $\rightarrow ~t_{width} \propto M_{iron-group}$
 - $ightarrow {}^{54}$ Fe, 58 Ni are non-radioactive \rightarrow contribute to opacity but not supernova luminosity
- \rightarrow necessary second parameter
 - the relative amount of non-radioactive and radioactive Ni depends on neutron excess and hence on the initial metallicity (Timmes et al. 2003)
 - \bullet variation of 1/3 to $3\,Z_\odot$ gives variation of 0.2 mag

The Second SN Ia Parameter: (⁵⁴Fe + ⁵⁸Ni)/ ⁵⁶Ni (Mazzali and Podsiadlowski 2006)

Podsiadlowski, Mazzali, Lesaffre, Förster (2006)

- metallicity *must* be a second parameter that at some level needs to be taken into account
- cosmic metallicity evolution can mimic accelerating Universe
- but: metallicity evolution effects on their own appear not large enough to explain the supernova observations without dark energy (also independent evidence from WMAP, galaxy clustering)
 - it will be difficult to measure the equation of state of dark energy with SNe Ia alone without correcting for metallicity effects

Measuring the Equation of State

FIG. 1: Mapping the expansion history through the supernova magnitude-redshift relation can distinguish the dark energy explanation for the accelerating universe from alternate theories of gravitation, high energy physics, or higher dimensions. All three models take an $\Omega_M = 0.3$, flat universe but differ on the form of the Friedmann expansion equation.

The effect of metallicity evolution

Accretion Model

Merger Model

The Progenitor of SN 1987A Thomas Morris (Oxford/MPA), Ph.P.

SN 1987A: an anomalous supernova

- progenitor (SK $-69^{\circ}202$): blue supergiant with recent red-supergiant phase (10^4 yr)
- chemical anomalies:
 - $$\label{eq:helium-rich} \begin{split} \triangleright \ & \mbox{helium-rich} \ (He/H \sim \ 0.25, \\ N/C \sim 5, \ N/O \sim 1) \end{split}$$
 - CNO-processed material, helium dredge-up
 - \triangleright barium anomaly (5 10 solar)
- the triple-ring nebula
 - \rightarrow axi-symmetric, but highly non-spherical
 - \rightarrow signature of rapid rotation

The Triple-Ring Nebula

- discovered with NTT (Wampler et al. 1990)
- HST image (Burrows et al. 1995)
- not a limb-brightened hourglass, but physically distinct rings
- axi-symmetric, but highly non-spherical
 - \rightarrow signature of rapid rotation?
 - > not possible in simple single-star models (angular-momentum conservation!)
 - > supernova is at the centre, but outer rings are slightly displaced
 - \triangleright dynamical age: $\sim 20,000\,{
 m yr}$

all anomalies linked to a single event a few 10^4 yr ago, most likely the merger of two massive stars

Final Structure

Rings: Theory vs. Observations

Superluminous Supernovae

- recently discovered class of extremely luminous supernovae ("Quimbies")
- a factor up to 100 brighter than normal supernovae
- rare events: $1 \text{ in } 10^4 \text{ core-collapse SNe}$
- can be seen to high redshift (record: z = 3.9, Cooke et al. 2012)
- total photon energy not necessarily $> 10^{51} \, {
 m erg}$
- theoretical model suggestions
 - > pair-instability supernovae (example: SN 07bi)
 - \triangleright magnetar-powered
 - > interaction SNe (due to recently ejected shell)

Quimby (2012)

Causes of Supernova Diversity

• binarity

> supernova appearance (mass loss/accretion, merging)

 \triangleright core structure

• metallicity

- ▷ appearance (mass loss, compactness)
- ▷ core evolution

• rotation/magnetic fields

> important in early evolutionary phases
 (only?), e.g. through mixing (magnetic
 fields prevent rapidly rotating evolved cores
 (Spruit))

• dynamical environment

ightarrow e.g. in dense clusters \rightarrow dynamical interactions \rightarrow different final products (dynamical mergers \rightarrow more HNe?)

Supernova Diversity

Theory

explosion mechanisms supernovae stars/binaries

Binary Evolution

envelope properties supernova sub-type final fate

Explosion Mechanisms

iron-core collapse e-capture collapse thermonuclear pair-instability collapsar magnetar shell detonation

Host Galaxies

progenitor constraints IMF starbursts

Rotation/Magnetic Fields

core rotation mixing mass loss

Metallicity

mass loss rotation rate nuclear burning

Dynamical Interactions

stellar collisions runaway mergers Cosmology

cosmological parameters star–formation probes

Supernova Observations

surveys/rates new supernova types individual supernovae supernova diagnostics