
Accretion in Astrophysics:
Theory and Applications

Solutions to Problem Set I
(Ph. Podsiadlowski, SS10)

1 Luminosity of a Shakura-Sunyaev (SS) Disk

In lecture we derived the following expression for the effective temperature, Teff as a function
of radial distance from the central compact star:

Teff =

[

3GMṀ

8πσr3

]1/4 (

1 −
√

r0/r
)1/4

where σ is the Stefan-Boltzmann constant.

a.) The total power radiated by the disk (including both sides) is given by:

L = 2 ×
∫ ∞

r0

σT 4
eff 2πr dr =

∫ ∞

r0

3GMṀ

2r3

(

1 −
√

r0/r
)

r dr

This is easily integrated analytically to yield:

L =
1

2

GMṀ

r0

b.) Define the power radiated in an SS disk for all radii greater than r to be L(> r).

Solution: The indefinite integral for L(> r) is:

L(> r) =
3GMṀ

2




1

r
−

2 r
1/2
0

3 r3/2





The ratio of this quantity to the gravitational energy release is

L(> r)

1

2

GMṀ

r

=
[

3 − 2

√
r0

r

]

Sketch the ratio as a function of r. This result demonstrates that the gravitational
potential energy, released as the matter migrates inward, does not emerge from the disk
locally, but rather is redistributed by the viscous stresses.
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2 Temperature of an SS-Accretion Disk

a.) Use the above expression for Teff of an SS-disk to find the location (i.e., the radial
distance from the central star) where the temperature is a maximum. Express your
answer in terms of r0, the radius of the inner edge of the disk. If the central star is a
non-rotating black hole, then r0 = 6Rg. In this case, express your answer for the location
of the maximum temperature in terms of Rg.

Solution: The disk temperature can be written as:

Teff = T0

(
r0

r

)3/4 (

1 −
√

r0/r
)1/4

where T0 ≡ (3GMṀ/8πσr3
0)

1/4. Differentiating the function of r in the above expres-
sion, and equating the result to 0, yields the radius where the maximum in the disk
temperature occurs:

r(Tmax) =
49

36
r0

The maximum value of the disk temperature is found by evaluating T at 49 r0/36 We
find

Tmax = T0
6
√

6

77/4
≃ 0.488 T0

b.) Compute Tmax for the following types of accreting sources:

accretor mass Ṁ (gm/sec) r0 (cm) source type T0 (K) Tmax (K)
white dwarf 1 M⊙ 1017 9 × 108 “CV” 7.9 × 104 3.9 × 104

neutron star 1.4 M⊙ 1018 1.2 × 106 “LMXB” 2.1 × 107 1.0 × 107

black hole 106 M⊙ 1024 9 × 1011 “AGN” 7.9 × 105 3.9 × 105

black hole 109 M⊙ 1027 9 × 1014 “AGN” 1.4 × 105 6.8 × 104

3 Mass Stored in an Accretion Disk

In lecture we derived expressions for the midplane pressure, temperature, and density of an SS-
disk, as well as for the thickness, H, all as functions of the radial distance r. In the handout,
the dependence of these quantities on α and Ṁ were specified, but the leading dimensioned
quantities were not given. These are provided below for the case of an accreting central neutron
star with a mass of 1.4 M⊙.

Use these results to compute the amount of mass stored in the accretion disk at a particular
instant in time. Formally, you will find that this mass is infinite; however, if you restrict
yourself to plausible integration limits for r, e.g., r0 < r < 104 r0, you will find a sensible
answer.
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P ≃ 2 × 105α−9/10Ṁ
17/20
16 r

−21/8
10 f 17/20 dynes cm−2

H ≃ 1 × 108α−1/10Ṁ
3/20
16 r

9/8
10 f 3/20 cm

T ≃ 2 × 104α−1/5Ṁ
3/10
16 r

−3/4
10 f 3/10 K

ρ ≃ 7 × 10−8α−7/10Ṁ
11/20
16 r

−15/8
10 f 11/20 g cm−3

where Ṁ16 is the mass accretion rate in units of 1016 gm sec−1, and r10 is the radial distance

in units of 1010 cm. The function f is defined to be f = (1 −
√

rc/r)
1/4.

To make the integration easier, but with no significant loss of accuracy, you can safely set
f = 1 in the above expressions. Take the inner edge of the accretion disk to be located at
r0 = 107 cm, and the accretion rate to be Ṁ = 1018 grams sec−1. A plausible value to use for
the α parameter is 0.1.

Solution: The mass in the disk, at any given time, is just the integral of density over the
volume.

Mdisk ≃
∫ rmax

r0

ρ(r) 2π r H(r) dr

The volume element of an annulus is dV = 2πrHdr. Next, we plug in the given expressions
for ρ and H :

Mdisk ≃
∫ rmax

r0

7α−4/5Ṁ
7/10
16 r

−3/4
10 f 7/10 2π r dr = 14πα−4/5Ṁ

7/10
16

∫ rmax

r0

r
−3/4
10 f 7/10 r dr

This integral, if carried out with the factor f 7/10 included, yields a hypergeometric series, which
is not particularly insightful. To obtain much better than an order-of-magnitude estimate, we
simply set f = 1, and complete the integral to find:

Mdisk ≃ 14πα−4/5Ṁ
7/10
16

∫ rmax

r0

r
−3/4
10 r dr ≃ 14

4

5
π1020α−4/5Ṁ

7/10
16 (r

5/4
max,10 − r

5/4
0,10)

where the factor of 1020 comes from converting r to r10. If rmax ≫ r0, then our expression for
the mass in the disk is:

Mdisk ≃ 14
4

5
π1020α−4/5Ṁ

7/10
16 r

5/4
max,10

For the parameters specified in the problem: α = 0.1, Ṁ16 = 100, and rmax = 104r0 = 1011

cm, the mass in the disk is:
Mdisk ≃ 9.9 × 1024 grams

Note that this is very much less than the mass of the central neutron star.

Given the amount of mass stored in such a disk and the accretion rate, estimate a timescale
for “filling” the disk if it were initially empty.

Solution: The disk filling timescale is

τfill ≃
Mdisk

Ṁ
≃

9.9 × 1024 grams

1018 grams s−1
≃ 107 sec ≃ 4 months
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4 Radial Velocity in an SS Accretion Disk

Solution: Use the expressions for ρ(r) and H(r) given in the previous problem to compute
an expression for vr, the radial in-spiral speed of the disk material. Show that for all choices
of parameters α and Ṁ , the radial speed vr ≪ vkepler, as long as one considers radial distances
significantly greater than r0.

From our conservation of mass expression, we found:

Ṁ = ρH2πrvr

where vr is the radial flow velocity of the material in the accretion disk. Solving for vr we
have

vr =
Ṁ

ρH2πr

We now use the results from Problem #3 for the quantity ρH2πr to show that

vr =
Ṁ

7α−4/5Ṁ
7/10
16 r

−3/4
10 f 7/10 2π r

For radial distances ≫ r0 we can safely set f = 1. Let us work with a dimensionless ratio,
vr/vK :

vr

vK
≃

Ṁ
√

r

7α−4/5Ṁ
7/10
16 r

−3/4
10 2π r

√
GM

where the square-root terms represent 1/vK . Since the units of Ṁ and r are mixed, this needs
to be tidied up:

vr

vK
≃

101610−5α4/5r
1/4
10 Ṁ

3/10
16

7 · 2π
√

GM

Finally, we express the mass of the neutron star in units of 1.4 M⊙, and evaluate all the
constants:

vr

vK

≃ 0.00017
α4/5r

1/4
10 Ṁ

3/10
16

√

M/1.4 M⊙

The α parameter is likely to be considerably less than unity, but we can obtain an upper limit
to vr/vK by setting α = 1. In this case, even if Ṁ16 is near the Eddington limit of ∼100, and
r10 is as large as 100, we see that

vr

vK
< 0.002

5 Spectrum of an SS Accretion Disk

Write out an integral expression for Lν of an SS accretion disk, where Lν is the spectral
luminosity (units of power per unit frequency interval). Treat each annulus in the disk as a
black body of temperature Teff(r) as defined in problem 1 above. Do not try to integrate the
expression since it can’t be done analytically.
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For reference, the Planck function is:

P (ν) =
2πhν3c−2

[e(hν/kT ) − 1]

Solution: The disk spectrum can be obtained by integrating the Planck function over the
surface area of the disk, taking into account the fact that T varies with radial distance:

Lν =
∫

∞

r0

2πhν3c−2

[e[hν/kT (r)] − 1]
2πr dr = 4π2hν3c−2

∫
∞

r0

r

[e[hν/kT (r)] − 1]
dr

where this is the spectrum emanating from one side of the disk (the units are energy time−1

frequency−1).

Optional

If you make the following approximations, the spectrum (i.e., Lν) can be obtained analytically:
• Approximate the Planck function by

P (ν) = 2πhν3c−2e−hν/kT

• Take the factor
(

1 −
√

r0/r
)1/4

in the expression for T (r) to be approximately unity.
• Carry out the integration from r = 0 to r = ∞, even though a real disk obviously has limits
at both ends.

Solution: If we utilize the proposed approximation to the Planck function in the above
integral, we have:

Lν =
∫

∞

r0

2πhν3c−2e−[hν/kT (r)] 2πr dr

where

Teff =

[

3GMṀ

8πσr3

]1/4 (

1 −
√

r0/r
)1/4

If we now set the factor
(

1 −
√

r0/r
)1/4

in the expression for T (r) to be approximately unity,
as suggested, we can write:

Teff ≃
[

3GMṀ

8πσr3
0

]1/4 (
r0

r

)3/4

≡ T0

(
r0

r

)3/4

The integral for the spectral luminosity now becomes:

Lν = 4π2hν3c−2
∫ ∞

r0

e−[(hν/kT0)(r/r0)3/4] r dr

With an appropriate change of variable, this integral is analytic, and we find:

Lν ≃ 4π2hν3c−2 4

3
Γ
(

8

3

)

r2
0

(

kT0

hν

)8/3

Collecting the terms in frequency, ν, we can get an idea of the spectral shape of the disk:

Lν ≃ 4π2hc−2 4

3
Γ
(

8

3

)

r2
0

(

kT0

h

)8/3

ν1/3 ∝ ν1/3
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6 The Last Stable Circular Orbit

The equation for the radial coordinate r of a test particle of non-zero rest mass orbiting a
non-rotating black hole of mass M (the radial geodesics equation) is

1

2
ṙ2 +

1

2

(

1 −
2GM

c2r

) (

L2

r2
+ c2

)

=
1

2

E2

c2
. (1)

To illustrate its similarity to the Newtonian energy conservation equation, one can also write
this as

1

2
ṙ2 −

GM

r
+

L2

2r2
︸ ︷︷ ︸

Newtonian

−
GML2

c2r3
=

1

2

E2 − c4

c2
= E ′.

For the purposes of any calculation, it is useful to introduce non-dimensional variables, in
particular

x ≡
rc2

GM
, l ≡

Lc

GM
, e ≡

E

c2
, τ ≡

tc3

GM
. (2)

Then, equation (1) can be written as

1

2
x′2 +

1

2

(

1 −
2

x

) (

l2

x2
+ 1

)

=
1

2
e2 = e′, (3)

where now x′ = dx/dτ . Note that the energy at infinity for a non-moving particle is e = 1 (or
e′ = 1/2), due to its rest mass energy.

Part a)

By defining an effective potential Veff = 1/2 (1 − 2GM/c2r) (L2/r2 + c2), one can classify
the possible trajectories/orbits just as in first-year classical mechanics (keeping in mind that
the ‘integration constant’ (1/2 E2/c2) at infinity is 1/2 c2 for a non-moving particle at infinity
[due to the rest mass energy]).

The figure shows the non-dimensional effective potential for various values of L2, as indi-
cated. If L2 < 12G2M2/c2 (see next part), the effective potential has no maxima and minima,
and hence particles of any energy can fall into the black hole.

If L2 > 12G2M2/c2, there is one maximum and one minimum in the effective potential, and
the particle trajectories depend on the energies. If e′ is larger than the value at the maximum
potential, all particles with an inward radial velocity will fall into the black hole. If the energy
is equal to this maximum, the corresponding orbit is an unstable circular orbit, if e′ is less
than the maximum, but larger than 1/2, the value of e′ for a stationary particle at infinity,
the particle is on a hyperbolic trajectory (approaching the black hole to a minimum separation
where e′ equals the effective potential, the turning point). If e′ is less than 1/2, but larger
than the potential at the minimum, the particle is trapped on an elliptical orbit between the
two turning points of the potential with e′ = Veff/c2. A particle with e′ equal to the minimum
of Veff/c2 corresponds to a stable, circular orbit.
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stable, circular

unstable, circular orbit

hyperbolic orbit

elliptical orbit

last stable, circular orbit

infall orbit

Part b)

In non-dimensional units (to get simpler expressions) the effective potential can be written
as

V̂eff(x, l) =
1

2

(

1 −
2

x

) (

l2

x2
+ 1

)

. (4)

Circular orbits require dV̂eff/dx = 0:

dV̂eff

dx
=

1

x2
−

l2

x3
+

3l2

x4
= 0,

which leads to a quadratic equation with the solution

x± =
l2 ±

√
l4 − 12l2

2

(as given on the sheet). Real solutions only exist when the √ is real, i.e. l2 > 12.
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Part c)

The x+ (or r+) solution as a function of l2 has an obvious minimum when the
√

expression

is zero, i.e. when l2 = 12, where the solution is xmin
+ = 6 (or rmin

+ = 6GM/c2). To show that

the x+ solution corresponds to a minimum, one could calculate the second derivative of V̂eff .
But this is not really necessary from the analysis of part a). Noting that for l2 > 12 there will
be exactly two extrema for Veff (part b), that r+ ≥ r−, and considering the asymptotic form of
Veff (part a), it follows that the r+ solution must correspond to a minimum and the r− solution
to a maximum of the effective potential (i.e. correspond to a stable and unstable circular orbit,
respectively). For the minimum r+, obviously r+ = r−, and the effective potential has a saddle
point.

Part d)

At the innermost stable orbit, l2 = 12 and xmin
+ = 6 and hence (using equations 3 and 4)

V̂ min
eff =

4

9
=

1

2
e2,

which implies that the (non-dimensional) energy at this orbit is e =
√

8/9. Since the energy of

a stationary particle at infinity is e∞ = 1 (corresponding to its rest mass energy), the binding

energy at that orbit is eB = 1 −
√

8/9 or in dimensional units (equation 2)

EB = (1 − (8/9)1/2) c2 ≃ 0.06 c2.

Part e)

As matter slowly drifts radially inwards in an accretion disc (determined by the disc’s
viscosity), roughly half of the gravitational energy of the matter is released and radiated away
(in the Newtonian case anyway). But once it reaches the innermost stable orbit, matter will
rapidly fall into the black hole (i.e. pass through the event horizon) taking with it its total
mass-energy (including all of its kinetic energy), adding to the mass of the black hole without
further radiating away much of its energy. Therefore the binding energy at the innermost
stable orbit limits the maximum energy that can be radiated away by an accreting black hole.
This is different for a neutron star, which has no event horizon. Therefore, even if the last
stable orbit were larger than the neutron star (possible for some equations of state), most
of the kinetic energy would have to be released when matter impacts with the hard surface
of the neutron star, providing a method of distinguishing, at least in principle, between an
object with a hard surface and an event horizon (i.e. black hole).

Note: The analysis was done for a non-rotating black hole. If the black hole is rotating rapidly
in the same direction as accreting matter, the innermost stable orbit is much closer and the
accretion efficiency may be much larger (up to ∼ 30 % in realistic models). The argument
also ignores pressure forces in the disc that become important when the accretion approaches
the Eddington rate.
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