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• the direct discovery of gravitational waves has started the era of

gravitational-wave astronomy

Nobel Prize in Physics 2017 to Thorne, Weiss and Barish

• major surprise: the merger of two massive stellar black holes (BHs)

I. Gravitational Waves and the aLIGO Discoveries

II. Channels for Forming BH+BH Binaries

III. Cosmological Simulations in the MOB Scenario

IV. GW170817: The Detection of a Neutron-Star

Merger



General Relativity and Gravitational Waves
Newton’s Gravity

Time is absolute: space and time are given

apriori

Einstein’s General Relativity

Spacetime is a dynamic and elastic entity,

influencing and influenced by mass-energy
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• masses deform spacetime geometry → generate gravitational waves, propagating with

the speed of light (Einstein 1916)

• GWs are very weak and need massive, compact bodies



Space Curvature

Double Neutron-Star Binaries as Gravitational-Wave Sources



Compact Binary Inspiral and Final Merger

(Strohmayer)
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LIGO-India approved



Livingston/Hanford



(Credit: A. Buonanno 2016)



aLIGO Detection of Gravitational Waves

• surprise: merger of two massive (∼ 30M⊙) black holes (chirp-mass: 28M⊙)

• [M1/M2 ≃ 0.8± 0.2, D ∼ 400Mpc, SNR ∼> 20, ∼ 5-sigma detection]
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(Credit: A. Buonanno 2016)



(Credit: A. Buonanno 2016)



aLIGO Template Library



Results: First Science Run



BH+BH Parameters



aLIGO

X−ray studies
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The BH Mass Spectrum as a Function

of Mass

• BH masses depend on final stellar

masses at core collapse (in particular

for direct collapse)

→ depends on stellar-wind mass-loss

history

→ lower metallicity → higher BH

masses

Spera+ (2015)



The Formation of BH Binaries

• diversity of BH-BH properties

→ variety of formation channels

I. Dynamical formation in dense clusters

• in dense clusters: dynamical interactions → close

BH+BH binaries

II. Non-dynamical formation

• common-envelope scenarios: conversion of wide

binary to close binary

• homogeneous evolution scenarios: close binary

from the beginning

Others: primordial BHs, population III stars, core

fissioning, AGN disk models, gravastars, etc.



Primordial Black Holes
(e.g. Cholis, Kovetz, Raccanelli, . . . , 2016)

• primordial black holes can form from Big

Bang density fluctations

→ captured into binaries → BH-BH mergers

key interest: Can they make up for the Dark

Matter in Galactic halos?

Macho constraints: window

MBH = 30− 500M⊙ (Quinn+ 2009)

• including other constraints: only 10%

(Carr+ 2017)
Quinn+ (2009)



BH-BH Mergers from Population III
Stars

(e.g. Kinugawa+ 2016)

• Pop III stars naturally produce massive

BHs

• top-heavy IMF (?)

• differences in stellar/binary evolution

• contribution probably less than 1% at low z

(Belczynski+ 2017)

⊲ low mass in Pop III population

⊲ mergers predicted to occur at high

redshift

Belczynski+ (2017)



Dynamical Formation in Stellar Clusters
(e.g. Banerjee/Kroupa; Rasio/Rodriguez; Ziosi;

Askar+)

• BH-BH binaries form by dynamical

interactions from isolated BHs

→ large formation efficiency (cf. ms pulsars,

LMXBs in GCs: x 100; but 10% total

contribution)

• three-body encounters → BH+BH binaries

• most BHs are ejected

• in dense clusters, possibility that BHs form

sub-clusters of BHs (Spitzer instability)

Black-hole segregation (Banerjee et al. 2010) Rodriguez+ (2016)



(Credit: Banerjee 2016)
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(Credit: Banerjee 2016)



Rodriguez+ (2016)

• tends to produce relatively massive BH

binaries (GW150914?)

• lower-mass BH binaries in young,

high-Z clusters (Chatterjee+ 2017)?

Rate?

Banerjee+ (2016)

• masses correlated (but mass ratio not

very close to 1)

• spins should be completely uncorrelated

with the orbit

• aLIGO detection rates (e.g. Banerjee

2016): 10− 300yr−1



Principal Uncertainty: the first 3 Myr

(e.g. Davies+ 2017)

• initial condition for cluster simulations

assume BH population

• strongly depends on the stellar evolution

during BH formation phase

• supernova kicks? dynamical ejections?

• BH population affects cluster dynamics by

dynamical heating

• clusters with large numbers of BHs are

heated efficiently and have large core radii

(Mackey+ 2007/2008)

• formation in nuclear clusters near galactic

centres with higher densities?
Mackey+ (2007/08)



The Formation of BH+BH Binaries
through Common-Envelope Evolution

• the progenitors of black holes are big stars

• need to get them into a close orbit to merge

• possible solution: common-envelope evolution

• standard scenario to produce compact NS+NS

binaries (Hulse-Taylor pulsar, PSR

J0737-3039)

• problem with black holes:

⊲ difficult to form two black holes (requires

late mass transfer)

⊲ but possible with some fine-tuning

⊲ rates highly uncertain (Belczynski et al.

[2016] vs. Kruckow, et al. [2016])
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Belczynski+ (2016)



Stevenson+ (2017)



Principal Uncertainties

• treatment of CE phase

• it may be difficult to form the most massive BH

binaries (very massive stars do not become red

supergiants)

Predictions

• diversity of masses and mass ratios

• spins probably somewhat aligned with the orbit

(uncertainties in understanding BH kicks!)



The Massive Overcontact Binary (MOB) Model
(Marchant, Langer, Podsiadlowski, Tauris, Moriya 2016;

de Mink/Mandel 2016a,b)

• initial homogeneous evolution is enforced by tidal locking

in a very close massive binary (de Mink et al. 2009)

• needs to avoid binary widening by stellar wind mass loss

→ requires low metallicity

• most systems pass through contact phase on main

sequence

→ evolution drives systems towards mass ratio of 1

Model Description

• uses latest MESA code (Paxton et al. 2015)

• with binary evolution fully implemented (Marchant)

• mass loss:

⊲ Vink (2001) ×1/3 (H-rich), Hamann (1995) (no H)

⊲ Ṁ ∝ Z0.85



Marchant et al. (2016); after de Mink+ (2009); Mandel/de Mink (2016a,b)
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Marchant et al. (2016)

depends on metallicity-dependent stellar winds



Cosmological Simulations of
BH+BH Mergers in the MOB

Scenario
Lise du Buisson, Podsiadlowski1

• use full cosmological simulations to

simulate rates of GW sources as a

function of z and Z (plus LGRBs,

PISNe)

• simulations by Taylor & Kobayashi

(2014)

⊲ self-consistent hydrodynamical

simulations with star formation, SN

and AGN feedback, and chemical

enrichment

⊲ fit key observables, such as the

galaxy mass-metallicity relations,

metallicity gradients, etc.

1 : plus Kobayashi, Taylor, Marchant,

Langer, Tauris, Moriya, Mandel, de Mink

Based on Taylor & Kobayashi (2014)



du Buisson et al. (2017)

• form massive BH+BH systems (∼> 25M⊙)

• at very low metallicity (Z⊙/50): bimodal mass distribution with systems below and

above pair-instability supernova (PISN) gap (no BH formation)

• very massive BH+BH mergers can be detected with aLIGO throughout the

Universe (prediction: 70 yr−1 below and 7yr−1 above PISN gap)

→ probe massive stellar evolution throughout the Universe

• known observational counterparts (e.g. double He-star binary (SMC) with

M1 = 66M1, M2 = 61M2, Porb = 19.3d)



Basic Predictions

• easier to form massive BH binaries

• 10% above PISN gap

• mass ratio close to 1 (≥ 0.9?)

• spins vary depending on metallicity,

probably correlated with orbit (but

depends on BH formation process)

Main Issues

• treatment of rotational mixing untested

• wind mass loss prescription essential

(also associated angular momentum

loss) Marchant+ (2017)



(Credit: A. Buonanno 2016)



(Sesana)



Future Outlook

• present aLIGO rate: 1 every 2 weeks (?); future rate:

1 every day or 2 (?)

• all three channels may be at work (interesting rates)

• distinguish between different models based on

⊲ BH+BH chirp mass distribution

⊲ mass ratios

⊲ spins and their alignments

⊲ ratio of NS+NS to BH+BH mergers

⊲ host galaxies

• MOB Prediction: aLIGO should discover mergers of

intermediate-mass black holes (Mtot ∼ 200− 300M⊙)

⊲ already detectable in the ring-down phase



GW170817: The detection of the
first neutron-star merger

• discovered on August 17

• announced on October 16

• principal science objective of aLIGO

• only expected to be seen in O3

• also independently detected as short-duration

gamma-ray burst and basically in all

electromagnetic wavebands: X-rays, optical,

infrared, radio in the follow-up

• not seen in neutrinos

• flood of 40+ papers made public on October 16

⊲ 1 PRL

⊲ 8 Science papers

⊲ 7 Nature papers

⊲ 24 ApJL papers



Abbott+ (2017a)



Gravitational-wave signal

• observed for 100 s (S/N=32)

• inferred masses

⊲ individual masses: 1.17− 1.60M⊙

⊲ combined mass: 2.74+0.04
−0.01M⊙

• high inferred rate:

3× 10−5 − 5× 10−4MWEG−1 yr−1

• Fermi detection of short GRB: 1.7 s later:

speed of GW ∼ speed of light

• with Virgo detection: excellent

localization: 28deg2

→ galaxy NGC 4993 at 41Mpc

→ Hubble constant: 70+12
−8 kms−1Mpc−1



Abbott+ (2017b)



Multi-messenger astronomy (Abbott+ 2017b)





kilonova
Brian Metzger



Tanvir+ (2017)

Smartt+ (2017)



ESO X-Shooter spectra

• two-component spectra (as predicted)

⊲ early spectrum blue → neutrino-driven

wind ejecta with low neutron fraction

(0.05 c)

⊲ later spectra → IR → lanthanide-rich

dynamical ejecta (∼ 0.2 c)

⊲ dynamical ejecta mass: 0.03− 0.05M⊙

• consistent with forming all r-process elements

in the Universe (preliminary)

short-duration GRB

• 1.7 s after GW, duration: 2 s

• Eiso ≃ 4× 1046 erg

→ off-axis GRB (> 26◦)



The importance GW170817

• achieved principal science objective of aLIGO

• confirmed neutron-star mergers as important

gravitational-wave sources

• confirmed the NS-NS merger – short GRB

connection

• confirmed NS-NS mergers as prime source of

heavy element nucleosynthesis (r-process)

(instead of supernovae)

Some open questions

• apparent high NS-NS merger rate: real or luck?

• short GRB was unusually weak (orientation

effect?)

• larger ejecta masses → need to refine kilonova

models


